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Data is often fragmented
Scientists often have incomplete information

Limited subsets of units, limited aspects of process

Example: discrimination in police-civilian interactions
Many police-civilian encounters not captured in data,
inconsistent record-keeping in documented encounters

Fragmented data leads to fragmented literatures
Proliferation of incompatible analytic approaches
Unstated, often contradictory modeling assumptions
Makes knowledge accumulation virtually impossible
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Bounds can reconcile claims
Scientists often need to reconcile competing claims

Scholars, plaintiffs, external monitors, police departments
Different data access, modeling approaches, etc.

A promising approach: nonparametric sharp bounds
Specify DAG, causal estimand, assumptions, available data
Claims outside the bounds can be immediately rejected
Claims inside the bounds must explain where additional info.
comes from (e.g. hidden assumptions, parametric models)

The challenge: hard to derive analytically
Provide general-purpose bounding algorithm for any discrete
causal system, any estimand & any information environment

[1] Dean Knox, Teppei Yamamoto, Matthew Baum, and Adam Berinsky. 2019. "Design, Identification, and
Sensitivity Analysis for Patient Preference Trials." JASA.

[2] Dean Knox, Will Lowe, and Jonathan Mummolo. 2020. "Administrative Records Mask Racially Biased
Policing." APSR.

[3] Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan Mummolo, and Ilya Shpitser. 2021. "An
Automated Approach to Causal Inference in Discrete Settings." Working paper.
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Fryer ('19), JPE
Data environment:

Observed: Pr( minority, force | Stop=1), Pr( force | Stop=0)
Unobserved: Pr( stop ), Pr( minority, force | Stop=0 )

Classic case of post-treatment selection
Minorities stopped for jaywalking, white civs. only for robbery
Result: analyzing stop records → comparing force rates 
used against min. jaywalkers & robbers, vs white robbers

Bounds say this design is fairly uninformative
Yet Fryer ('19) reports point estimates
Hidden asm.: E[ Stop( minority=1 ) - Stop( minority=0 ) ] = 0

[1] Dean Knox, Will Lowe, and Jonathan Mummolo. 2020. "Administrative Records Mask Racially Biased
Policing." APSR.

[2] Steven Durlauf and James Heckman. 2020. "An Empirical Analysis of Racial Differences in Police Use
of Force: A Comment." JPE.
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Johnson et al. ('19), PNAS
Data environment:

Observed: Pr( minority | Fatality=1)
Unobserved: Pr( minority ), Pr( fatality )

Classic case of selection on dependent variable

Bounds say this design is completely uninformative
-1 ≤ E[ Fatality( minority=1 ) - Fatality( minority=0 ) ] ≤ 1
Yet Johnson et al. ('19) reports point estimates
Hidden assumption: Pr( Minority=1 ) = Pr( Minority=0 ) = ½

Ultimately retracted after one year of harm

[1] Dean Knox and Jonathan Mummolo. 2020. "Making inferences about racial disparities
in police violence." PNAS.

[2] Bocar Ba, Dean Knox, Jonathan Mummolo, and Roman Rivera. 2021. "The Role of
Officer Race and Gender in Police-Civilian Interactions in Chicago." Science.
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Fryer ('19)
Problem: post-treatment conditioning (PTC)
Hidden asm.: no discrimination in stops

Gaebler, Cai, Basse, Shroff, Goel & Hill ('20)
Problem: PTC + treatment confounding
Hidden asm.: post-treatment bias = -omitted variable bias

Johnson, Tress, Burkel, Taylor & Cesario ('19)
Problem: selection on dependent variable
Hidden asm.: Pr(minority) = Pr(white) = ½

Shoddy work on high-stakes policy has consequences
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Under reasonable assumptions, same data can be used
to derive a nonparametric lower bound on discrimination.



Sharp bounds can also 
build on existing methods

Multiple datasets providing different, imperfect views can
be optimally fused with single overarching approach.



Illustration #1:
a simple bounding exercise













Observed data and all counterfactual manipulations 
are fully determined by joint distr. of response variables
Greenland & Robins ('86), Balke & Pearl ('94), Frangakis & Rubin ('02)



Observed data and all counterfactual manipulations 
are fully determined by joint distr. of response variables
Greenland & Robins ('86), Balke & Pearl ('94), Frangakis & Rubin ('02)

RM
rM,1 = 0
rM,2 = 1

RS

rS,1(m) = { 0 if m=0
0 if m=1   (never stop)

rS,2(m) = { 0 if m=0
1 if m=1   (anti-minority stop)

rS,3(m) = { 1 if m=0
0 if m=1   (anti-white stop)

rS,4(m) = { 1 if m=0
1 if m=1   (always stop)
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Observed data and all counterfactual manipulations 
are fully determined by joint distr. of response variables

   ATE = E[ Stop(minority) - Stop(white) ] 

   ATE = Pr(always stop) + Pr(anti-minority stop) 

