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ABSTRACT

We study the asset pricing implications of an economy where solvency constraints are
determined to efficiently deter agents from defaulting. We present a simple example for which
efficient allocations and all equilibrium elements are characterized analytically. The main model
produces large equity premia and risk premiafor long-term bonds with low risk aversion and a
plausibly calibrated income process. We characterize the deviations from independence of

aggregate and individual income uncertainty that produce equity and term premia.



1. Introduction

It is difficult to make a debtor pay: debt collection, litigation, and wage gar-
nishment are costly, and the end result is uncertain because of the possibility of
declaring bankruptcy. Motivated by these difficulties, we study a model where
individuals with large financial obligations cannot contract further debts that
would make them choose to default. In the model, individual income risks are
only incompletely shared and become one of the determinants of asset prices.

In a companion paper, Alvarez and Jermann (1998a), we present a framework
for studying the asset pricing implications when agents can default on their debts,
built on earlier work by Kocherlakota (1996) and Kehoe and Levine (1993). In
the model, agents default on their debts if this makes them better off. We as-
sume that if agents default, their labor earnings cannot be seized, but they are
excluded from asset markets forever. In our equilibrium concept, this lack of com-
mitment results in state-specific and agent-specific borrowing constraints. These
constraints ensure that agents will not default, since they will never owe so much
as to make them choose to default. At the same time, the constraints ensure
that there is as much risk-sharing as possible. In this paper, we focus on the
quantitative effects of these endogenous solvency constraints for asset returns.

Our work is related to the asset pricing literature that studies the effects of
portfolio restrictions, such as He and Modest (1995) and Luttmer (1996) among
others. He and Modest (1995) conclude that “none of the market frictions alone—
with the possible exception of solvency constraints—can explain the apparent
rejection of the first-order equilibrium condition between consumption and asset
returns.” In our model we propose a coherent story of how solvency constraints
and asset prices are endogenously determined.

We start by presenting a set of results about general properties of equilibrium
allocations. Since the welfare theorems hold, we characterize equilibria by solving
a planning problem. We prove that incomplete risk-sharing is possible only for
low risk aversion, low time preference parameter, and for persistent but not too
volatile individual shocks.

We present an example that we can fully characterize analytically. We show
how to compute efficient allocations and all the elements of an equilibrium. The
example characterizes the type of parameters that deliver different levels of risk-
sharing, shows that interest rates are lower in economies with solvency constraints,
and illustrates that poor agents face binding solvency constraints. We calibrate
a simple income process and show that for low risk aversion the pricing kernel
can be volatile enough to pass the Hansen-Jagannathan test. The example also
illustrates how to design efficient algorithms to solve for optimal allocations in



more general cases.

For a detailed quantitative analysis we specify an endowment process that
allows varying degrees of dependence between aggregate and individual income
uncertainty. Using moderate values for risk aversion and an income process cal-
ibrated to aggregate and household U.S.-data, the model generates large risk
premia for equity and for long term bonds. With limited risk-sharing there is
no “risk-free rate puzzle,” as interest rates are lower than in the corresponding
representative agent economy. In fact, to explain risk-free rates in the order of
1% per annum, the model requires a time-discount factor that is lower than the
ones typically used in other studies. Finally, we characterize the deviations from
independence of aggregate and individual risks that generate equity and term
premia. The equity premium depends on the comovement between individual
income risk and the contemporaneous aggregate income growth. This result is
driven by solvency constraints that bind frequently, as opposed to the well known
results by Mankiw (1986), Weil (1992), and Constantinides and Duffie (1996)
that require convexity of the marginal utility. The term premium depends on the
comovement between the forecast of future individual income risk and aggregate
income growth.

Compared with several studies on incomplete markets economies, our study
differs along some of the following dimensions.! First, we have complete markets
where every claim can be traded and priced; most incomplete markets models
consider only a very limited set of assets. Second, in our model the extent of
risk-sharing depends on the cost and benefits of defaulting. In most incomplete
market models, the extent of risk-sharing depends primarily on the assumptions
about available assets. Third, in our model agent-specific and state-specific sol-
vency constraints bind frequently; in most incomplete markets models portfolio
constraints rarely bind. Finally, our model is very tractable since we solve a plan-
ner’s problem and then compute the prices for the corresponding equilibrium—
incomplete markets models are solved directly as a complicated fixed point over
market prices. Given the tractability and the presence of complete markets we are
able to study equity, one-period bonds, and the entire term structure of interest
rates.

In section 2 we present the environment. Section 3 presents the equilibrium
with solvency constraints. In section 4 we characterize the optimal allocations.
In section 5 we solve and analyze a simple two-state case. Section 6 contains
the calibration and the quantitative findings of a more general case. Section 7
concludes.

'For instance, Mankiw (1986), Telmer (1993), Constantinides and Duffie (1996), Heaton and
Lucas (1996), and Zhang (1997).



2. Environment

We consider a pure exchange economy with two (types of) agents.? Agents’
endowments follow a finite state Markov process; agents’ preferences are identical
and given by time-separable expected discounted utility. We add to this simple
environment participation constraints of the following form: the continuation
utility implied by any allocation should be at least as high as the one implied by
autarchy at any time and for any history.

We use a Markov chain with generic elements z € Z, a set with N ele-
ments. To refer to particular elements of Z we use Z = {31,32,....,3n}, and
to refer to the time t realization of the process we use z;. We denote by 2! =
(20, 21, 22, ..., 2t) a length ¢ history of z. We use II for the matrix containing
the transition probabilities, which generates conditional probabilities for histo-
ries that we denote as 7(z!|zg = z). We use the notation {c;} and {e;} for the
stochastic process of consumption and endowment of each agent, hence {¢;} =
{eir(2") :VE>0, 2 € Z'}. We assume that aggregate endowment e; (') =
el (zt) +eay (zt) is constant and equal to e’

Individual endowments are given by a function ¢; that depends only on z,
so that e;; (zt) = € (2¢). We assume that ¢; (z) > 0 for all 7 and z. The utility
for an agent corresponding to the consumption process {c} starting at time ¢ at
history 2! is denoted by U(c)(z!) and is given by:

o0

U(c)(2h) = Z Z Biirs () u (s (271°)) (270 24) (2.1)

s=0 Zt+s eZt+s

where u is the period utility and ;.. is a time-discount factor. We assume
that v : Ry — R is strictly increasing, strictly concave, and C'.The multi-
period time-discount factor 3;;,,.1is defined recursively using the one-period
state-contingent discount factor 8 : Z — [0, 1]. Specifically, 8, ; (2171) = 1for all
27 By (2Y) = B (z) for all 2%, and fors > 1, 8,4, .41 : Z°7° — [0,1] satisfies

Brirser (277°) = Bpas (271 - B (2e4s) -

Note that the standard case with constant discount factor 3 (z) = (3 corresponds
to Brits (zt+5—1) = (3°. As we will show below, letting the time-discount factor
be state-contingent in this way allows us to introduce aggregate stochastic growth
as a special case within the same notational framework.

2Qur companion paper, Alvarez and Jermann (1998a), considers the more general case with
I agents, when I > 2.
3We will show below how to introduce aggregate uncertainty into this notational framework.



We assume that the matrix II is such that the process for {2z} has Z as its
unique ergodic distribution and has no cyclically moving subsets. Additionally
we assume that the shocks are symmetric across agents in the following sense. Let
us denote by € and € two vectors of arbitrary values for the agents’ endowments,
and let us denote by B and B/ two arbitrary values for the time-discount factor;
then I, ¢; (-) and () are assumed to satisfy

).

I
o0

Pr ((e1 (¢) 62 () =2, 8(¢) = B| (e1 (2) €2 (2)) =5, B (2)
= Pr((e(2).a () =€.8() = Fl(e(2),a () =€ (2)

An allocation {¢;};_; 5 is resource feasible if:

Cit (zt) + o (zt) = e (zt) V>0, 2teZt, (2.2)
and it satisfies the participation constraints if:
Ule)(2h) > Uley)(2) = U () Vt>0, 2t ezt (2.3)

where we use the notation U’ (2;) to refer to U(e;)(2) to emphasize that it only
depends on z;.

