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Abstract

There is a widespread belief that different geographic regions of the U.S.
respond differently to economic shocks, perhaps because of factors such as
differences in the composition of regional output, adjustment costs, or other
frictions. We investigate the comovement of regional employment series us-
ing a common features framework. Little evidence is found to suggest that
regions move synchronously; rather, it takes about three months before re-
gions respond in a similar fashion to a common shock. We identify leading
and lagging regions. None of the regional employment series appears to share
a common, synchronous cycle with aggregate U.S. employment.



1 Introduction

There is a widespread belief that different geographic regions of the U.S.
respond differently to economic shocks, perhaps because of factors such as
differences in the composition of regional output, adjustment costs, or other
frictions. Indeed, economists have long recognized that there are relative
swings in the fortunes of regions (Hall [8]). More recently, there has been
an increased interest in developing the facts about regional cycles.!

The interest in regional dynamics can be motivated in several ways. First,
regional shocks can have redistribution consequences. As a result, regional
reallocations may lead to aggregate fluctuations. Thus, regional shocks might
have predictive content for aggregate fluctuations. Similarly, regional shocks
may trigger different adjustments of labor, capital, and output than do ag-
gregate shocks. Second, to the extent that regions are specialized in the
production of goods and services, national markets are somewhat arbitrary
constructs from an economic point of view. The study of regional dynam-
ics would then be the more natural approach to take. Finally, if regional
dynamics are significantly different, policymakers may want to identify re-
gional differences and/or imbalances in formulating policies and assessing
their consequences.

This paper contributes to the stylized facts on regional employment dy-
namics using the common features framework first introduced by Engle and
Kozicki [5] and then extended by Vahid and Engle [16]. The analysis iden-
tifies the presence of codependent cycles in the regional employment series
and investigates the extent to which these cycles are synchronized. In short,
we investigate whether there are common factors driving short-run move-
ments in the regional series and the timing of the impact of the factors on
the employment data.

Common features were first introduced as a way of investigating contem-
poranous comovment in a set of series. A set of variables has a serial corre-
lation common feature when a linear combination of them is unpredictable
based on the history of the system, even when the series individually display
serial correlation. An implication of this structure is that all of the persistence
in the series can be embodied in a factor that is common to all the variables
in the system. We might think of this factor as a common business cycle.

!See, for example, Barro and Sala-i-Martin [1], Blanchard and Katz [2], Davis, Loun-
gani, and Mahidhara [4], Quah [13], and Carlino and DeFina (3]



While the magnitude of a response to the factor may differ across variables
in the system, the timing of the response will be synchronized exactly.

The restriction implied by the serial correlation common feature is a
strong one. We can imagine that while regional series may share a com-
mon driving factor, the timing of the response to shocks to the factor may
differ for reasons alluded to above. Thus, if there is a shock to the common
factor today, region 1 may respond today while region 2 may respond one
month from today. Vahid and Engle [16] show how to test for, and estimate,
this type of structure in a set of variables.

We use these methods to investigate the comovement of regional em-
ployment and to identify regions that tend to lead or lag aggregate U.S.
employment. There is little evidence that regional cycles are synchronous:
in pairwise comparisons of regions, only two sets of regions showed common,
contemporaneous comovment. For the most part, it takes about three months
before regions are responding in a similar fashion to economic shocks. This
suggests that there are significant economic differences between geographic
regions or that regional shocks spread out, with a lag, to other regions. We
are also able to identify a group of regions that lead aggregate U.S. employ-
ment (New England, Great Lakes, Plains, and Southeast) and a group that
lags aggregate employment (Mideast, Southwest, and Far West). None of
the regions appears to move contemporaneously with aggregate U.S. employ-
ment. On balance, the evidence is consistent with the view that recessions
and expansions "roll” across the U.S.

The plan of the paper is as follows. Section 2 lays out the empirical
framework and discusses one possible source of differing regional dynamics:
regional industry mix. This section follows closely the discussion and layout
in Vahid and Engle [16]. Section 3 contains the empirical analysis for re-
gional employment, investigating comovement in the context of bivariate and
system-wide models. Section 4 investigates leading and lagging relationships
between regional and aggregate employment using a generalized method of
moments methodology. Section 5 concludes.

2 The Empirical Framework

The empirical model is motivated by an interest in quantifying the extent to
which the U.S. regional employment series move together in both the short
run and the long run. Over the long run, in a well-integrated economy,



regional employment growth rates might eventually converge in the face of
diminishing returns to factors of production (if long-run regional productivity
growth rates are similar). However, the short-run dynamics of employment
growth across geographic regions of the U.S. may be quite different if re-
gions have significant differences in their economic characteristics. The most
obvious candidate for such differences is industry mix. Different industries
within the broad economy may be affected by the same economic shock in
different ways and with some variation in the timing of a response to shocks.
If regional employment compositions by industry differ in an economically
meaningful way, there could be dissimilar responses of regions to the same
economic shock. In addition, economic shocks that originate within a specific
region may propagate with a lag to neighboring regions. Regions with weak
economic ties to the shock-originating region may show different dynamics
in the response of employment to the shock.

