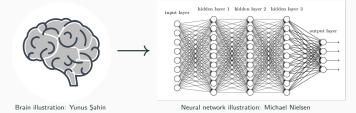
Unpacking the Black Box: Regulating Algorithmic Decisions

Laura Blattner¹ Scott Nelson² Jann Spiess¹ November 2021

¹Stanford GSB and ²Chicago Booth

Motivation

- Reliance on prediction algorithms in high-stakes screening decisions
- Incentive conflicts between agents building prediction functions and principals overseeing their use
 - Medical testing: Insurance company worries hospital over-predicts risk
 - Hiring: Employer worries about fairness of job offers by hiring agency
 - Lending: Financial regulator worries about model risk or disparate impact
- Move to automated rules allow for systematic (even ex-ante) review, but is complicated by complexity of algorithms



• This paper: How can we effectively mitigate incentive conflicts if black-box algorithms are too complex to be fully described?

This Paper

- Automated rules allow for systematic scrutiny of screening decisions
- Complexity \rightarrow face decision how to *restrict* and *explain* them
- How can we effectively mitigate incentive conflicts if black-box algorithms are too complex to be fully described?
 - Ex-ante restrictions to simple functions inefficient
 - Use an algorithmic audit based on a simpler representation of the algorithm ('explainer')
 - ② Design the audit to target the dimensions affected most by incentive conflict ('targeted explainer')
- Theoretically, make precise and justify explanations of complex ML models in a principal-agent model where explainability is means to an end
- Empirically, demonstrate that results matter for credit underwriting

- 1. Nascent literature on *incentive conflicts and algorithmic design* (e.g. Rambachan et al. 2020; Gillis and Spiess 2019; Athey et al. 2020).
 - We apply principal-agent toolbox to (realistic) case where algorithms are too complex to be described
- 2. Finance literature on *disclosure and supervision* (Goldstein and Leitner, 2013; Parlatore and Phillipon, 2020)
 - We study disclosure design when available information is limited and compare and contrast audit designs on real-world data
- 3. Computer science literature on *algorithmic explainability* (e.g., Lakkaraju and Bastani, 2020; Slack et al., 2020; Lakkaraju et al., 2019)
 - We derive optimal explainer design from economic theory and apply on real world data

- 1. Rule-setting stage: Regulator sets the rules of the game
- 2. Training stage: Lender learns relationship

$$s(X) = \alpha + \beta \underbrace{X_1}_{\text{past default}} + \gamma \underbrace{X_2}_{\text{past default}} + \delta X_1 \cdot X_2$$

between features X and default, chooses credit score

$$\hat{f}(X) = \alpha + \hat{\beta}X_1 + \hat{\gamma}X_2 + \hat{\delta}X_1 \cdot X_2$$

- 3. Audit stage: Regulator performs audit
- 4. Outcome stage: Consequences of deploying \hat{f} and payoffs are realized

Regulator welfare:

$$W(f; d) = \operatorname{prediction fit}_{- \operatorname{E}[(f(X) - s(X))^2]} - \operatorname{penalty for disparate impact}_{\lambda (\operatorname{E}_d[f(X)|G=0] - \operatorname{E}_d[f(X)|G=1])^2}$$

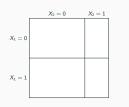
Lender utility:

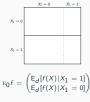
$$U(f; d) = \begin{cases} \frac{-\mathbb{E}_d[(f(X) - s(X) - \Delta_{overall} - \Delta_{X_2} X_2)^2]}{\text{prediction fit} + \text{profit from subprime loans}, & \text{audit passes} \\ -\infty, & \text{audit fails} \end{cases}$$

Policy	Alignment	Flexibility/efficiency
No restriction	\odot	\odot
Ex-ante restriction	٢	\odot

Policy Tool: Restriction on Explanation

- Information constraint: Regulator cannot process fully complex $\hat{f}(X) = \hat{\alpha} + \hat{\beta} X_1 + \hat{\gamma} X_2 + \hat{\delta} X_1 \cdot X_2$ (or firm does not reveal)
- Low-dim explainer: Can process 2-dim linear projection $E: \mathcal{F} \rightarrow \mathbb{R}^2, f \mapsto Ef$
- Audit based on explainer: Decide audit based on simple explanation





Best prediction explainer: max. overall information $\Rightarrow E_0$: regress on const., X_1

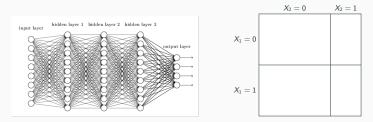
 $\sum_{\substack{X_{i}=0\\X_{i}=1\\E^{*}f=\left(E_{d}[f(X)|X_{2}=1]\right)\\E_{i}[f(X)|X_{2}=0]}$