Except for the state-contingent time discount factor our environment is a
special case of the one studied by Kehoe and Levine (1993). In particular, we
consider the case with one good, two agents, and where the participation con-
straints have autarchy as the outside option. It is identical to the one studied by
Kocherlakota (1996), except that we allow for a stochastic discount factor and
non-i.i.d. process for the income shocks.

2.1. Aggregate uncertainty

Our specification of the time-discount factor allows us to consider stochastic ag-
gregate income growth to be introduced as in Mehra-Prescott (1985) and in much
of the quantitative consumption based asset pricing literature. An economy with
stochastic growth, constant time-discount factor, and constant relative risk aver-
sion can be expressed as an economy with constant aggregate endowment and
state-contingent discount factor such as the one presented in section (2). Let

€t11 (Zt,Zt+1) = M2zt41) € (zt) and €it (zt) =€i(2) e (zt) fori=1,2

and define é; (zt) =eiy (zt) /et (zt) = €;(z) for all iso that é (zt) =1 all 2t



Assuming a constant time-discount factor 8 and a period utility function
of the form u(c) = = _ for some positive v (for simplicity, ¥ # 1); defining

1
Gt (zt) = ci,t( ) et( ) then U (-) satisfies

U (¢;) (zt) (Z’t( )) + B () Z U (¢ (z ze41) T (2041 2e)

Zt+1€Z
with probabilities and discount factor
. 7 (]2) - A () 1—
W(Z/’Z)E ( ’) ( ) — ndﬂ 6 Z ,’Z l) ’Y‘
> (Z]2) - A(Z)

Clearly, the resource and participation constraints are satisfied for an allocation
{ci}i—1 o in an economy with aggregate growth A(-)and constant discount fac-
tor B if and only if they are satisfied for the corresponding {éi}i:1,2 allocation

in the economy with constant aggregate endowment, discount factor B (+),and
probabilities 7. Moreover, the preference orderings are identical in the two cor-
responding economies. For later reference, when we want to distinguish between
the two representations of the same economy, we refer to the one with stochastic
discount factors and constant aggregate endowment as the share representation
of the economy.

3. Equilibrium with endogenous solvency constraints

In this section, we define a competitive equilibrium with complete markets in Ar-
row securities and with endogenous solvency constraints. The solvency constraints
prohibit agents from holding large amounts of contingent debt, hence preventing
default. In general, these solvency constraints will be state-contingent, since the
value of default (reverting to autarchy) varies with the state.

Let ¢; (zt, 2 ) denote the period ¢, state 2!, price of one unit of the consumption
good delivered at ¢ 4+ 1, contingent on the realization of z;11 = 2/, in terms of
period t consumption goods. The holdings of agent ¢ at ¢ of this security are
denoted by a; ¢+1(2",2’), and the lower limit on the holdings of agent i is denoted
by Bii+1(2% 2"). Following our notational convention, we use {q}, {a;} and {B;}
for the corresponding stochastic processes. For given {q} and {B;} the problem
for household 7 is defined as

Jia(a,2') = max {u(c)+ﬂ(2t)ZJi,t+1 (azf,(Zt’zf))w(zf|zt)}(3.l)

{az}res 2



eir () +a = Z ayq (2,2) +c (3.2)
ez
ay > Bii1 (zt, z/) all 2/ € Z. (3.3)
Definition 3.1. An equilibrium with Solvency Constraints {B;} for initial con-
ditions a; o has quantities {a;} and prices {q} such that for i =1, 2,

a. {a/i’t+1 (zt, 2 ) }Z, ez achieves the right hand side of (3.1) at 2* given a =

it (zt).

b. market clearing,
ait (zt) +asy (zt) =0, allt, all 2L

From the first order condition of the agent problem, one concludes that if
an agent’s marginal rate of substitution is strictly lower than the correspond-
ing Arrow price, this agent’s solvency constraint must bind. Additionally, if an
agent’s solvency constraint does not bind, this agent’s marginal rate of substitu-
tion must equal the corresponding Arrow price. Consequently, in an equilibrium
with solvency constraints, Arrow prices are equal to the highest marginal rate of
substitution, i.e.

1. t
@ (21 2041) = max B () = (C;’f?; (( ;f)’;“)) 7 (z412) (3.4)

)

Furthermore, if the solvency constraints do not bind for either agent, the Ar-
row price (3.4) is equal to the one from the corresponding representative agent
economy.

In problem (3.1) agents never contemplate the option of default. Now we move
to the analysis of the decision of default; this consideration describes our theory
of the solvency constraints presented in Alvarez and Jermann (1998a). The next
condition makes the solvency constraints endogenous.

Definition 3.2. An equilibrium with solvency constraints that are not too tight
is such that the solvency constraints satisfy

Jigr1 (Bigs1 (2"11) 21 = U (&) (") (3.5)
for allt = 0,1, ... and for all 2!t € Z* 1 and fori = 1,2.

The left hand side of (3.5) is the utility of an agent that participates in the
market, starting with financial wealth B; 1 (2/11). The right hand side of (3.5)



is the agent’s utility if he defaults, given our assumption that default is punished
by permanent exclusion from asset markets. This condition ensures that solvency
constraints prevent default by prohibiting agents from accumulating more con-
tingent debt than they will be willing to pay back. At the same time, it allows
as much insurance as possible: if the solvency constraint binds and the contin-
uation utility is strictly higher than the value of autarchy, the constraint could
be relaxed, without inducing the agent to accumulate so much debt that he will
prefer to default.

To simplify the notation, we state our equilibrium using Arrow prices. The
budget set and the incentives to default are the same with other dynamically
complete sets of securities, provided that the solvency constraints are stated in
terms of the value of the portfolio at the beginning of the period. Thus, the
value of any security—mnot just Arrow securities—is equal to the value of the sum
(weighted by the payoffs) of the corresponding Arrow securities given by (3.4).
In fact, the pricing kernel is the highest marginal rate of substitution, so that for
the one period return R ¢41 of any asset, the following must hold

u (¢
1=E; |:Rt,t+1 : (g?ﬂéﬁtwﬂ :

u' (cit)

We think equilibria with solvency constraints that are not too tight are inter-
esting, since they restrict endogenously the amount of risk-sharing and make a
direct connection between asset prices and constraints on borrowing. In Alvarez
and Jermann (1998a) we show that the first and second welfare theorems hold for
our equilibrium definition. The reason that equilibria with solvency constraints
that are not too tight and constrained efficient allocations are equivalent is that
the condition on the solvency constraints (3.5) serves the same purpose as the
participation constraints (2.3).

Our interest is in asset prices, but analyzing equilibria directly is in general
difficult. Given the equivalence between efficient allocations and equilibria with
solvency constraints that are not too tight, we analyze efficient allocations as a
way to characterize equilibrium prices.

4. Characterizing constrained efficient allocations

In this section we provide a recursive formulation of efficient allocations, which
we use to establish the following properties of efficient allocations. First, we char-
acterize the parameters that determine the extent of risk-sharing, which allows us
to concentrate on the cases in which individual risk is important for asset prices.
Second, we characterize the process for the highest marginal rate of substitution



and its interaction with the participation constraints. This is important since the
pricing kernel is equal to the highest marginal rate of substitution. Finally, we
establish some properties of the dynamics of efficient allocations that are useful
for the design of fast computational algorithms.

Constrained efficient allocations are defined as the processes {¢;} that maxi-
mize period zero expected lifetime utility for agent 1, subject to resource balance
and the participation constraints for both agents, given some initial (time zero)
expected lifetime utility for agent 2. Optimal allocations solve the following max-
imization problem:

V*(w, z) = max {U(c1)(2)}

subject to (2.2), (2.3), U (c2) (20) > w, and zp = 2.

A pair (w,z)is in the domain of V*if and only if (V*(w,z),w)is in the
utility possibility set for zg = z. Indeed the function V*(w, z) describes the utility
possibility frontier at time zero when zy = z.