How much does employment composition by industry vary across regions
of the U.S.? Table 1 provides evidence on industry mix, measured as number
of employed workers in an industry relative to total regional employment.
The numbers represent employment shares averaged over the period 1955-
1995. The definitions of the BEA regions are given in Appendix A. The
industry classifications are single-digit SIC categories, so the entries in the
table may mask significant differences in industry mix that would be apparent
if we were to go to a finer level of disaggregation. However, even at this
coarse level of disaggregation, there are significant differences in industry-
level employment across regions.

Manufacturing shows the most variability across regions, from a low of
14 percent of employment in the Rocky Mountain region to a high of 31
percent in the Great Lakes region. There is also a fair amount of variabil-
ity in employment shares for the services and government sectors. Services
employment ranges from a low of 13 percent in New England to a high of 20
percent in the Far West. For the government employment share, New Eng-
land has a low of 14 percent compared to the high of 22 percent in the Rocky
Mountain region. The other industrial classifications show little variation in
employment but generally account for about 40 percent of employment in a
region.

The fact that a substantial share of industry employment varies signifi-
cantly across regions leads us to suspect that the dynamics of regional re-
sponses to economic shocks will differ. Further, the largest volatility in em-
ployment shares within regions (measured by standard deviation) occurs in
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manufacturing and services, two of the industries that show the most vari-
ability across regions.

There are several ways to quantify the intuitive notion that a set of vari-
ables move together over the short run. We might investigate correlation
coeflicients between pairs of series or impulse response functions in a vector
autoregression of all series jointly. A recent alternative measure of comove-
ment is due to Engle and Kozicki [5], who introduced the idea of a serial
correlation common feature (SCCF). Simply put, a set of variables exhibits
an SCCF when each of the series is individually serially correlated but a
linear combination of them is not. This is a strong measure of comovement,
since it implies that a common shock that has a persistent effect on the indi-
vidual series will have no such effect on a specific linear combination of the
series. Thus, the presence of an SCCF among a set of variables suggests that
they share a common cycle that moves the series contemporaneously.

The implications of an SCCF in a set of variables can be illustrated in a
simple bivariate example. Suppose we have two scalar time series y;; and yso;
that have the following representation in terms of the common factor f;:

yie = O1ft+ ey
Yo = Oaft+ ey
fi = Bfica+wy

where ey, and ey are innovations. While y;; and 9, are individually serially
correlated through the common factor f;, the linear combination z; = doy1; —
01yo; is white noise. In this case, y;; and y9; share an SCCF. Note that while
the factor f; affects y1; and yo; differently via the coefficients 6; and 6., the
common effect is synchronous: both series are affected at the same time by
the movement in f;.

We could allow for spillover effects by setting up the model a little differ-
ently:

yir = O1ft+ ey
Yot O ft + ea
fi = Bfie1+mew—1 + Y2ea-1.

This model also possesses an SCCF, and thus the series have a common
synchronous cycle, since the linear combination do1y;; — 0199, is serially uncor-
related. Note then that the presence of an SCCF implies that all dependence
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on the past can be attributed to a factor common to all the variables in the
system.

Vahid and Engle [16], building on the work of Gourieroux and Peaucelle
[6, 7] and Tiao and Tsay [14, 15], generalized the SCCF notion to allow
for common cycles that are nonsynchronous. Returning to the simple factor
model example, the model structure might be given by:

yir = O1ft+ewy
Yor = Oafr1 + e
fi = Bfio1+wy.

The variable yo; depends on f;_; while y;; depends on f;. Note, though, that
the linear combination z; = 62y — 010y2: is a process with only first-order
serial correlation even though v, and ys, are individually serially correlated
of a much higher order. The series share the common factor f;, but now the
cycles that are propagated through f; are nonsynchronous — y9; responds with
a l-period lag. Similarly, we can imagine that series share a nonsynchronous
cycle at j lags.

Nonsynchronized common cycles satisfy the three axioms of a testable
feature as described in Engle and Kozicki [5]. Following Vahid and Engle
[16], let the feature A be defined by “predictable from the joint history of the
n-vector series Z prior to and including t-j.” Then X has A according to:

X has A if E(X|F,_;) £0
where F,_; is the o-field generated by (Zs,s <t — j)

The feature A is common to the series if they all have A but a linear combi-
nation of them does not have A.

The common feature framework is a natural way in which to examine
the common dynamics of the regional employment series. This methodology
can be used to investigate whether regions move together synchronously or
nonsynchronously and to get an idea of how nonsynchronous the movements
might be.

Testing for the presence of common features is relatively straightforward
using the scalar components model (SCM) of Tiao and Tsay [15]. The test
uses canonical correlation analysis to determine the order of vector ARMA
models. Details are given in Tiao and Tsay. We first repeat their definition
of an SCM process:



Definition 1 (Tiao and Tsay (1989, pg 164)): For a k-dimensional process
2, a non-zero linear combination y;, = vl 2 is said to follow an SCM(py,q;)
structure if there exist p; k-dimensional vectors [vq, ..., v, ] such that:

1. v, is non-zero when p; > 0 and

2. the linear combination of z, ..., z_p,, u; = vg 2+ > 5L, v] 2_; satisfies:

#0 ifm=q
=0 ifm>q

E(ay pmuy) {

where a; is the vector of innovations for z.