        - Pr(always stop) - Pr(anti-white stop) 

   ATE = Pr(anti-minority stop) - Pr(anti-white stop)

Greenland & Robins ('86), Balke & Pearl ('94), Frangakis & Rubin ('02)
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Assumption: p( anti-white stop ) = 0

Laws of probability: ∑k p( rS,k ) = 1,  ∑k p( rM,k ) = 1



Observed stop margin: 
p( stop )

p( min. ) p( anti-min. stop ) 
 + p( min. ) p( always stop ) 
    + [ 1 - p( min. ) ] p( always stop )



Observed stop records: 
p( minority | Stop=1 )

p( min. ) p( anti-min. stop OR always stop ) 
  / [ p( min. ) p( anti-min. stop) + p( always stop ) ]



Remaining feasible region 



Population benchmarking: α ≤ p( min. ) ≤ β 



Result:
Discrete causal inference

is polynomial programming







Implication:
Every question in

imperfectly observed
discrete causal systems

can be solved automatically



Applicable to essentially  
any research obstacle
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But analytic results 
are difficult to derive 
even in small graphs
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Measurement error 
(Finkelstein et al, 2020)

Outcome-based selection 
(Gabriel et al, 2020)

Nonresponse 
(Manski, 1990)

Noncompliance 
(Balke and Pearl, 1997)
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A general solution: 
Automatic causal bounding

Transform causal problems → optimization problems
Solves any partial identification problem
And also every point identification problem

Efficient spatial branch-and-bound procedure
Quickly produces valid non-sharp bounds
Iteratively refines bounds toward sharpness

Strong theoretical guarantees
Guaranteed anytime validity of bounds
Guaranteed worst-case looseness of non-sharp bounds
Guaranteed eventual sharpness of bounds
Guaranteed conservative coverage of CI

[1] Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan Mummolo, and Ilya Shpitser. 2021. "An
Automated Approach to Causal Inference in Discrete Settings." Working paper.
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Noncompliance (Balke & Pearl '94) Outcome-based selection (Gabriel et al. '21)

Measurement error (Finkelstein et al. '20) Nonresponse (Manski '90)
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Dependent nonrandom missingness

Surprisingly, point identification with "shadow variables"
demonstrated by Miao & Tchetgen Tchetgen ('16)
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Takeaways
Data imperfections are inevitable, often consequential

Makes little sense to assume away discrimination in
stage #1 of a process in order to estimate stage #2

Reporting best- and worst-case conclusions over 
all admissible worlds → maximally robust inferences

General-purpose algorithms for obtaining these
bounds computationally are now available
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State of the art
Point identification has already been automated

do-calculus (Pearl '95; Huang & Valtorta '06; Shpitser & Pearl '06)

Fusing observational & experimental data (Lee, Correa, and Bareinboim,

2020; Lee and Shpitser, 2020)

But partial identification (bounding) is much harder
Linear programming works for some cases (Balke & Pearl '97)

But many problems can't be represented as linear programs

General solution to partial ID has been elusive
Symbolic solution is theoretically possible (Geiger & Meek '99)  
but in practice is wildly computationally infeasible
Problem instances are often nonconvex, numeric approaches
that fail to discover global extrema produce invalid bounds
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Discrete causal inference
is polynomial programming

Polynomial constraints:
Observed joint, marginal, conditional probabilities
Monotonicity, disabling, elimination assumptions

Polynomial objective functions:
Additive effects (joint, total, mediated)
Multiplicative effects
Strictly monotonic transformations
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We have a problem

Generalization of LP bounds (run very fast) (Balke & Pearl '94)

Nonconvex QCQPs are known to be NP-hard

Larger DAGs → higher degree, greater difficulty
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The procedure
Spatial branch & bound (Land & Doig '60)

Recursively divide model space into branches
Eliminate branches that cannot possibly be optimal
Much faster than brute-force enumeration
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The procedure
Spatial branch & bound (Land & Doig '60)

Recursively divide model space into branches
Eliminate branches that cannot possibly be optimal
Much faster than brute-force enumeration

Many algo. components (SCIP, Gamrath et al. '20; Vigerske & Gleixner '17)

Presolving (eliminate redundant variables, constraints)
Efficient branching strategies, primal exploration heuristics
Linear-programming relaxations for local dual problem



Modularizing
and testing

assumptions
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Overly cautious assumptions Overly confident assumptions















Inference on
ε-sharp bounds
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Potential critiques
"The bounds may be too wide to be informative"

Yes. This is a fact about the universe
Solution: collect more data or justify more assumptions

"The user must know the true causal model"
Causal inference without assumptions is impossible
Our approach allows them to be relaxed modularly

"What about continuous variables?"
Discrete systems are a large part of applied work.
With more data, it is feasible to discretize variables.

"The bounds will take too long to compute"
Researchers can still narrow the range of answers
Our algorithm is "anytime," meaning bounds are always valid
More efficient methods are a key direction for future work