Now we restate the previous problem recursively. We introduce a functional
equation and relate its fixed points to the function V*. The functional equation is
not completely standard. The operator, T', maps a function V defined in a given
domain into another function T'V. Using TV, a new domain, denoted by D (z),
is defined as specified below. Specifically, V' (-,2) : D (z) — R for each z, where
D (z) C [U?(z),00),and the operator T generates TV as

TV (w, z) = max { u(er) + B (2 Z V(w (z’|z)} (4.1)

ci=1,2 W' (2') .1ez

z'eZ
c1t+e2<1 (4.2)
ulez) +B(2) Y w'(2) w(Z]z) > w (4.3)
Z'eZ
w'(Z) > U?Z) alld eZ (4.4)
V(w(Z),2)>UlZ) all e Z (4.5)

For this operator to be well defined, V' has to be such that there are cq,
co, {w' (2)},/c for which the constraints (4.2), (4.3), (4.5), and (4.4) are satisfied.
Consequently, the domain of TV for each z € Z, is defined as

={w:(TV)(w,z) > U'(2) and w > U*(2)} . (4.6)

It is straightforward to show that the function V*, defined previously, and
its associated domain are a fixed point of T'. However, the functional equation



(4.1) has more than one fixed point: hence it cannot be a contraction.* In
particular, “autarchy” is always a fixed point, since it is immediate to verify
that the trivial function vdefined on the domain given by singleton {U 2 (z)}
and equal to v (U2 (2),z) = U' (2) is a fixed point of T. Nevertheless, for many
parameter values there are other solutions, namely V*.

Even though the T" operator is not a contraction, it is useful in computing V*.
Consider the operator T defined exactly like T" in 4.1 except that the participations
constraints for both agents 4.5 and 4.4 are removed, and denote its unique fixed
point by V. The function V (-, 2) is the full risk-sharing frontier when z = z.

Proposition 4.1. lim, ™V = V* pointwise.

Proof. The proof uses standard monotonicity arguments. It follows from a
direct extension of Theorem 4.14 in Stokey and Lucas with Prescott (1989). Al-
ternatively, it follows from the results of Abreu (1988) and Abreu, Pierce and
Stacchetti (1990). W

Because V is easily computed, the previous proposition makes T' useful for
computing the fixed point V* and its associated policies.

4.1. Risk-sharing regimes

This section describes the types of parameters for which this model has asset
pricing implications different from the ones of the representative agent model.
Depending on parameter values for preferences and endowments there are three
possible “regimes” for the process for {w, z}. Independent of the initial condition
(wo, 20), one can show that:

1. Full risk-sharing forever is possible;
2. Only limited risk-sharing is possible;

3. Only autarchy is possible.

By full risk-sharing we mean that the allocation is Pareto efficient in the
standard sense, ignoring the participation constraints, for some initial condition
(wo, 29). Parameter values that produce the first case are not interesting for us,
since for the purposes of asset pricing, their implications are the same as for the
representative agent economy.

1T does not satisfy one of the Blackwell sufficient conditions for a contraction, namely dis-
counting. T (V + a) could be bigger than TV + Ba for a constant a, since the feasible set of
choices for (w(2")) .., is bigger for V 4 a than for V.

10



We discuss briefly how to verify whether full risk-sharing is possible. Kocher-
lakota (1996) presents sufficient conditions for each case when the shocks are i.i.d.
and the discount factor is constant. We consider a slightly different case in the
following proposition.

Proposition 4.2. Full risk-sharing is possible if and only if

w(1/2)3° Y Boa () 7 (f]z0) 2 max U(zo) (47)

s=0 ztec gt

for all zg € Z.

Proof. Full risk-sharing is characterized by resource feasibility and constancy of
the ratio of the marginal utilities across agents. If condition (4.7) is satisfied, then
the participation constraints are satisfied for the allocation ¢; = 1/2 . Conversely,
if full risk-sharing is feasible, clearly condition (4.7) is satisfied. B

For the case in which the time-discount factor is constant, equal to 3, (for
example if there is no aggregate uncertainty) the left hand side of equation (4.7)
simplifies to u(1/2)/ (1 — ). Figure 1 illustrates this case when full risk-sharing
is possible for a range of w. When full risk-sharing is not possible, there are two
cases: one case in which autarchy is the only feasible allocation that satisfies the
participation constraints and the other in which some other allocations satisfy
the participation constraints. This last case is the one that we are interested in,
since it is not equivalent to a representative agent economy. Figure 2 illustrates
the case when full risk-sharing is not possible.

Which case applies depends on how attractive autarchy is relative to some
form of risk-sharing. This depends on the parameter values as explained in the
following remark.

Remark 1. Let, Ils = 61 + (1 — 6)II for 6 € (0,1), then full risk-sharing is not
possible in any of the following cases:

(a) The time preference parameter, max, 3(z) is sufficiently small;
(b) The persistence of Ils, 6, is sufficiently close to one;
(c) The variance of ¢;(z) is sufficiently close to zero;
(d) With CRRA utility, the relative risk aversion, -, is sufficiently small.
The proof of this remark follows by taking the appropriate limit in each of
the four cases and verifying that the inequality of the previous proposition (4.2)
does not hold. In Alvarez and Jermann (1998a) we extend this result to show
that not only is full risk-sharing not possible, but as the parameters approach

11



the limit values mentioned in each of the four cases, autarchy is the only feasible
allocation.

Mehra and Prescott (1985) and Weil (1992) emphasize that the representative
agent model requires values of the risk aversion v and time preference 3 that are
too high to produce a high equity premium and a low interest rate. This model
has asset pricing implications different from the representative agent model for
low values of v and 3, so our results can not rely upon high v and 3.

4.2. Marginal rates of substitution with limited risk-sharing

This section analyzes the stochastic process for the marginal rate of substitution
for each agent in a constrained efficient allocation. We are interested in these
processes because in an equilibrium with solvency constraints, state prices are
given by the highest marginal rate of substitution (see equation (3.4)).

Let W,/(w, z) and C;(w, z) denote the optimal decision rules of problem (4.1)
given state (w, z) for continuation utility w’(2") and current consumption ¢; re-
spectively.

Proposition 4.3. V is strictly decreasing, strictly concave and differentiable in
its interior with respect to w. The optimal policy rules are single-valued and
continuous.

The proof follows immediately from the strict monotonicity, strict concavity
and differentiability of the period utility function and convexity of the feasible
set.

The next proposition says that if some risk-sharing is feasible, then at least
one agent is unconstrained.

Proposition 4.4. Assume that II is such that it has a unique invariant distri-
bution with ergodic set Z, one of the following is true:

Vv (U2 (2),2) = Ul(z) forall z € Z, (4.8)
which we refer to as saying that “autarchy is the only feasible allocation” or else
Vv (U2 (2),2) > Ut(z) forall z € Z, (4.9)

which we refer to as saying that “some risk-sharing is feasible.” In this case, at
least one agent is unconstrained in each period.

12



Proof. It follows by a straightforward adaptation of the arguments on page 600
in Kocherlakota (1996). B

The next proposition shows that an unconstrained agent has the highest
marginal rate of substitution: thus if both agents are unconstrained they equalize
their marginal rates of substitution.

Proposition 4.5. If some risk-sharing is feasible, for any (w,z) and 2/, if for
agent 1 = 2

W, (w,z) > U" (), (4.10)
then
TG (G w ), )
B(2) uw (Cs (w, 2)) ( | ) j:?gﬂ() v (Cj (w, 2)) ( | )

and analogously for agent i = 1.

Proof. It follows from the first order conditions of (4.1) and from symmetry. B

These propositions, together with the characterization for state prices (3.4)
and the definition of the solvency constraints (3.5), imply the following: state
prices are given by the marginal rate of substitution of the agent whose solvency
constraint (3.3) does not bind; the solvency constraint (3.3) does not bind, if and
only if the participation constraints (2.3) does not bind; and at any time and for
any history there is at least one agent that is unconstrained.

4.3. Decision rules for the planning problem

In this subsection we present some further results about the properties of the
decision rules for consumption C; (-) and for Agent 2’s continuation utility W,/ (-) .
We define H (z) and L (z) as the upper and lower bound of D (z) so that by
monotonicity of V' (-, z),

L(z) =U%(z) and H(z) = V(- 2)(U'(2)) for z € Z.

The time separability of the utility function implies that consumption is in-
creasing in the current continuation utility.

Proposition 4.6. Consumption is strictly monotone on z, i.e., Vz, Cs(w,2)
(C1(w, z), respectively) is strictly increasing (strictly decreasing) in w.