Consider then a vector process z; that follows the vector ARIMA model:
(I)(L)Zt = @(L)at

where ®(L) and O(L) are polynomials in the lag operator L. If z, has an
SCM(0,j) representation, it can be written as:

J
T T
Uy 2t = Voay + E h; a;;.
i=1

If the process is SCM(0,j), linear combinations of the variables have an MA(j)
representation and thus have a short memory relative to that of the process
2. These are the types of SCM process investigated in this paper. If the
vector process z has an SCM(0,j) representation, there is linear dependence
in the impulse responses of z; after j periods.

Tiao and Tsay proposed a test for SCM(0,j) in a vector y; that amounts to
testing whether some of the canonical correlations between v, and Zp, ;_;_1 =
{Yt—j—1,- - Yi—j—1-n}, h > 0 are zero. Let 5\1(]) be the ith smallest squared
canonical correlation (eigenvalue) between y; and Zj,;_;_1. The proposed
test statistic is given by:

. N Ai4)
c(j,s) = (T —h—j) ;log(l )

)
with d;(j):

J
di(j) = 1423 po(@"yu)po(Y" Zni)

v=1



and p,(x;) the lag-v sample autocorrelation of the process z; and & and 4 the
canonical variates associated with the squared canonical correlations A;(j).
Under the null, the statistic is distributed as x? with degrees of freedom equal
to s x {h x k + s} where k is the number of elements in the vector y;.

There is an intuition behind searching for zero-canonical correlations be-
tween y; and its lagged values that is easiest to express in terms of the
SCM(0,0) test, which is a test for SCCF. Suppose we have two sets of vari-
ables, y; = {V14,...,Yr+} and a conditioning set z; = {y—1,...,Y—m}. Let
Wi = oy and vy = Bz be specific linear combinations of 3; and z;. Canon-
ical correlations are the set of orthogonal a;’s and 3;’s that deliver maximal
correlations between p;; and vy. Thus, the statistically zero canonical cor-
relations are linear combinations of the y;’s that are uncorrelated with all
linear combinations of the z;’s, since they are uncorrelated with the linear
combination that gives the maximum correlation between pu;; and v;;.

Testing for the presence of common cycles in a series, whether syn-
chronous or nonsynchronous, is then straightforward. We simply check for
statistically zero canonical correlations between the series y; and its relevant
past z;_; beginning with j = 0. If the model is rejected, we test for j =1
and continue until we find the appropriate SCM(0,j) structure. In the case
where 7 = 0, the eigenvectors associated with the zero canonical correlations
between the dependent variables and instruments are limited information
maximum likelihood estimates of the cofeature vector. When 57 > 0, the
eigenvectors associated with the zero canonical correlations give non-optimal
generalized method of moments (GMM) estimates of the cofeature vectors,
as shown by Vahid and Engle [16]. They also show how to construct optimal
GMM estimates of the cofeature vectors, which we exploit below in examin-
ing leading and lagging relationships between the regional employment series
and aggregate U.S. employment.

Some care must be taken in choosing the instrument set used to test for
and estimate the cofeature vectors. The description of the procedure above
assumed that all of the variables under analysis were stationary. In our case,
as we are looking at regional employment, the series are nonstationary and
may be cointegrated in certain combinations. In such a situation, testing for
synchronous and nonsynchronous cycles must be modified slightly.

Suppose then that the vector y; is nonstationary in levels but stationary
in first differences and that the elements of y; are cointegrated. We can model



Y using a vector error-correction model (VECM):
Ays=a+ By 1+ 08y 1+ ... + Ay n + €.

In this case, we will search for codependence in the first differences of the
elements of 3. The appropriate instrument set used in testing and estima-
tion is composed of lagged differences in y; as well as the lagged value of
the error correction term (fy;—1) from the VECM estimation. In the case
where the system is characterized by r cointegrating vectors, the degrees of
freedom for the SCM(0,j) statistic are s x {h x k+7+s}. If a linear combina-
tion of nonstationary I(1) variables is SCM(0,j), it implies that their cycles
in the Beveridge-Nelson decomposition representation have an SCM(0,j-1)
structure. Further details are in Vahid and Engle [16].

3 Common Cycles in Employment Across
Regions

We consider the evolution of regional employment in the post-World War
IT period. The data are state-level employment aggregated into eight BEA-
defined regions. The data are quarterly and run from 1955 to 1995Q2 for
a total of 162 observations. A plot of the log-level of regional employment
data is given in Figure 1. The figure shows that, over the long run, the series
generally move together, but it also suggests that there are significant dif-
ferences in average employment growth across regions for the sample period.
Table 2 gives some sample statistics for the series.

The Mideast region has the lowest average level of employment growth
over the sample period, less than half the average growth of the fastest grow-
ing regions, the Southwest and Rocky Mountain. The Great Lakes region is
most volatile, in part because of the jump in the level of the series early in the
sample period (see Figure 1). However, the Great Lakes region still shows
the most volatility when the sample statistics are calculated over 1956:1 to
1995:2. The table indicates that there is a considerable disparity in growth
rates across regions. The slow-growing regions are New England and the
Mideast; the moderate growth regions are the Great Lakes and Plains; and
the fast growth regions are the Southeast, Southwest, Rocky Mountain, and
Far West.



