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DEFINITIONS OF FAIRNESS

Equality of
Opportunity

[Hardt et al,, 2016]

Fairness Through
Unawareness

Individual Fairness Demographic Parity
[Dwork et al., 2012] [Zemel et al, 201 3; Zliobaite, 2015]

Fair Calibration Preference Eairness
[Pleiss et al., 2017] [Zafar et al., 201 7]

Counterfactual Fairness| Path-Specific Fairness
[Kusner et al., 2017] [Shpitser et al., 2017; Chiappa et al., 2018]
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RELATED WORK

Introduction of discriminatory

iImpact problem

[Liu et al., ICML 2018]
[Green & Chen, FAT* 2019]

Relative Improvement

« Selection Rate »
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our work: a general framework
for reducing discriminatory impact
based on causal modeling and MILP
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intervention: fund advanced classes

Impact: to increase college applications
(% SAT/ACT-taking)
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race interve rvention: race
distribution calculug classes distribution

economic status due
Q to economic E
history

[Bittker, 2003]
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Maximizing impact with privilege constraints
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constraint on counterfactual privilege
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can accommodate any
formulation of impact

fij(a(i)) — E[Y(i)(a(i),z) | A(D) :a(i>,X(i):X(i)]




O PUIREIC SC RGO FUNIING

He RBE SRRSO CERIDATAERI GGy /]

345 schools




school | school 2

race Intervention: Intervention: race
distribution calculus classes calculus classes distribution

z°
o )

% SAT/ACT-

taking
counselors

AP/IB! AP/IB?

counselors



Great Nec‘k

Great Neck Pla




25

| ® majority Hispanic |/ ; 20
| ® majority white -
I
o 15
()
00
2
-
=
hd
c 10
(4]
- -
o0
G
O
3+
5

0.185




# of grants (budget = 25)

25

N
o

(-
Ul

(-
o

Ul

0.097



7| ® majority black

® majority Hispanic |..;

| @ malorltv white

Nev;;%rk

/
/
',A'
:”'
[ W—
/
/
/
/
/
/
/
/
/ L)

25

20

Great Nec‘k
Great NeCk p|

(-
Ul

(-
o

# of grants (budget = 25)

Ul

0.034



# of interventions allocated

AY
|

I majority black
I majority Hispanic
I majority white

unconstrained

0.034 0.040 0.046 0.053 0.059 0.065 0.072 0.078 0.084 0.091 0.097 0.103 0.109 0.116 0.122 0.128 0.135 0.141 0.147 0.154 0.160 0.166 0.173 0.179 0.185
T



37.0

w
o
U1

objective value
W
(@)}
o

35.5

35.0

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18



=L Saddle Bi'oo{gf"'

Pelham Manorf ’ 25 _h

1 ® majority black ' Va' € A
{ ® majority Hispanic [*"/ &/ L« Al
| ® majority white by 1y

(-
Ul

# of grants (budget
S




vvvvvv

| ® majority black '
1 ® majority Hispanic |
le maIOV'tV white  |/%;

A\J&F A=/ Great Neck Pl
A & N /1 '

Great Nec‘k

# of grants (budget = 25)

25

N
o

(-
Ul

(-
o

Ul




bank | bank 2

[ [T

race Intervention: Intervention: race
distribution audit audit distribution

capital % successful loans % successful loans capital



TAKE-AWAYS

® Many cases where ML algorithms decide '[pg
only part of an impact F—




TAKE-AWAYS

® Many cases where ML algorithms decide O
only part of an impact A

® |dea: formalize algorithmic decisions A
within society using causal models

X(l)



TAKE-AWAYS

® Many cases where ML algorithms decide O
only part of an impact T

® |dea: formalize algorithmic decisions 4y @ 2%
within society using causal models % .} @

® Counterfactuals allow us to YO0 = 1
formulate discriminatory privilege —y® () =1 :® —q])-09




TAKE-AWAYS

® Many cases where ML algorithms decide O
only part of an impact ss

® |dea: formalize algorithmic decisions A
within society using causal models T
® Counterfactuals allow us to YO (M = 1,,@ = o))
(

formulate discriminatory privilege —y® () =1 :® —q])-09

® We propose a constrained optimization _me > s®at.s) | 40 =a®, x0-x0)
problem that maximizes overall impact 30 <
while reducing privileged impact e e e



TAKE-AWAYS

® Many cases where ML algorithms decide O
only part of an impact

® |dea: formalize algorithmic decisions A
within society using causal models T

® Counterfactuals allow us to YO (M = 1,,@ = o))
formulate discriminatory privilege —y® () =1 :® —q])-09

® We propose a constrained optimization _me > s®at.s) | 40 =a®, x0-x0)
problem that maximizes overall impact s
while reducing privileged impact |

® Allows one to make less discriminatory
policy decisions for school funding
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