Proof. By using Benveniste and Scheinkman, one shows that

oV (w,z)  u'(e—Cy(w,2))
ow uw (O (w, 2)) (4.11)

13



which is strictly decreasing in w since the value function is strictly concave. Thus
C (w, z) is increasing. W

Next we analyze the decision rules for future continuation utility as a func-
tion of current continuation utility. We find that the decision rules are weakly
increasing. Specifically, we consider two cases. First, if the shock z; is repeated,
then consumption and continuation utility are the same. If the shock is different,
then the decision rule is weakly increasing in w. Furthermore, the decision rule
is flat only if the assigned continuation utility is such that either agent 1 or 2 is
constrained in the next period.

Proposition 4.7 (I). If 2/ = z, then we have W,/ (w, z) = w (the “45°-rule”).
[II] If 2’ # z and (W, w, z,2") are such that (i) w < @ and (ii) both W (w, z) and
W.(w, z) are in the interior of the range of W (-, z) i.e.,

W (0, 2), W, (w, z) € (L (z') ,H (z')) ,
then W, (0, z) > W (w, z).

Proof. The proof of [I] follows from examining the case where neither agent is
constrained in the future, then by Proposition (4.5)

ow N uw (Cy (w, 2)) - uw (Cy (W, (w, 2),2)) N ow

WV (w,2)  u(e=Cyw,2) v (e=Co(W;(w,2),2)) 9V (W, (w,2),2) .

Finally, using Proposition (4.6) [I] is obtained. [II] follows from a variation of the
previous argument. ll

5. Analysis of the 2 shocks case

To illustrate how the model works and to get a rough idea about the quantitative
potential of our model for explaining asset returns, we analyze a simple example.
We completely characterize the optimal allocations and all the elements of an
equilibrium with solvency constraints that are not too tight, and we compute some
numerical cases. Among other things, this example illustrates the circumstances
under which agents’ solvency constraints bind. Moreover, our examination of the
Hansen-Jagannathan bounds shows promise for cases with low risk aversion.

5.1. Efficient allocations

Consider the case with a constant discount factor 8 and only two shocks Z =
{31,352}, with €e2(31) < e€2(32), which by symmetry imply € (32) = €2 (31) <
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€2 (32) = €1 (31). We first show that when full risk-sharing is not possible, the
decision rules imply a unique ergodic set, where continuation utility w, and hence
consumption, depend exclusively on the current value of z. Second, we charac-
terize the values of consumption in the ergodic set by a single equation in one
unknown.

The decision rules of problem (4.1) are completely described by analyzing
two cases. If 2/ = z, then the optimal policy is the 45° line as we have shown
before. For the remaining case of 2’ # z, the following proposition, proven in the
Appendix, shows that the policies rules are constant, a result that we refer to as
saying that they are flat after reversal.

Proposition 5.1. Decision rules that achieve V' are “flat” after a reversal of the
shock, that is, for allw € D (z) = [L(z), H (2)]

Wi, (w,31) = L (32) = w(32) and
Wi, (w,32) = H (31) = w(31) -

Figure 3 plots the decision rules W,/ (w, z). For any initial (w, z), after one re-
versal of the shock z, continuation utility and consumption for Agent 2 will attain
the values w(z) and ¢(z), and depend only on the current state z. By inspection
of these decision rules, if risk-sharing is not possible, the process for {w, z} has
a unique invariant distribution, with mass on (w (31),31) and (@ (32) , 32). If full
risk-sharing is possible, then the domains D (31) and D (32) have non-empty in-
tersection, thus any constant value of w in that intersection is optimal, and hence
any distribution over D (31) N D (32) is an invariant distribution.

We now solve for the values of consumption for Agent 2 in the ergodic set,
which consists in solving one equation in one unknown.

Given our characterization, Agent 2’s continuation utilities in the ergodic set,
(w(31),w(32)), and the corresponding consumptions, (¢(31),¢(32)), have to satisfy
the following system of four equations: two promise keeping conditions,

w(31) = u(e(31)) + BFw(31) + B(1 — 7)w(32), and

w(32) = u(c(32)) + Brw(32) + B(1 — T)w(31),
the boundary condition w(32) = U?(32), and, due to the symmetry across agents
and the resource constraint, ¢(31) = e — ¢(32). By repeated substitution, this
system reduces to one equation, us = h(ug), in one unknown, us = u(¢(32)),
where the equation is defined as:

(1-06)(1 =267+ 5)
1—-p07
flug) = u(e—u_l(uz)).

A —7)

U?(32) — 1057

ug = h(ug) =

flug),  (5.1)
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Since the previous characterization of the ergodic set of the efficient allocation
requires that full risk-sharing is not possible, using Proposition (4.2), we only
consider the case where (3,7, €2 (32) /€2 (31), and v satisfy
u(e/2) u*
U? > = ,
(32) 1-3 1-3

where u* is the period utility corresponding to having consumption in 3; and
32 equal to half the aggregate endowment, and hence it is the only solution to
u* = f (u*). Direct computation gives that,

9,y ul(e(32)) (1 - pn) u (€ (31)) B(1l—7)
Ula2) = 3 (1—ﬂ7‘r)+ﬂ(1—7‘r)]+ -3 [(1—%)%(1-(@2)

which, we use in the next remark to give sufficient conditions when the partici-
pation constraints do not bind.

Remark 2. By direct computation, as the standard deviation of the endowment
is large enough, i.e. as €2 (32) /€2 (31) T oo, or as agents are patient enough, i.e.
B 1 1, or, for the CRRA case, as agents are risk averse enough, i.e. as vy T oo,
then full risk-sharing is feasible.

Since w is strictly increasing and strictly concave, the function his strictly
increasing and strictly convex, and hence (5.1) has at most two solutions. Notice
that autarchy, i.e., w (3;) = U?(3:), €(3:) = €2(3:;) for i = 1,2 satisfies (4.3),
resource feasibility, and the boundary condition, and hence (5.1) has at least one
solution. We now describe which of the two solutions characterizes the efficient
allocation, which we denote as uo.

Proposition 5.2. Consider the two solutions of (5.1), ug; and usp, ordering them
as ug; < ugp. The efficient allocation, o, equals the smallest one, i.c., Uy = U9y,
because efficient allocations have a variability smaller or equal to the endowment,
ie., €2(31) < ¢(31) < T(32) < €2(32). Finally, autarchy is efficient, and hence is
the only feasible allocation, if and only if

B —7) v (€2 (31))
1 =37 ' (e2(32))
Proof. We start by showing that wug; is the efficient allocation. First, if uo;

equals autarchy, then usp corresponds to an allocation that is more volatile than
the allocation at wug;, with the same mean, thus by concavity ug; gives higher

<1. (5.3)
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utility. Second, we consider the case where ugp, equals autarchy. By assumption
U%(32) > %, which by direct computation implies that h(u*) > u* and by
convexity of h, u* < wug or ugp < u*. Because ugp < u* is ruled if wugp equals
autarchy, we have u* < ug, that is: § < €(32) < €2(32). Thus, uy has higher
utility than autarchy ugp, and by symmetry €2 (31) < ¢(31) < <(32) < €2 (32)-

We now show the condition for autarchy being efficient. By convexity of h,

R (ug) <1< R (ugp).

Thus, if i/ evaluated at autarchy is smaller than one, autarchy is efficient, and
hence is the only feasible allocation. By direct computation of the derivative,
R (u(e2 (32))), Equation (5.3) is obtained. B

The inequality (5.3) implies, by direct computation, the following sufficient
conditions under which autarchy is the only feasible allocation. As the standard
deviation of endowment decreases, i.e. as 283 1 1, or as the autocorrelation of
the endowment increases, i.e. T as T 1, or as the agents are more impatient, i.e.,
B 10, or, for the CRRA case, as the agents are less risk averse, i.e. v | 0, then

autarchy is efficient.

5.2. Equilibrium allocations

In this section we construct the elements of an equilibrium with solvency con-
straints that are not too tight corresponding to the efficient allocations found in
the previous section. This illustrates the second welfare theorem for this environ-
ment and clarifies how the equilibrium works. In particular, we discuss the sense
in which the “poor” agents are the ones that face binding solvency constraints,
and we show that interest rates are lower and the pricing kernel is more variable
than in the corresponding representative agent economy.