Targeted explainer: inspect misalignment $\Rightarrow E^*$: regress on const., X_2

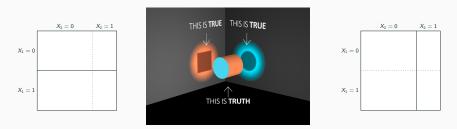
Policy Tool: Restriction on Explanation

Policy	Alignment	Flexibility/efficiency
No restriction	\odot	\odot
Ex-ante restriction	\odot	\odot
Prediction explainer	٢	٢
Targeted explainer		٢

Complex Functions, Simple Explanations

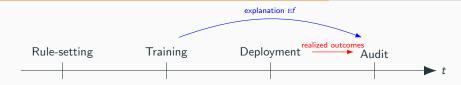


Neural network illustration: Michael Nielsen

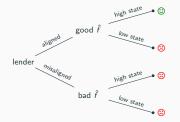


"This is Truth", viral3d.com

Ex-Post Audits



- So far have assumed that audit uses info from before deployment
 - Opportunity to avoid bad outcomes before they happen
 - Outcomes may be unobserved or only realized with delay
 - · Limited liability or risk aversion may limit effectiveness of ex-post audits
- What is the role of explainers if outcomes are *also* available?



- Enforces conservative choice, inefficient if uncertainty is high
- Regulation should depend on the contribution of lender to outcome
- Optimal regulation can combine both

Taking Theory to the Data

- Data: TransUnion credit report data + Infutor semi-annual panel on 50m ppl from 2009–2017 (as in Blattner, Nelson 2020; here: use 50k subsample)
- Build prediction function for credit card default with custom loss function to model three cases:

Lender minimizes prediction
loss
$$\min_f \left[-E[Y \log \hat{Y} + (1 - Y) \log(1 - \hat{Y})]\right]$$

prediction lossRegulator minimizes pred.
loss plus loss from social
preference $\min_f \text{ pred. loss} + \lambda \left(E[\log it(\hat{Y})|M=1] - E[\log it(\hat{Y})|M=0]\right)^2$
social preferenceLender subject to audit con-
straint $\min_f \text{ pred. loss} + \varphi N_{J,\beta^*_{regulator}}(\hat{f})$
audit constraint

• Implementation: Neural net w/ 2 hidden layers 40 neurons on 50 covariates; stochastic gradient decent with Adam in TensorFlow

Explainers in the Data

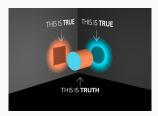
Neural network generates predictions $\hat{f}(X)$

- Best prediction explainer: J from LASSO logit on credit card default (Y)

 f(X_i) =β₀ + β₁# trades delinquent
 +β₂ agg. credit line +···+ β₁₀# bankruptcies + ε_i
- Targeted explainer: J from LASSO logit on group status (G) $\hat{f}(X_i) = \beta_0 + \beta_1 \#$ trades delinquent

 $+\beta_2 \#$ unpaid collections $+\cdots + \beta_{10} \#$ collections $+ \epsilon_i$

• Audit constraint: $\hat{\beta}_J = \beta_J^*$



"This is Truth", viral3d.com

Results: Disparate Impact

- 1. Complex model improves predictive performance relative to simple model;
- 2. Neural net allows for larger preference misalignment than (simpler) logit;
- 3. Targeted explainer better than prediction explainer at aligning incentives.

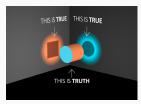
	AUC	Log loss	$\Delta \log odds$ (disparate impact)		
Neural network (two hidden layers) on 50 covariates					
Lender	0.842	0.327	0.935		
Regulator (wants small Δ log odds)	0.834	0.337	0.450		
Lender w/ prediction explainer	0.834	0.343	0.535		
Lender w/ targeted explainer	0.828	0.351	0.457		
Logistic regression on 20 covariates					
Lender	0.797	0.360	0.517		
Regulator (wants small Δ log odds)	0.795	0.361	0.331		
Prediction explainer	0.797	0.359	0.336		
Targeted explainer	0.795	0.362	0.332		

Opportunity and challenge: Move to automated rules allows for systematic scrutiny, but complexity means we face decision how to *restrict* and *explain* them

Broader context: Explainability, interpretability and transparency central to machine learning implementation, but often lack clear definition and motivation

This paper: How to regulate black-box algorithms that are too complex to be described completely? Answer from principal-agent model: targeted explainers!

Related Agenda: Evaluate explainer tools for financial regulation (with FinRegLab)



"This is Truth", viral3d.com

Thank you! jspiess@stanford.edu