3.1 Bivariate Analysis

Consider first the extent to which the regions move together when examined
in pairwise combinations. Thus, we initially test for SCCF (or, what is the
same thing, SCM(0,0)) in bivariate models of regional employment. Each of
the regional series was tested individually for unit roots in its log levels, and
in each case, the null of a unit root in the series could not be rejected. When
first differenced, each of the series appears stationary, according to standard
unit root tests, and, furthermore, displays significant serial correlation.

We next examined whether regional employment is cointegrated in pair-
wise combinations, since the presence of cointegration has implications for
how the SCM tests are set up. Bivariate models were estimated for each of
the regions using Johansen’s [10, 11] FIML procedure. Again, and for all the
discussion that follows, the regional data are in logs. The trace test statistics
for the null of no cointegration are presented in Table 3. The critical value
for the statistics at the 90 percent confidence level is 13.33 according to the
tables in Osterwald-Lenum [12]. Perhaps surprisingly, there is no strong
evidence of cointegration in any pair of regional employment series. In other
words, when taken in pairwise combinations, the regional employment series
do not seem to share a common stochastic trend. This implies that the dy-
namics of the bivariate models can be adequately captured by a VAR in first
differences.

It is an interesting finding that the regions do not seem to share a common
long-run trend, especially given their degree of economic integration. We will
see below that when a model is estimated with all regions jointly, there is
evidence of common stochastic trends among the eight regions. The lack of
such a finding in the bivariate relationships is consistent with a complicated
stochastic structure for the joint variables. There may be several stochastic
trends driving the long-run behavior of the regional series, such that no linear
combination of any two series is sufficient to cancel out the long-run trends.

We next turn to whether the series have common short-run movements
as characterized by the presence of a serial correlation common feature.
This amounts to testing whether the pairwise combinations of regional em-
ployment have an SCM(0,0) structure. The tests look for statistically zero
canonical correlations between the sets of variables vy, ; = {Ay,;, Ay} and
Zikt = {Vikt-1,--.,Viki—1-n} Where i, k index regions and Ay, is employ-
ment growth in region ¢ at time ¢. The test statistics are presented in Table
4 for h = 1. The test statistic C'(1) is asymptotically chi-squared with 3 de-



grees of freedom under the null of a single white-noise component and C'(2)
is asymptotically chi-squared with 8 degrees of freedom under the null of
two white noise components. The first entry in each cell of the table is the
computed C(1) statistic and the second is the C(2) statistic.

The tests indicate that, for the most part, the regions do not share a
common cycle when taken in pairs. Only in the case of the Great Lakes and
Plains and the Great Lakes and Southeast pairs is there evidence that the
regions share a synchronous common cycle. The evidence from the C'(2) test
statistics indicates as well that there is significant serial correlation in the
growth rates of regional employment in all of the pairwise combinations.

The result on the lack of synchronous cycles in employment is not that
surprising, given the finding of significant differences in industry mix across
regions (Table 1). The regions of the U.S. are well integrated economically,
but their economic structures are not identical. However, it is only a conjec-
ture that differences in industry mix lead to a lack of synchronized cycles in
the regional employment series. We have no formal statistical tests of this
conjecture.

We next step through the SCM(0,j) tests for increasing j to examine
the regional data for the presence of nonsynchronous cycles. There is no
evidence of codependence at 1 lag, but within two lags, many of the regions
appear to show evidence of codependence. The results of the testing are
in Table 5. The first row in each cell gives the lag at which evidence of
common cycles was found. The second row gives the value of the C'(1) test
statistic (in no cases were the C'(2) statistics not rejected), and the third row
gives the eigenvector corresponding to the smallest eigenvalue. Recall that
the eigenvector is a consistent (but not efficient) estimate of the cofeature
vector. Thus, the eigenvector gives the linear combination of the regions
uncorrelated after j lags.

All of the regional pairwise combinations showed evidence of an SCM
structure, and thus common nonsynchronous cycles, at some lags between
0 and 4 except for the Great Lakes-New England combination. About half
(12) of the bivariate combinations showed evidence of codependence at 2
lags or fewer with the remaining showing codependence at lags 3 and 4. New
England shows the least variability in lags for finding codependence across
regions, generally showing nonsynchronous cycles at lag 3. The Far West
region also shows fairly small variation in lags when finding codependence
with other regions, bouncing between 2 and 3 lags.

It appears then that the U.S. regions share a common driving factor that
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generates serial correlation in employment growth rates, but that the cyclical
comovement is not contemporaneous. Within roughly one year, however,
the impulse response functions of regional employment growth are moving
together. Thus, there is evidence that economic shocks ”roll” through the
U.S. regions in contrast to a scenario that has all of the regions responding
contemporaneously to an economywide shock.