We analyze the equilibrium, once the allocation is in the ergodic set defined
in the previous section. Arrow prices depend exclusively on whether the current
state z; is the same as the state z;;1 where they give the right to receive one unit
of the consumption good,

gt (2", 2e41) = @ if 2111 = 2 and

@ (25 2e401) = Gur if 21 # 20, V2, Vg
Using the relationship defining Arrow prices in equation (3.4), we obtain that
g = prfor 2 =z, (5.4)

_ () _ ) for 2 4 2
nr = ﬂu,(é(&)) (1—7) fi £ 2.
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Since one period bond prices are equal to the sum of the Arrow prices, the price
of an uncontingent bond, and hence the interest rate 144, is constant, and equal

to:
1 _ (v (€G1) _
=0+ (oo 47 )
By inspection of (5.5), the interest rate for the economy with solvency constraints
is lower than the interest rate for the corresponding representative agent econ-
omy, which equals 3. Also, by inspection of (5.4), the pricing kernel, given by
q: (zt+1, zt) /7 (2t41]2¢) is more volatile than the pricing kernel of the correspond-
ing representative agent economy, which is constant in this case.
Agent 2’s consumption, depends only on the current state z, i.e.,

c2,4(2", 2e41) = € (2041) 5 V2", Vo

for the ¢ given by the efficient allocation, and Agent 2’s purchases of Arrow
securities depend only on the state in which they pay,

t - ¢

a2 41 (Z 7Zt+1) =a(z41), V2" V2iq1.
Agent 1’s consumption and Arrow securities holdings are given by:
M) = e—cop (2
Hy by

e (2 !

aii+1(2 —ag4+1(2

We find the values of a(z) using the sequence budget constraints (3.2) for
Agent 2 together with the resource constraint (2.2),

(32) — 6(32) — €2 (EZ) <0
(31)

1+ Tnr — Ty
= —a (52) > 0.
Notice that, very intuitively, @ (31) > 0 means that Agent 2 saves contingent on
having his low income, and a (32) < 0 means that Agent 2 borrows contingent on
having his high income.

The solvency constraints for the high-income state can be found easily fol-
lowing our definition in equation (3.5). In an efficient allocation, the continua-
tion utility corresponding to the high-income shock (2441 = 32 for Agent 2) is
given by U’ (2z¢41), then Big1 (27) = asi1 (211), which for Agent 2 gives
Bayi1 (32,2) = B (32) = a(32)-

The solvency constraints corresponding to the low-income shock (z.41 = 31
for Agent 2) can not be determined directly from the optimal allocations, because
they depend on the solutions to off-equilibrium consumption and portfolio choice
problems.

l

l
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Proposition 5.3. By;11 (2,31) = B(31) = [qugr} B (32) < 0; and By g1 (2%,32) =

B (31).

Proof. For the given prices {q}, we directly check the definition for solvency
constraints that are not too tight for the postulated solvency constraints for Agent
2, {By}. For 2,1 = 32, with initial wealth a;11 = B (32), the efficient choice
for consumption and asset holdings from the equilibrium is still feasible with
these constraints, and Jo ;41 (E (32) (zt,gg)) = U? (32) as is required for sohfency
constraints that are not too tight. For z;41 = 31,with initial wealth a;11 = B (31),
for any future path for which state 31 continues to repeat itself uninterruptedly for
the next k periods, the Euler equation and the price g, imply optimal individual

choices such that ¢(zi41 = 31) = c(ze4k = 31) = Co, a(24x = 31) = B (31) and

Jourk (B (31) (2%,31)) = U? (31). For z¢41 = 31,with initial wealth a;11 = B (31),
followed by zi+2 = 32, the solvency constraint will bind at B (32), and from
there on optimal consumption and portfolio choices will be identical to the one
in the equilibrium, given that prices are unchanged, initial wealth identical and
constraints such that these choices are feasible. With this characterization we
have the following two equations for ¢, and B(31), a budget constraint and the
equation defining implicitly the solvency constraints:

€2 (31) + B(31) =G, B(31) + T B(32) + ¢o, and

Jog1 (B (1), (24,31)) = U? (31) = ulc) + B7U% (1) + B(L —7)U? (32)

which give that
¢ =¢€2(31), and

B (1) = [QLT_} B (32) <0.
1—-7,

The same argument can be applied for any time period; for Agent 1, the solvency
constraints are obtained by symmetry. ll

In this equilibrium, agents are constrained against borrowing against the fu-
ture state 2,41 where their income will be high, regardless of the current state
z¢. But there is an important difference depending on the current state z;. If the
agent has his high-income shock (say, z; = 32 for Agent 2), the agent does not
want to borrow more against either the bad or the good future state, since for
both cases, his marginal rate of substitution is equal to the Arrow price. In this
case, he is at the constraint but it is a“false corner.” If the solvency constraint
were relaxed a bit, he will not change the optimal choice of consumption and
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asset holdings. On the other hand, if the current state is the one where the agent
has his low income (z; = 31 for Agent 2), then the agent wants to borrow against
his good state, but he cannot. In this case, the solvency constraint binds and the
marginal rate of substitution between consumption in z; = 3; and in 2411 = 39 for
Agent 2 is strictly lower than the corresponding Arrow price. In this state, the
solvency constraint cannot be relaxed without changing the choice of consump-
tion and asset holdings. Hence, the solvency constraints ‘bind’ only in the case
where the agent’s current income shock is low, i.e. poor agents are constrained
from borrowing.

5.3. Calibration: risk-sharing and the Hansen-Jagannathan bounds

We calibrate individual income following Heaton and Lucas (1996) based on a
large sample from the PSID. In particular, the log of an agent’s income, relative
to the aggregate, that is Ine;, is stationary with a first order serial correlation
of 0.5 and a standard deviation of 0.29 for annual data. Initially we set § =
0.65 and explore the effect of risk aversion for consumption and for asset pricing
implications, we will explore the quantitative effects of 3 below.?

Figure 4 in the top panel presents consumption of Agent 2 as a function of risk
aversion. For values of risk aversion between about 2 and 4, the type of efficient
allocations is sequentially autarchy, partial risk-sharing and full risk-sharing. In
the bottom panel, solvency constraints and asset positions are presented. The
picture also contains the solvency constraints for full risk-sharing allocations. In
these cases, solvency constraints can be computed but they never bind. The
graph suggests, quite intuitively, that the range of full risk-sharing allocations
with different consumption levels across agents increases with risk aversion. The
derivations of the constraints and asset positions for the full risk-sharing case are
in the Appendix.

Hansen and Jagannathan’s volatility bounds for stochastic discount factors
provide a concise and widely used diagnostic device.® Candidate kernels obtained
from theoretical model structures can be compared to the benchmark given by
the volatility bound. Figure 5 presents test results for kernels generated by our
model. The model is able to generate kernels that fall inside the HJ-bound for risk
aversion coefficients around 2, whereas the representative agent economy fails this

0.75 0.25 e (31)
0.25 0.75 ’ €1 (52)

®The parameters for this case are the following: II = [

0.641 €2 (51) o 0.359

0.359 || e2(32) | ~ | 0.641 |~

SFor a detailled survey of applications of this test see, for example, Cochrane and Hansen
(1992).
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test for such values of risk aversion.” This positive finding also confirms empirical
results by He and Modest (1995) that show that solvency constraints can pass a
modified type of volatility bound test for aggregate consumption data. A close
look at this picture reveals the two-sided role of the risk aversion coefficient. In
most of the asset pricing literature, increasing risk aversion increases the volatility
of the pricing kernel, because for a given consumption process marginal utility is
more volatile. In our framework however, the extent of risk-sharing and thus the
volatility of the consumption process is endogenous. The highest volatility for the
pricing kernel is achieved with modest values of risk aversion, which correspond
to very limited risk-sharing.

6. Quantitative predictions about asset returns

We now consider a more general endowment process. We choose it to be general
enough to display wide ranging degrees of dependence between individual and
aggregate income uncertainty. The form and the extent of this dependence turns
out to be very important for asset prices. For that reason, our objective in this
section is not only to document to what extent a plausibly calibrated model can
explain a set of asset pricing moments, but also to derive some qualitative prop-
erties about how specific forms of dependence between individual and aggregate
income uncertainty generate specific asset return properties.

