MAKING DECISIONS THAT REDUCE DISCRIMINATORY IMPACT

Matt J. Kusner

Chris Russell

Joshua R. Loftus

Ricardo Silva

ML IS INVOLVED IN LIFE-CHANGING DECISIONS

Policing

[Ensign et al., 2017]

Parole Sentencing

[Larson et al., 2016]

Advertising

[Sweeney, 2013]

Insurance

H₂**O**.ai

Lending

:underwrite.ai

Insert your favorite application here!

WE HAVE PROBLEMS

ML CAN BE RACIST...

[SWEENEY, 2013]

ML CAN BE SEXIST ...

[BOLUKBASI ET AL. 2016]

DEFINITIONS OF FAIRNESS

Fairness Through Unawareness

Equality of
Opportunity
[Hardt et al., 2016]

Individual Fairness
[Dwork et al., 2012]

Demographic Parity [Zemel et al., 2013; Zliobaite, 2015]

Fair Calibration
[Pleiss et al., 2017]

Preference Fairness
[Zafar et al., 2017]

Counterfactual Fairness
[Kusner et al., 2017]

Path-Specific Fairness
[Shpitser et al., 2017; Chiappa et al., 2018]

PROBLEM #1

The Discriminatory Prediction Problem

ML IS INVOIVED IN LIFE-CHANGING DECISIONS

Policing

[Ensign et al., 2017]

Parole Sentencing

[Larson et al., 2016]

Advertising

Insurance

Lending

H,O.ai :underwrite.ai

Insert your favorite application here!

ML IS INVOLVED IN LIFE-CHANGING DECISIONS

Policing

Parole Sentencing

Advertising

Insurance

Lending

Insert your favorite application here!

ML IS INVOLVED IN LIFE-CHANGING DECISIONS

Policing

impact: arrest

Parole Sentencing

impact: jail-time

Advertising

Insurance

impact: improved health

Lending

impact: pay off home loans

Insert your favorite application here!

PROBLEM #2

The Discriminatory Impact Problem

Introduction of discriminatory impact problem

[Liu et al., ICML 2018] [Green & Chen, FAT* 2019]

Introduction of discriminatory impact problem

[Liu et al., ICML 2018] [Green & Chen, FAT* 2019]

Models for special cases

[Madras et al., NeurlPS 2018] [Kannan et al., FAT* 2019]

Introduction of discriminatory impact problem

[Liu et al., ICML 2018] [Green & Chen, FAT* 2019]

Models for special cases

[Madras et al., NeurlPS 2018] [Kannan et al., FAT* 2019]

Complimentary approaches

(RL, social dynamics)
[Nabi et al., ICML 2019]

[Hedari et al., ICML 2019]

our work: a general framework for reducing discriminatory impact based on causal modeling and MILP

Complimentary approaches

(social dynamics, RL) [Nabi et al., ICML 2019] [Hedari et al., ICML 2019]

high school 2

race distribution

high school 2

race distribution

counselors % SAT/ACT-taking

race intervention: distribution calculus classes

intervention: calculus classes

race distribution

counselors % SAT/ACT-taking

race intervention: distribution calculus classes

intervention: race calculus classes distribution

counselors % SAT/ACT-taking

% SAT/ACT-taking counselors

high school 2

race intervention: distribution calculus classes

counselors % SAT/ACT-taking

intervention: race calculus classes distribution

intervention: intervention: race race distribution calculus classes calculus classes distribution (2)(2)counselors % SAT/ACT-taking % SAT/ACT-taking counselors

race intervention: intervention: race distribution calculus classes calculus classes distribution

counselors % SAT/ACT-taking

race intervention: distribution calculus classes

intervention: race calculus classes distribution

counselors % SAT/ACT-taking

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$

race intervention: intervention: race distribution calculus classes calculus classes distribution

counselors % SAT/ACT-taking

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

race intervention: intervention: race distribution calculus classes calculus classes distribution

counselors % SAT/ACT-taking

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$$

race

decision: distribution calculus classes

decision: calculus classes distribution

race

either intervention causes the same average overall impact

but it seems unfair to give classes to school I as they have better impact solely due to race

counselors % SAT/ACT-taking

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$$

MORE FORMALLY

Maximizing overall impact

$$\max_{\mathbf{z} \in \{0,1\}^n} \sum_{i=1}^n \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}],$$

$$s.t., \sum_{i=1}^n z^{(i)} \le b$$

MORE FORMALLY

whether to grant # of schools advanced classes / Maximizing overall impact $\max_{\mathbf{z} \in \{0,1\}} \sum_{n} \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$ government

budget

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$\mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$\mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

a counterfactual:

impact school i would have gotten for interventions **z** if race distribution was a'

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

a counterfactual:

impact school i would have gotten for interventions **z** if race distribution was a'

constraint on counterfactual privilege

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

a counterfactual:

impact school i would have gotten for interventions **z** if race distribution was a'

MORE FORMALLY

Maximizing impact with privilege constraints

$$\max_{\mathbf{z} \in \{0,1\}^n} \sum_{i=1}^n \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$s.t., \sum_{i=1}^{n} z^{(i)} \le b$$

$$c_{ia'} \leq \tau \quad \forall a' \in \mathcal{A}, i \in \{1, \dots, n\},$$

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

$$\tau = 0$$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$
 $Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$ $Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$ $Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$

high school I

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

$$\tau = 0$$

essentially counterfactuals!