3.2 System Estimation

The bivariate analysis suggests that economic shocks have different effects,
in terms of timing, on regional employment. Additional, and more efficient,
information on synchronous/nonsynchronous cycles in regional employment
can be gained if we consider all of the U.S. regions jointly, in a multivariate
analysis.

The extension of the above-outlined technique to a multi-region system is
straightforward. We first undertake a specification analysis in order to build a
model that adequately captures the dynamics of the system composed of the
eight regional employment series. A vector error correction model (VECM)
was formed, both with and without an unrestricted linear time trend. This
model was then tested for lag-length using the AIC and SIC criteria. Let
y; denote the stacked 8x1 vector of regional employment levels in logs. The
VECM model has the form:

Ay, = o+ doyp—1 + 618y 1 + ...+ Ay + pt + €

and was tested for lag length k. The results of the AIC and SIC tests are
given in Table 6. The criterion functions used are, for the AIC criterion,
T || 4+ 2n?k and for the SIC criterion T'|Xy| + nTklog(T) where T is the
number of observations, n is the number of variables, and k is the number of
lags. Tests were conducted under two cases: one where p is unrestricted and
one where = 0.

The results for both the AIC and SIC test statistics indicate that a single
lag is sufficient to describe the dynamics of the system, whether or not an
unrestricted time trend is included in the VECM.

Conditional on a single lag in the VECM representation of the system,
the test statistics for the number of cointegrating relationships among the
eight regional employment series are presented in Table 7. The statistics
were constructed for the two cases in question: with and without an un-
restricted time trend in the model. For the model with a time trend, the
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maximum-eigenvalue test suggests two cointegrating vectors at the 5 percent
level of significance, while the trace statistic suggests three cointegrating vec-
tors characterize the system. A similar result obtains for the model without
a time trend: either two or three cointegrating vectors, depending on the test
statistic used.

In contrast to the bivariate analysis above, we find that the regional em-
ployment series, when considered jointly, do share common stochastic trends.
Indeed, with three cointegrating relationships, there are five common stochas-
tic trends among the eight regions. In light of this finding, it is perhaps not
that surprising to find no evidence of cointegration in pairwise comparisons
of regional employment. More than two regions need to be considered in
order to capture all of the stochastic trends driving the long-run behavior of
the system.

We next tested whether an unrestricted time trend belonged in the VECM
representation. Likelihood ratio tests were conducted under the restriction
of h =1,2,..., 8 cointegrating vectors characterizing the system. The test
statistics, distributed as x?(8), rejected the null, suggesting that a time trend
cannot be safely excluded from the model. In sum, the specification tests sug-
gest that the regional employment data can be adequately characterized by
a VECM with a time trend, one lag and two or three cointegrating relation-
ships.

Consider now the short-run dynamics of the series as characterized by the
presence of common features. Let Ay, = {Ay4,. .., Ay} denote the vector
of regional employment growth rates and z; = {Ay;_1, By:_1,t, 1} denote the
conditioning variables from the VECM. We first test for SCCF among the
regional employment series using the SCM(0,0) test under the assumption
that the system is characterized by three cointegrating vectors. Thus, we
check for the number of statistically zero canonical correlations between y;
and z;. The results of the tests are reported in the first column of Table
8. The statistics indicate that the eight regional series do not share a serial
correlation common cycle. If they do share common cycles, the cycles are
nonsynchronous.

Do the regional employment series share cycles that are nonsynchronous?
As mentioned in Section 2, this amounts to searching for statistically zero
canonical correlations between y; and z;_; for increasing j using the SCM(0,j)
test. These zero correlations represent linear combinations of y; that are
unpredictable based on time ¢ — j information.

The results of the test for an SCM(0,j) structure for j = 1,2,3,4 are

12



presented in Table 8. The tests again assume three cointegrating vectors in
the construction of the error correction term. Each column of the table gives
the C(s) test statistics for a particular value of j. The final column of the
table gives the critical values of the chi-squared distribution at 95 percent.

The table suggests that a single codependence relationship is present
among the eight employment series at lags 1 and higher. Note that if a
model is SCM(0,j), it should pass the test for an SCM(0,j+1) structure.
This holds true for statistics under investigation. At 1 lag, the test statistics
indicate that there are two codependence relationships among the regional
series. At 4 lags there are 5 codependence relationships.

The results from the system estimation are broadly in accord with those
of the bivariate analysis. Regional employment does share a common cycle,
but that cycle is nonsynchronous: some regions lag others in response to a
shock. The analysis indicates that, by and large, the regional employment
series are moving together after about three months from the time of a shock.

4 Leading and Lagging Regions

The analysis above indicates that regional employment in the U.S. does not
move synchronously over the short run. Since the regions do not move con-
temporaneously, it suggests that some regions may be leading regions and
some may be lagging regions. That is, some regions may respond to common
shocks consistently more quickly than do other regions. To investigate this
possibility in a tractable way, we investigate whether regions lead or lag total
employment for the U.S. (exclusive of employment for the region under inves-
tigation). Thus, we look at bivariate lead-lag relationships between regional
employment and aggregate employment.