6.1. Specification of the endowment process

We specify the endowment process with four values for the share of income of
each agent and two values for the aggregate growth rate, respecting symmetry
across agents. The set Z has four elements. With symmetry we end up with a
total of 10 parameters to be calibrated, six for II, two for €3 (-) and two for A (-).8

The subscripts r and e index a recession and an expansion respectively. The
subscripts h and [ index a high- and a low-income share for Agent 2. This table
summarizes the four states’ characteristics:

31 A1) = €2 (31) = e
320 A(32) = )\e, €2 (32) = e
330 A(33) =M, €©(33)=€nr
34t A (34) =X, € (34) = Che-

"Introducing aggregate uncertainty would of course generally give further volatility to the
pricing kernel and help it pass the test.
8There is no need to specify €1 () since €1 (2) + e (2) = 1.
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where A\, < A\¢ and
1 1 9
€r < 5 < epr and €le < 5 < €pe-

6.2. Calibration of the benchmark endowment process

We use 10 moments describing the aggregate and household income data to select
the 10 free parameters of the endowment process. Our endowment process repli-
cates four moments of U.S. aggregate output in the 20" century, while the remain-
ing six moments characterize household income risk. The preference parameters,
risk aversion and pure time-discounting, are discussed in the next section.

The first two moments imply a 2 by 2 nonsymmetric matrix (each element of
this matrix is a sum of different probabilities in the matrix defined in the previous
subsection).

M1. p(A) = —0.14, first order serial correlation, Mehra and Prescott (1985).

M2. Pr(expansion)/Pr(recession) = 2.65, NBER business cycle chronology
for 1889-1991.

Given the previous matrix, the next two conditions determine the two values
of A.

M3. E(\) = 1.83%, Mehra and Prescott (1985).

M4. Std(X\) = 3.57%, Mehra and Prescott (1985).

The remaining free parameters are determined jointly.'® We use the studies
by Heaton and Lucas (1996), henceforth HL, and Storesletten, Telmer and Yaron
(1997), henceforth STY, to guide us in determining a benchmark calibration.
After defining these moments and our benchmark values, we discuss further below
how these choices are related to the two original data studies.

M5. Std(Ine(z)) = 0.296.

MS6. p(Ine(z)) = 0.53, first order serial correlation.

9By symmetry, for each z, and each value of €2 (z) there must be another Z such that ¢; () =
€2 (z) . This implies the following two equations:

€ir +€pr = 1

€le T €he = 1.

19The system is solved with a nonlinear equation solver. For part of the region in the moment
space there are two sets of parameters that replicate the selected moments. In these cases we
pick the solution that has less variations in the means conditional on whether the destination is
a recession or an expansion. This is the process that is closer to the linear processes estimated
by HL and STY for which conditional means do not depend on the destination state.
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M7. v./ve = 1, the cross sectional dispersion of the shares in recessions
relative to expansions. In a given state this is defined as

e =3 3 Jata =3 2

and by symmetry we have

v (31) = v (33) and v (32) = v (33) -

MS8. Relative standard deviation of individual shares conditional on current
and past realizations of the aggregate shock:
Orle std (ln €; (Zt+1) ‘)‘t-‘rl = )\7-, /\t = Ae)

= =151
Oele std (ln €; (Zt+1) ‘)‘t-i-l =Xey \p = Ae)

M9. Relative standard deviation of individual shares conditional on current
and past realizations of the aggregate shock:
opr _ std(Ine (ze41) [Aev1 = Ar, Ao = Ar)

= =1.5.
Oerr  Std(Ine€; (ze41) | Aer1 = Aey e = Ar) g

M10. Relative standard deviation of individual shares conditional on past
realization of the aggregate shock:
or _ std(lne€; (ze41) [Ae = M)

o0 = std(ne (o) D = he) OO

The following Table contains the moments implied by the HL and the STY
estimation of the household income processes. For the HL calibration there are
two values in each cell, the first for the entire sample of 860 households and the
second for the subsample of 327 stockholders. Since HL and STY estimate the
individual income process conditional on the aggregate income, we combine their
estimates of the individual income process with our specification for aggregate
income. Our calibration mainly follows the HL calibration, given that they are
calibrating a model with the same infinite horizon, two-agent structure. Given
that earlier work on asset pricing with incomplete markets has argued and shown
that the moments 8 and 9 are important we choose a value slightly higher than HL,
but still below STY’s. In any case we will provide extensive sensitivity analysis.

g can be shown that std(In€; (ze41) | Aer1 = Ary, At = Ae) =
std (In€; (ze41) [Ae+1 = Ay At = Ae, €4,¢), that is, the conditional standard deviation of the
share (and the log) does not depend on the current idiosynchratic shock, only on the aggregate
growth state that is fully described by A:.
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HL HL, our A\ | STY, our A\; | Benchmark
M5 | Std(lne) | 0.3/0.4 0.71 3
M6 | p(lne(z)) | 0.53/.3 0.87 .53
M7 | vp/ve 1.02/0.93 | 1.03/0.9 [93—1.07] |1
M8 | ope/oere | 0.99/1.19 | 0.99/1.27 | 1.88 L5
M9 | opy/0er |0.99/1.19 | 0.99/1.27 | 1.88 1.5
M10 | o, /0¢ 1.37/1.01 | 0.45/0.86 | 0.90 95.12

6.3. Solving the constrained efficient allocations

The model can be solved by iterating on the functional equation (4.1). However,
this would be relatively costly in computing time and may introduce computa-
tional errors for the process of the highest marginal rate of substitution. Instead,
we solve the model by extending the analysis of section (5) to the present four
state case. In particular, we first solve 16 nonlinear equation systems describ-
ing subsets of all necessary conditions. We then select the appropriate one by
checking the sufficient conditions described in Alvarez and Jermann (1998a) for
a constrained efficient allocation: resource constraints, participation constraints,
first order conditions, and the condition that the value of aggregate endowment
is finite. We find constrained efficient allocations where consumption shares have
at most 12 different values in the ergodic set. This approach is much faster than
iterating on a functional equation and leaves virtually no room for numerical
approximation errors.

6.4. Quantitative implications for the benchmark case

We document the implications for risk-sharing and asset pricing as a function
of risk aversion, vy, and the pure time-discount factor, G, for the benchmark en-
dowment process. Figure 6 presents consumption share volatility, the average
risk-free rate, the equity premium, and the premium for long term bonds. We
define equity as a claim to aggregate endowment and the long term bond as a real
consol. We find that the extent of risk-sharing, as measured by the consumption
volatility, is increasing in risk aversion and the time-discount factor. This is a
quantitative illustration of the results in Remark (1). With limited risk-sharing
there is only a small region, close to the one corresponding to autarchy, where the
risk free rate attains reasonably low values. Interestingly, the equity premium is

"2The two studies define their idiosynchratic income variable in a slightly different way. HL
use y = In(¢), whereas, STY use v =Ine; (z) — 7 > j—1.rn€; (). Using a first order log-linear
approximation the two measures differ only by a constant, so that the two can be considered,

to a first approximation, as identical for the moments we consider here.
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highest for values of risk aversion that are higher than what is required to be in
autarchy. Finally, the shape of the premium for long term bonds, as function of
~ and (3, is similar to the one for the equity premium, but the values are lower.
To gain intuition about what determines the level of the risk-free rate, we
compare it to the one of the representative agent economy. In the later case

-
€t+1
5 () ] ,
€t
and the risk-free rate, Rii ¢+1, changes one for one with changes in the time-
discount factor 3. In the economy with solvency constraints the risk-free rate

satisfies
1 —y . -
L [g <€t_+1> max { (Ct_+1> H ’
Rt’tJrl €t i=1,2 Cit

and thus § changes the risk-free rates one for one for constant consumption allo-
cation ¢; ¢, ¢; t+1. Because the equilibrium allocation depends also on 3 there is a
second effect on the level of the interest rate. For instance, if 3 is lowered, there
is less risk-sharing and individual consumption shares become more dissimilar
and thus the ‘max’ increases, leading to a reduction in the interest rate. This is
an illustration of the more general result in Alvarez and Jermann (1998a) that
state prices in the solvency constraints economy are higher than the prices in the
corresponding representative agent economy.