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$
 $Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$
 $Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$

high school I

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

$$\tau = 0$$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$

- $Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$
 $Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$
 $Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$

high school I

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

$$\tau = 0$$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$

$$-Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$$

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1])$$

- $Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = -0.1$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$
 $Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

$$(Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6)$$
 $(Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5)$

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$$

high school I

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] \\ - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

$$\tau = 0$$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$

$$-Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$$

school 2 gets classes

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1])$$
 $-Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = -0.1$

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0]) = 1.0$$

$$Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.1$$

$$Y^{(1)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.6$$
 $Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$

$$Y^{(2)}([z^{(1)} = 0, z^{(2)} = 1]) = 0.5$$

high school I

VS. COUNTERFACTUAL FAIRNESS

constraint on counterfactual privilege

$$\mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] - \mathbb{E}[Y^{(i)}(a', \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}] < \tau$$

VS.

$$P(\hat{Y}^{(i)}(a^{(i)}) = y \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)})$$

$$= P(\hat{Y}^{(i)}(a') = y \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)})$$

counterfactual fairness

[Kusner et al., 2017]

OPTIMIZATION: MILP

$$\max_{\mathbf{z} \in \{0,1\}^n} \sum_{i=1}^n \sum_{j=1}^{2^K} h_{ij} \xi^{ij}(a^{(i)})$$

$$\mathbf{s}.t., \sum_{j=1}^{2^K} h_{i,j} \left[\xi_{\prec}^{ij}(a^{(i)}) - \xi_{\prec}^{ij}(a') \right] < \tau, \quad \forall a', i$$

$$\mathbb{I}[\mathbf{e}_j = 1] h_{ij} \leq \mathbf{z}^{N(i)}, \qquad \forall i, j$$

$$\mathbb{I}[\mathbf{e}_j = 0] h_{ij} \leq 1 - \mathbf{z}^{N(i)}, \qquad \forall i, j$$

$$\sum_{j=1}^{2^K} h_{ij} = 1, \qquad \forall i$$

$$\sum_{i=1}^n z^{(i)} \leq b.$$

OPTIMIZATION: MII P

can accommodate any

$$\max_{\mathbf{z} \in \{0,1\}^n \atop \mathbf{H} \in [0,1]^{(n,2^K)}} \sum_{i=1}^n \sum_{j=1}^{2^K} h_{ij} \xi^{ij}(a^{(i)}) \text{ formulation of impact } \\ \xi^{ij}(a^{(i)}) := \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$\{\xi^{ij}(a^{(i)}) := \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$s.t., \sum_{j=1}^{2^K} h_{i,j} \left[\xi_{\prec}^{ij}(a^{(i)}) - \xi_{\prec}^{ij}(a') \right] < \tau, \quad \forall a', i$$

$$\mathbb{I}[\mathbf{e}_j = 1] h_{ij} \le \mathbf{z}^{N(i)}, \qquad \forall i, j$$

$$\mathbb{I}[\mathbf{e}_j = 0]h_{ij} \le 1 - \mathbf{z}^{N(i)}, \qquad \forall i, j$$

$$\sum_{i=1}^{2^K} h_{ij} = 1, \qquad \forall i$$

$$\sum_{i=1}^{n} z^{(i)} \le b.$$

NYC PUBLIC SCHOOL FUNDING

[CRDC, HTTPS://OCRDATA.ED.GOV/]

345 schools

school I school 2

 Many cases where ML algorithms decide only part of an impact

- Many cases where ML algorithms decide only part of an impact
- Idea: formalize algorithmic decisions within society using causal models

- Many cases where ML algorithms decide only part of an impact
- Idea: formalize algorithmic decisions within society using causal models
- Counterfactuals allow us to formulate discriminatory privilege

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$
$$-Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$$

- Many cases where ML algorithms decide only part of an impact
- Idea: formalize algorithmic decisions within society using causal models
- Counterfactuals allow us to formulate discriminatory privilege
- We propose a constrained optimization problem that maximizes overall impact while reducing privileged impact

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$
$$-Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$$

$$\max_{\mathbf{z} \in \{0,1\}^n} \sum_{i=1}^n \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$s.t., \sum_{i=1}^n z^{(i)} \le b$$

$$c_{ia'} \le \tau \quad \forall a' \in \mathcal{A}, i \in \{1, \dots, n\},$$

- Many cases where ML algorithms decide only part of an impact
- Idea: formalize algorithmic decisions within society using causal models
- Counterfactuals allow us to formulate discriminatory privilege
- We propose a constrained optimization problem that maximizes overall impact while reducing privileged impact
- Allows one to make less discriminatory policy decisions for school funding

$$Y^{(1)}([z^{(1)} = 1, z^{(2)} = 0])$$
$$-Y^{(2)}([z^{(1)} = 1, z^{(2)} = 0]) = 0.9$$

$$\max_{\mathbf{z} \in \{0,1\}^n} \sum_{i=1}^n \mathbb{E}[Y^{(i)}(a^{(i)}, \mathbf{z}) \mid A^{(i)} = a^{(i)}, X^{(i)} = \mathbf{x}^{(i)}]$$

$$s.t., \sum_{i=1}^n z^{(i)} \le b$$

$$c_{ia'} \le \tau \quad \forall a' \in \mathcal{A}, i \in \{1, \dots, n\},$$

MY COAUTHORS

Chris Russell

Joshua R Loftus

Ricardo Silva

The Alan Turing Institute