We investigate lead-lag relationships in a generalized method of moments
(GMM) framework as follows. Suppose we have a bivariate model of the
form:

yir = O1ft+ewy
Yor = Oafr1 + e
fi = Bfica+wy

where e; 4, €2, w; are serially uncorrelated innovations that may be contem-
poraneously correlated. Thus, this model follows an SCM(0,1) structure
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where yo; lags y1¢. Consider the vector y; = {y14,y24+1}. There is a linear
combination of these variables (62y1; — 61y24+1) that is uncorrelated with
time ¢ — 1 information. Conversely, there is no such linear combination of
the elements of y; = {y1++1,y2+} that will be uncorrelated with time ¢t — 1
information. Let z;_1 = {y1¢-1,y24-1}. We consider whether a vector [ can
be estimated that satisfies:

E(ﬂ'ﬂt X thl) =0 (1)

for y; = yi, y;. These orthogonality conditions can be exploited in a GMM
estimation of the parameter vector 3.

The details of GMM estimation are well known (Hansen [9]) so here we
give only a brief overview geared to our particular application. Let g be the
sample analog to the set of orthogonality conditions:

T
gr(8;Y, Z) = (1T) Y (B9 ® z-1)
=1

It is assumed that F'y; and z;_; are stationary stochastic processes. The
GMM estimator is the value of g that minimizes the quadratic form:

gr(B%Y, Z)Wrgr (8%, Y, Z)

for W a positive-definite weighting matrix that can depend on sample in-
formation. In the case under investigation, we can write the quadratic form,
for a given value of W as:

BY'Z 7'V
T Wr T

Normalizing the first element of 3 to 1 and denoting the rest of the elements
by 6, the GMM estimator of ¢ is

6= (Yo ZWyZ'Ys) ™YY, ZWi Z'Y1.

Hansen [9] shows that the optimal weighting matrix Wy is an estimate of:

-1
St hm 1/TZZEﬂyt®Zt D(B'Ttv ® 26-1-0)

t=1 v=—00

the inverse of the asymptotic variance matrix of the sample mean of the
orthogonality conditions.
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As indicated in Vahid and Engle [16], we can use:

-1

W = 6((1/T) Y o) + i%((lm POCEREPREY

as an optimal estimate of W7 where 2 is an estimate of the variance of 3y,
and 4; is an estimate of the ith autocovariance of 3'y;.

In the first stage of the GMM procedure the values of 6 and #; are
unknown, so the quadratic form is minimized with the weighting matrix
Wy = (Z'Z)"!. Estimates of 62 and 4, are then obtained. In the second
stage, these estimates are used to construct an optimal weighting matrix and
new parameter estimates are derived.

When the number of orthogonality conditions exceeds the number of pa-
rameters to be estimated, the model is overidentified. Hansen [9] suggested
a model specification test based on the orthogonality conditions being close
to zero. He shows that, if the orthogonality conditions are true, 1" times
the minimized value of the objective function is distributed chi-squared with
degrees of freedom equal to the number of overidentifying restrictions. This
is the test to be used in assessing leading and lagging relationships between
the regions and the U.S. employment series.

Our procedure is as follows. We undertake a GMM estimation of a bivari-
ate model consisting of a region’s employment and aggregate employment for
the rest of the nation. The aggregate employment number is the sum of em-
ployments for the seven other regions. We first lead the regional employment
series by j periods and estimate a codependence vector under the restrictions
implied by equation (1). Hansen’s J-statistic is examined to see if the model
is rejected. We then repeat the procedure but instead lead the aggregate
employment series relative to the regional series by j periods. The model is
re-estimated and the J-statistic is again examined. When the null that the
orthogonality conditions are close to zero is not rejected, it is interpreted as
evidence that we have identified a leading/lagging relationship between the
series in question.

First, the eight measures of aggregate employment (U.S. employment less
region j employment) were tested for unit roots. We could not reject the hy-
pothesis of a unit root in levels but can reject in first differences. The eight
bivariate models were then examined for cointegration: in no case could the
null of no cointegration be rejected. Thus, each of the bivariate models of
regional and national employment can be expressed solely in terms of first
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differences. Finally, as described in the bivariate SCM(0,j) tests described
above, the models were tested for an SCM(0,j) structure. In each case, evi-
dence of an SCM(0,j) structure was found for some j = 1,2,3,4. So, there
does appear to be a common cycle in regional and national employment. In
no case was an SCM(0,0) not rejected, so the cycles appear to be nonsyn-
chronous.

We then proceeded with the GMM estimation, stepping through j =
1,2,... in search of models that were not rejected. The instrument set con-
sisted of two lags each of the regional series and the aggregate series. One
of the coefficients in the codependence vector was normalized to one, so that
a single parameter was estimated for each of the eight models using four or-
thogonality conditions. Thus, the J-statistics are distributed as chi-squared
with 3 degrees of freedom under the null that the orthogonality conditions
are close to zero.

The results of the estimations are given in Table 9. The first entry in
each cell is the J-statistic for a model where the region leads the nation and
the number in parentheses is the J-statistic for a model where the nation
leads the region. The critical value of the test statistic at the 5 percent level
is 7.81. Numbers with an asterisk are therefore not significantly different
from zero at the 5 percent level and thus indicate that the overidentifying
restrictions are not rejected by the data.