In Table 1, we set risk aversion v = 3, and choose # to match the historical
average of the U.S. risk-free rate of 0.80% per annum. The implications from our
benchmark case are very encouraging. We can generate a sizeable equity premia
with low risk aversion.'> Compared with U.S. data, the volatility of the risk-free
rate and the premium for long-term bonds is close to their empirical counterparts.
Table 1 illustrates that, compared with the representative agent economy, the re-
strictions on the portfolio choices implied by the endogenous solvency constraints
improve the ability to generate realistic asset pricing implications substantially.

The implied value of 3 is lower than the values used in other studies. We
have followed the typical procedure used to identify (3, i.e. we have chosen it to
match the average risk-free rate. The last row of Table 1 presents an alternative
“high beta” parametrization of the endowment process where individual shocks
are more persistent (M6 = .9) and where recessions and expansions are more
asymmetric ( M8 = M9 = 4 and M10 =.85). For this parametrization we set

1
Rl{tJrl

3Note that the model economy does not have leverage, therefore we should compare it to the
unlevered equity premium in the data, which is lower than the 6.18% of the reported, levered,
equity premium.
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v = 3.5; then § = .78 is required to match the risk free rate. The other asset
pricing implications are virtually unchanged.!

6.5. Determinants of the equity premium and the term structure

To understand the determinants of the equity premium and of the term structure,
we analyze calibrations with different types of dependence between aggregate and
individual income uncertainty. We start with a calibration where aggregate and
individual income shocks are independent. Then we document the consequences
for asset prices of the types of dependence described by the moments M8 to M10.
We find that the equity premium depends on the comovement between individual
income uncertainty and the contemporaneous aggregate income growth. The term
premium depends on the comovement between the forecast of future individual
income uncertainty and aggregate income growth.

We refer to the case where the aggregate income growth shock is ¢.i.d. and
independent of the individual income shock as the calibration with independent
risks. In particular, we specialize our framework to the case where zcan be
decomposed as z = (z,y) € Z = X x Y, and where A and €; are functions of
yand z, respectively. Specifically, A\ : Y — R4 and € : X — (0,1).

Definition 6.1. (‘Independent risks’) We say that the aggregate shock is i.i.d.
and independent of the individual income shock if there is a probability distribu-
tion ¢ and a stochastic matrix 1 such that

m(d]z) =7 ((2"¥) [(z.9) = ¢ (V) ¥ (¢/|2)
for all z, 2.
The first panel of Table 2 contains the case with independent risks, for which
M1 = 0 and M2, M7,M8, M9, M10 = 1.15 1In all cases presented in Table
2, risk aversion 7 = 3 and the time-discount factor 8 = 0.5, so that all the

equilibria display some, but not complete risk-sharing as can be seen by the fact
that 0 < Std(In¢) < 0.296 = Std(In €). We summarize our findings in four results.

e Result 1: With independent risks, interest rates are constant and thus
there is no risk premium for bonds (see panel 1 of Table 2).

"Interestingly, Ligon, Thomas and Worral (1997), using a version of this model and data
from individual consumption and income from poor villages, have estimated values of 8 in the
neigbourhood of 1/2.

""The economy also displays symmetry between expansions and recessions, that is, M2 = 1.
This is not necessary for the results presented here. Even with M2 # 1, the same qualitative
properties hold.
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As shown in the Appendix, the assumption of independent risks is not suffi-
cient to generate this result in general. This result also depends on the particular
number of states and agents chosen in this calibration. Nevertheless, we think
this is a useful benchmark, because starting with a case that has constant inter-
est rates will allow us to consider separately what determines term premia and
premia for payout uncertainty.

e Result 2: With independent risks, the (multiplicative) equity premium in
the solvency constraints economy is identical to the one in the corresponding
representative agent economy.

As the reader can see in panel 1 of Table 2, the multiplicative risk premium for
both economies is equal to 0.3689%.'% It is in general true that with independent
risks, the risk premium for a one-period risky claim with payout contingent on the
aggregate endowment is the same in the solvency constraints economy as the one
in the corresponding representative agent economy. As shown in the Appendix,
this equivalence result extends here to the equity premium because interest rates
are constant.

The following result illustrates a departure from independent risks that pro-
duces a different equity premium in the solvency constraints economy.

e Result 3: A negative covariance of the individual income variance with
the contemporaneous aggregate income growth (M8 = M9 > 1) increases
the equity premium and a positive covariance (M8 = M9 < 1) reduces the
equity premium relative to the corresponding representative agent economy.

With M8 = M9 > 1 recessions are associated with higher individual income
risk. Therefore, states where risk-sharing is very limited are more likely in reces-
sions. Thus, in recessions the pricing kernel is higher, as is suggested by equation
(3.4), making equity more risky. This is illustrated in the second panel of Table 2.
Result 3 is related to a well known result by Mankiw (1985), who shows that the
price of a risky strip will be lower in a static model with exogenous incomplete
markets. In his environment, the convexity of the marginal utility is a neces-
sary condition for a higher premium. Constantinides and Duffie (1995) use an
assumption analogous to M8 = M9 > 1 in a model with exzogenously incomplete
markets and permanent individual income shocks to show that the pricing kernel
is identical to the one in an economy with complete markets but for an agent

"We define the multiplicative equity premium as Et(Rf,t+1)/Et(R{,t+1) — 1. We define the

equity premium in the standard way as E(R{ 1) — E(R£t+1). In the case considered for result
2, the multiplicative equity premium is constant across states.
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with higher risk aversion. In both cases, the results follow from the assumption
that agents have convex marginal utility and that there are no binding portfolio
constraints: hence all agents have the same valuation of assets. Instead, in the
economy with solvency constraints, Result 2 follows from the fact that marginal
valuation across agents differ, and prices are equal to the highest marginal rate
of substitution.

Note that interest rates remain constant even if we introduce dependence of
the aggregate and individual risk such that M8 = M9 # 1, as can be seen in the
second panel of Table 2. For this case, the dependence introduced between the
aggregate and the individual shocks does not introduce any predictable changes
in the pricing kernel, therefore interest rates remain constant.

The next result isolates a feature that explains volatility in interest rates and
the existence of non-zero risk premia for bonds.

e Result 4: Introducing dependence between the aggregate income growth
and next period’s individual income risk makes the risk-free rate variable.
A positive covariance of the aggregate income growth and next period’s
individual income risk, M10 < 1, creates positive term premia. A negative
covariance of the aggregate income growth and next period’s individual
income risk, M10 > 1, creates negative term premia.

Predictable movements in the pricing kernel are required for nonconstant in-
terest rates. In this case, the predictable changes are introduced through the
conditional variance of the individual’s income. For instance, if in recessions the
variance for next period’s consumption share is expected to be lower than in ex-
pansions, then the price of bonds is lower in recessions and higher in expansions,
thus a positive term premium is required to compensate bond holders. In other
words, with countercyclical interest rates, capital gains accrue to bondholders
when they are valued relatively less—requiring positive term premia. Panel 3 of
Table 2 illustrates this case.

7. Conclusions

The objective of this paper was to explore the quantitative asset pricing impli-
cations of a model with endogenously restricted risk-sharing. We show under
which circumstances the endogenous solvency constraints will bind and we char-
acterize the pricing kernel. We describe an algorithm to compute an equilibrium
for given preference parameters and specification of the stochastic process for
individual and aggregate income. This algorithm is based on the equivalence
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between equilibrium with endogenous solvency constraints and constrained effi-
cient allocations. We found that for plausibly calibrated income processes and
for low values of risk aversion the model produces solvency constraints that bind
frequently, and as a consequence, individual consumption is volatile enough so
that the resulting pricing kernel passes the Hansen and Jagannathan test. Addi-
tionally, given the calibrated correlations between the individual income risk and
the aggregate income, the model produces sizable premia for equity and long-
term bonds. We also provide characterizations of how the dependence between
individual and aggregate risks determines both equity and bond premia.

We think that this model improves on the standard representative agent econ-
omy and on the—arbitrary—incomplete markets economies, since it makes the
portfolio constraints endogenous and simultaneously obtains asset pricing impli-
cations that are closer to the data. Nevertheless, our assumption about pun-
ishment from defaulting is also arbitrary. We assume that default is punished
by permanent exclusion of all asset markets but entails no garnishment of labor
income. Instead, if the exclusion from asset markets is temporary, it will make
default more attractive. On the other hand, if a fraction of the labor income is
garnished, it will make default less attractive. Incorporating these more realis-
tic alternatives may produce similar results, since they compensate each other.
We leave the investigation of these alternatives, as well as the introduction of
endogenous costly punishment, as a topic for future research.

In some related work (Alvarez and Jermann (1998b, 1999)), we have applied
the model used in this paper to measure the cost of business cycle fluctuations
and to analyze optimal international portfolio choices. We find that the cost of
business cycles can be small in a model that generates an equity premium of
several percentage points. For international portfolio diversification we find that
countries display a high degree of home bias as we see it empirically.
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Appendix
Proof of Proposition (5.1)
In order to demonstrate this property we state the following two lemmas.

Lemma 7.1. If
OV (w (31) ,31) /0w > OV (w (32) , 32) /Ow
then the decision rules that achieve T'V are flat after reversal.

Proof. The proof follows immediately from the first order conditions of the
problem defined by the RHS of equation (4.1). B

Lemma 7.2. If the decision rules after reversal are flat, then
TV (w(31),31)/ 0w > 0TV (w(32), 32)/ Ow.

Proof. Using the “45° line” result from Proposition (4.7) and the assumption
that the “decision rules are flat after reversal” in the two promise keeping equa-
tions (4.3) evaluated at w(31) and w(32) we obtain

u(e—Cy(w(31),31)) — u(C2 (0(32),32))
1—-p7+B(1—7) '

The desired result now follows by using the envelop condition. B

If full risk-sharing is not possible, then AV (@ (31) ,31) /0w > OV (@ (32) , 32) /Ow.
The result that the optimal decision rules are flat after reversal for the fixed point
V* follows by the combination of the previous two lemmas with the result that
lim, oo TV = V*. At each iteration, the two lemmas are applied sequentially
and then the domains are computed for T'V. The fact that the described property
is preserved for the limit follows directly from the fact that the limit is differen-
tiable.

Derivation of asset position and constraints with full risk-sharing

Full risk-sharing allocations are characterized by constant consumption across
the two states for each agent. Combining this fact with the sequential budget
constraints, it is immediate to find that the asset positions for Agent 2 are given
by:

w(31) — w(32) =

(16— ) (€2 — €2(31)) + (G2 — €2(32))

52(32) = , and
1 - q'r ( q > qm“
@(31) = Qnra2(32)14;22 —e€2(3 )
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where Co is the constant consumption level for Agent 2. For the solvency con-
straints, Ba(32) is determined by the same function as @3 (32) above except that ¢,
is replaced by co = u=1(U%(32)). Ba(31) = (%%‘:) Bs(32) as in the cases without
full risk-sharing; for Agent 1, symmetry is applied.

Proof of Result 1: Consider the price of a one-period bond,

= -
Cit+1 _
B max [( = ) ] A1) 770 (i) - ¥ (Tega|ae) -
1=1,2 Cit
Tt+1 Yt+1 ’
In Alvarez and Jermann (1998a) we show in proposition 4.18 that for an economy
with independent risks the consumption shares ¢; do not depend on the aggregate
state y (otherwise unnecessary volatility in consumption would be introduced).

Thus, the price of a one-period bond can be written as

~ -y
B> AMur1) 70 (yerr) max [(@) ] P (Tt |2e)
Yt+1 Tt+1 =12 Cirt

Each of the two terms in curly brackets can be shown to be constant. For the
first term, it is immediate since A;11is assumed to be i.i.d.. For the second term,
this follows by recognizing that with independent risks the share representation of
the economy has a constant discount factor and that two states, out of the four,
are identical. The discount factor for the representation of the economy in terms
of shares is 8(z) = 8_,,., AMYt+1) "¢ (ye+1) . Hence this economy is equivalent
to one with only two values of the shocks z. In particular, €, = ¢, = ¢ and
€nr = €he = €p, In section (5.1) we show that for an economy with only two
shocks, in the ergodic set, consumption is such that the highest marginal rate
of substitution follows a simple two point Markov chain, see (5.4). Moreover its
expected value is constant and hence by (3.4) interest rates are constant. At last,
since the risk-free rate is constant, by arbitrage, the risk premium for bonds of
any maturity is zero.

Proof of Result 2:

We start by rewriting the equity premium as a weighted average of risk pre-
mia to individual dividends. Let D, j be the dividend of a stock at t 4 k, and
{Di41}%2, be the dividend process, and V; [-] the value at ¢ of D;;. Define the
value of the stock as

Vil{ Dy }isa] = Z Vi [Detr]
k=1

so that the price of a stock can be seen to be the price of a portfolio containing
claims to each dividend, that is, a portfolio of dividend strips. The one-period
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holding return of equity is:

- Vi[Dyyi]
Ri 1 [{Digrtic ( ) - Rig41 [Diti) s
[ t+k S k= 1 § ‘/t {Dt+k}k 1] + [ t+]

where the one-period return of a dividend strip is:

Vi1 [Diyi]

Rt,t+1 [Dt+l€] = ‘/t [Dt+k]

Denoting by 1; ;41 a constant dividend, the conditional multiplicative equity pre-
mium equals

Ey(Re 1 [{ Devr 72 1]) - Ey(Rigy1[Degr])
wy[D : , 7.1
Ry py1[1e041] Z D] Ry py1[1e41] 1)

where w; are non-negative weights

Vi[Dyyr]

we[Dy 1] = Vil{Desr}2,]

and where
Ei(Rt 41Dy yr))

Riga[lee41]

is the conditional multiplicative risk premium of a strip paying Dy at t + k.

Equation (7.1) shows that the equity premium is equal to a weighted average
of all the strip premia. We have shown in Alvarez and Jermann (1998a) in
Proposition (4.18) that with independent risks the risk premium for a one-period
dividend strip, that is Ey(R¢t+1[Di+1])/Reg+1[1e4+1], is identical in the solvency
constraint economy to the one in the corresponding representative agent economy.
Thus, in order to show that the multiplicative equity premium is equal across the
two economies it is sufficient to show that risk premia for strips with different
maturity dates k are equal for each economy separately.

We first show that for a representative agent economy risk premia for strips
with different maturities are equal for all k. Given i.i.d. aggregate growth rates

VilDysx] = [BE )]

and we have !

Ey(Rip41[Digr]) = m,
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and thus
Ei(Rip1[Devr])  ENT)

Ripiillegs] EOTY)

We now show that for the solvency constraints economy considered here, risk
premia for strips with different maturities are equal for all k. In Alvarez and Jer-
mann (1998a) we show in proposition 4.18 that for an economy with independent
risks the consumption shares ¢; do not depend on the aggregate state y (otherwise
unnecessary volatility in consumption would be introduced). Thus, the pricing
kernel can be written as

BANYe+1) 7 (Y1) A (e |we) - (2o |2e) }

where the first part in curly brackets depends only on the aggregate shock and
the second part in curly brackets depends only on the individual shock. Using
this notation, we can write that

Vi[Diy1] = BE(A'"")E(m),

where we have used the fact that, aggregate growth rates are i.i.d., that interest
rates are constant so that E; (m (x¢41|z¢)) = E(m), and that the probabilities are
separable for y and x so that covy (A(ye+1)~7, m (z441]|z¢)) = 0. More generally,
we have that

VilDii] = [BEA)E(m)]"

where we have used the additional result that covy (m (z441|2¢) , m (T4 po|Tiy1)) =
0. This last result follows directly from the fact that with constant interest rates,
term premia are all equal to zero. We then have

1
[BE('T)E(m)]’

Ei(Rtt+1[Diyi]) =

and thus
Ey(Rigi1[Digr])  ENT7)

Risialligr]  EOY)

Thus, as before, the term structure for strip premia is flat, thus it is at the same
level as the one of the representative agent economy. B
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