The tests suggest that the following regions have employment series that
lead the nation by one quarter: New England, Plains, and Southeast. None
of the regions appears to lag the U.S. aggregate by one quarter. The Great
Lakes appears to lead the aggregate by two quarters, while the Mideast,
Southwest, and Far West lag U.S. employment by two quarters. The Rocky
Mountain region appears to lead the aggregate by four quarters. However,
this Rocky region is small relative to the others so we are a bit skeptical that
a robust leading relationship has been found.

Thus, the leading regions, relative to the U.S., appear to be New Eng-
land, Great Lakes, Plains, and Southeast, perhaps with the Rocky Mountain
region included. The lagging regions relative to the U.S. are the Mideast,
Southwest, and Far West. The leading regions tend to have a somewhat
higher fraction of employment in manufacturing and a lower fraction in ser-
vices and government relative to the lagging regions (see Table 1). However,
the Mideast (a lagging region) has an industry mix almost identical to the
Southeast (a leading region), indicating that industry mix is probably not
the whole story in accounting for leading and lagging relationships between

16



aggregate and regional employment. Once again, the GMM tests indicate
that economic shocks do not affect all regions of the country contemporane-
ously but rather that the effects of the shocks propagate through the economy
geographically.

5 Conclusion

Evidence has been presented supporting the view that economic shocks ”roll”
across geographic regions of the U.S. economy. That is, though regional em-
ployment series do share a common factor that drives short-run persistence,
shocks to the common factor do not affect regions contemporaneously. How-
ever, evidence from scalar components model tests indicate that regional
employment does largely move in a similar fashion after about three months
from the time of an economic shock.

We also investigated whether regions tend to lead or lag the rest of the
nation. GMM test statistics indicate that the employment series for New
England, Great Lakes, Plains, and Southeast tend to lead the nation while
the Southeast, Southwest, and Far West tend to lag the nation. For the
most part, regions that lead the U.S. tend to have more employment in man-
ufacturing and less in services and government than do the lagging regions.
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Appendix
Definitions of Regions

New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode
Island, Vermont.

Mideast: Delaware, District of Columbia, Maryland, New Jersey, New York,
Pennsylvania.

Great Lakes: Illinois, Indiana, Michigan, Ohio, Wisconsin.

Plains: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South
Dakota.

Southeast: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mis-
sissippi, North Carolina, South Carolina, Tennessee, Virginia, West Virginia.

Southwest: Arizona, New Mexico, Oklahoma, Texas.

Rocky Mountain: Colorado, Idaho, Montana, Utah, Wyoming.

Far West: California, Nevada, Oregon, Washington.
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Table 1: Regional employment shares by major industry

Region | Mining | Const | Mfg | Trans | Trade | FIRE | Sves | Govt
NE .00 .04 30 | .05 21 .06 13 14
ME .00 .04 25 | .06 21 .07 19 |7
GL .00 .04 31 | .06 .22 .05 16 ] .15
PL .01 .05 21 | .07 24 .05 A7 118
SE .01 .06 25 | .06 .22 .05 A7 18
SW .04 .06 16 | .07 24 .05 .18 .19
RM .03 .06 14 | .07 24 .05 .16 22
FW .00 .05 21 | .06 .23 .06 .20 .19

The regions are: New England (NE), Mideast (ME), Great Lakes (GL), Plains (PL),
Southeast (SE), Southwest (SW), Rocky Mountain (RM), and Far West (FW).

The industry classifications are: Mining; Construction; Manufacturing; Transportation
and Public Utilities; Wholesale and Retail Trade; Finance, Insurance, and Real Estate;

Services; Total Government.

Table 2: Sample Statistics for Regional Employment Growth 1955:1 to
1995:2, quarterly growth rates

H Region | Mean ‘ s.t.d ‘ min ‘ max ||
New England | .0036 | .0076 | -.024 | .024
Mideast .0027 | .0057 | -.016 | .018
Great Lakes | .0052 | .0209 | -.041 | .241
Plains .0051 | .0059 | -.015 | .017
Southeast 0075 | .0067 | -.022 | .025
Southwest .0081 | .0064 | -.012 | .023
Rocky Mnt .0080 | .0066 | -.011 | .029
Far West .0072 | .0069 | -.012 | .025
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Table 3: Trace Test Statistics for Cointegration in Bivariate Models of Re-
gional Employment
I INE |[ME |GL |PL [SE |[SW [RM ||

ME | 3.75
GL | 2.78 | 3.62
PL | 1.82 (295 | 11.44
SE | 261|446 | 12.26 | 6.15
SW | 4.85 | 4.18 | 8.86 | 5.98 | 4.65
RM | 4.14 | 3.82 | 10.04 | 7.54 | 4.55 | 4.60
FW | 943|793 | 11.52 | 7.12 | 5.31 | 5.55 | 4.45

Critical value for null of no cointegration is 15.41 at the 95 percent significance level and
13.33 at the 10 percent level. See Osterwald-Lenum [12]for test statistic tables.

Table 4: SCM(0,0) tests for bivariate case, h=1
| INE [ME [GL [PL [SE [SW [RM |
ME | 94
166.2
GL | 29.6 | 28.2
186.5 | 120.8
PL | 62.1 |41.7 |4.3*
211.3 | 149.0 | 107.1
SE | 725 | 375 |5.6% |21.5
235.9 | 166.3 | 142.4 | 165.7
SW | 113.2 | 894 | 62.9 | 76.2 | 115.4
281.5 | 233.0 | 206.8 | 219.1 | 266.5
RM | 69.9 | 786 |57.1 |[57.9 |57.9 | 285
217.7 | 185.7 | 139.3 | 150.8 | 188.5 | 174.5
FW | 732 | 293 |20.7 [27.1 |65.0 |80.7 |65.9
240.9 | 1749 | 161.9 | 179.6 | 215.6 | 258.1 | 202.2

* denotes significant at 5 percent level
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Table 5: Summary of SCM(0,j) tests for bivariate case, h=1

[ [ NBE [ ME [ GL [ PL [ SE [ SW [ RM |
ME | j=3
5.4
(-.41,.91)
GL EETE =2
7.2
(.95,.30)
PL | =3 i=3 i=0
2.6 3.9 43
(.43,.90) | (.98,.17) | (.80,-.59)
SE | j=2 =3 i=0 =2
5.2 7.4 5.6 3.7
(-.19,.98) | (.99,-.03) | (-.59,.80) | (-.51,.86)
SW | j=3 =2 =4 =4 =4
3.2 6.1 2.7 2.1 5.2
(14,99) | (.79,62) | (-.15,99) | (-.26,.97) | (-.19,.98)
RM | j=3 =2 =2 =2 =2 =4
17 4.9 5.0 7.7 4.9 4.7
(.78,62) | (91,.41) | (.89,49) | (.86,51) | (.95,30) | (.85,-.52)
FW | j=3 =2 i=3 =2 i=3 =2 =3
6.4 7.3 7.2 4.7 2.9 6.6 2.7
(-.34,94) | (-.37,93) | (.44,89) | (-.54,84) | (.89,46) | (.18,98) | (.14,.99)
Table 6: Lag Length Test Statistics
AIC SIC
lags | trend notrend | trend notrend
0 |-13839.8 | -13758.2 | -13839.8 | -13758.2
1 |-14050.9 | -14005.7 | -13857.8 | -13812.6
2 | -14041.1 | -14000.4 | -13654.9 | -13614.2
3 | -14041.9 | -13996.1 | -13462.5 | -13416.8
4 | -14045.9 | -14011.4 | -13273.5 | -13238.9
5 | -14036.2 | -13988.6 | -13070.7 | -13023.1
6 |-14046.7 | -13991.6 | -12888.0 | -12832.9
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Table 7: Test Statistics for Cointegration Among the 8 Regional Employment
Series

Trend No Trend
p-r | A—max c.v. | trace c.v. | A—max c.v. | trace C.v.
8 102.31 | 54.25 | 279.06 | 170.80 102.08 | 51.42 | 246.99 | 156.00
7 60.77 | 48.45 | 176.75 | 136.61 51.77 | 45.28 | 144.91 | 124.24
6 39.94 | 42.48 | 115.99 | 104.94 32.12 1 39.37 | 93.14 | 94.15
5 31.58 | 36.41 | 76.04 | 77.74 23.19 | 33.46 | 61.02 | 68.52
4 21.76 | 30.33 | 44.47 | 54.64 19.42 | 27.07 | 37.83 | 47.21
3 14.75 | 23.78 | 22.71 | 34.55 8.87 12097 | 18.42 | 29.68
2 7.92 | 16.87 7.96 | 18.17 6.37 | 14.07 9.54 | 15.41
1 0.04 | 3.74 0.04 3.74 3.17 | 3.76 3.17 3.76

Table 8: SCM(0,j) tests statistics for system estimation

[CGks) [j=0 [j=1 [j=2 []j=3 [|j=4 Jecv. 9]
C(1) | 15.04 [2.69 |6.36 1.69 1.59 [9.5
C(2) [ 34.07 [17.88 [14.30 |5.09 [5.09 18.3
C(3) [ 55.39 [30.83 |25.13 |15.48 |10.17 | 28.9
C(4) [ 100.76 | 62.69 | 41.49 |28.23 [20.62 |41.3
C(5) | 194.31 [ 133.64 | 65.75 | 56.65 [ 50.78 | 55.8
C(6) | 339.98 [ 199.57 | 126.59 | 94.21 | 100.63 | 72.2
C(7) | 530.05 [ 268.28 | 170.75 | 129.91 | 132.97 | 90.5
C(8) | 764.03 | 331.83 | 217.64 | 163.88 | 166.63 | 110.9
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Table 9: J-statistic tests for leading and lagging regions relative to aggregate

employment
| Region | j=2 | j=3 | j=4
New England (
Mideast ( 12.31 (6.30%)
Great Lakes ( 5.34* (15.23)
Plains (
Southeast (
Southwest ( 98.98 (7.66%)
Rock Mntn ( 97.30 (24.10) | 32.70 (15.78) | 2.34% (11.79)
Far West ( 28.08 (4.52%)
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