
In Search of a Nominal Anchor: What Drives In�ation
Expectations?�

Carlos Carvalhoy

PUC-Rio
Stefano Eusepiz

Federal Reserve Bank of NY
Emanuel Moenchx

Deutsche Bundesbank

Bruce Preston{

The University of Melbourne

August 9, 2015

PRELIMINARY AND INCOMPLETE

Abstract

According to both central bankers and economic theory, anchored in�ation expec-
tations are key to successful monetary policymaking. Yet, we know very little about
the determinants of those expectations. While policymakers may take some comfort
in the stability of long-run in�ation expectations, the latter is not an inherent feature
of the economy. What does it take for expectations to become unanchored? We ex-
plore a theory of expectations formation that can produce episodes of unanchoring. Its
key feature is state-dependency in the sensitivity of long-run in�ation expectations to
short-run in�ation surprises. Price-setting agents act as econometricians trying to learn
about average long-run in�ation. They set prices according to their views about future
in�ation, which hence feed back into actual in�ation. When expectations are anchored,
agents believe there is a constant long-run in�ation rate, which they try to learn about.
Hence, their estimates of long-run in�ation move slowly, as they keep adding observa-
tions to the sample they consider. However, in the spirit of Marcet and Nicolini (2003),
a long enough sequence of in�ation suprises leads agents to doubt the constancy of long-
run in�ation, and switch to putting more weight on recent developments. As a result,
long-run in�ation expectations become unanchored, and start to react more strongly to
short-run in�ation surprises. Shifts in agents�views about long-run in�ation feed into
their price-setting decisions, imparting a drift to actual in�ation. Hence, actual in�a-
tion can show persistent swings away from its long-run mean. We estimate the model
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using actual in�ation data, and only short-run in�ation forecasts from surveys. The
estimated model produces long-run forecasts that track survey measures extremely well.
The estimated model has several uses: 1) It can tell a story of how in�ation expectations
got unhinged in the 1970s; it can also be used to construct a counterfactual history of
in�ation under anchored long-run expectations. 2) At any given point in time, it can
be used to compute the probability of in�ation or de�ation scares. 3) If embedded into
an environment with explicit monetary policy, it can also be used to study the role of
policy in shaping the expectations formation mechanism.
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�Public con�dence that in�ation will remain low in the long run has numerous

bene�ts. Notably, if people feel sure that in�ation will remain well controlled, they

will be more restrained in their wage-setting and pricing behavior, which (in some-

thing of a virtuous circle) makes it easier for the Federal Reserve to con�rm their

expectations by keeping in�ation low. At the same time, by reducing the risk that

in�ation will come loose from its moorings, well-anchored in�ation expectations

may a¤ord the central bank more short-term �exibility to respond to economic dis-

turbances that a¤ect output and employment.�

� Ben Bernanke, former Governor of the Federal Reserve, October 7, 2004.1

1 Introduction

According to both central bankers and economic theory, anchored in�ation expectations are

key to successful monetary policy. As long as long-run expectations are anchored, monetary

policy has more leverage to respond to short-run disturbances to the economy. Yet, we know

very little about the determinants of those expectations. While policymakers may take some

comfort in the stability of long-run in�ation expectations, it should not be taken for granted

� it is not an inherent feature of the economy.

What does it take for expectations to become unanchored? In this paper we explore a

theory of expectations formation based on learning, which embeds a well-de�ned notion of

anchored and unanchored expectations. Its key feature is state-dependency in the sensitivity

of long-run in�ation expectations to short-run in�ation surprises. When estimated on actual

in�ation and short-run in�ation forecasts from surveys, the model captures long-term in�a-

tion expectations extremely well. Hence, despite its simplicity, the model provides a useful

framework to think about the actual expectations formation process.

In the model, price-setting agents act as econometricians trying to learn about average

long-run in�ation. In response to short-run in�ation surprises, they update their views about

future in�ation, and set prices accordingly. Expectations about the entire future path of in�a-

tion feed back into actual in�ation. The key dinstinguishing property of the model is that the

sensitivity of long-run in�ation expectations to short-run in�ation surprises is state-dependent.

This allows for an explicit criterion to determine whether expectations are anchored.

1Speech available here: http://www.federalreserve.gov/Boarddocs/speeches/2004/200410072/default.htm.
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When expectations are anchored, agents believe there is a constant long-run in�ation rate,

which they try to learn about. Their estimates of long-run in�ation move relatively more

slowly, as they keep expanding the sample they use in estimation. For the reader familiar

with the jargon from the learning literature, this amounts to a decreasing-gain algorithm. As

a result, the sensitivity of long-run expectations to short-run in�ation surprises decreases over

time, along with the learning gain.

In the spirit of Marcet and Nicolini (2003), however, a sizeable enough sequence of in�ation

surprises leads agents to doubt the constancy of long-run in�ation and start putting more

weight on recent in�ation developments � they switch to a constant-gain learning algorithm.

As a result, long-run in�ation expectations start to react more strongly to short-run in�ation

surprises, and they become unanchored. Shifts in agents�views about long-run in�ation feed

into their price-setting decisions, imparting a drift to actual in�ation. Hence, actual in�ation

can show persistent swings away from its long-run mean.

The reduced-form representation of the model features a time-varying drift in in�ation.

For that reason, our framework makes contact with the literature on in�ation dynamics that

assumes an exogenous, time-varying in�ation drift (e.g., Cogley and Sbordone 2006, Cogley,

Primiceri, and Sargent 2007). However, in our model in�ation drift is determined endoge-

nously, and its persistence and volatility depend on the state of the economy. Speci�cally,

innovations to the drift are related to innovations to actual in�ation, and so is the time-

variation in in�ation persistence.

The restrictions alluded to in the previous paragraph constrain our model signi�cantly,

relative to similar models with an exogenous in�ation drift. More fundamentally, we discipline

our model through our estimation exercise. Speci�cally, we estimate the model using actual

in�ation data, and only short-run in�ation forecasts from surveys. We do so for various

countries for which we have in�ation forecasts from survey data. Hence, the dynamics of

anchoring and unanchoring, which depend on the sequence of in�ation surprises, are pinned

down by observations of short-term forecast errors from surveys. These restrictions could be

expected to handicap the model in terms of �tting data on in�ation and in�ation expectations,

relative to models with an exogenous in�ation drift. Perhaps surprisingly, our estimated model

�ts the data essentially as well as speci�cations with an exogenous drift.

Importantly, our model �ts long-run in�ation forecasts from survey data �which we do not
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use in the estimation �extremely well. In that sense, it provides a framework to think about

the actual expectations formation process. The estimated models provide stories for the joint

evolution of in�ation and the term structure of in�ation expectations for di¤erent countries,

which can enhance our understanding of the role of long-run expectations in determining

actual in�ation. This is so because of the feedback from agents� expectations into actual

in�ation, through their price-setting decisions. So, for example, the model suggests that

the unanchoring of in�ation expectations was key to the high in�ation of the 1970s. It also

provides an estimate of when in�ation expectations became anchored again, which accords

with common wisdom. Despite the reduced-form nature of the model that we take to the data,

we also �nd surprising that the few parameters that call for a �structural�interpretation are

somewhat comparable across countries.

While in this paper we focus on �in�ation surprises�as the fundamental innovations to

the expectations formation process, this model of expectations formation can be embedded

into an environment with structural shocks and explicit monetary policy. This would allow

us to evaluate the role of policy in shaping the response of long-run expectations to di¤erent

shocks.

1.1 Literature review

[To be added]

2 A Simple Model of In�ation Determination

To develop some ideas fundamental to the paper, we �rst present a simple reduced-form model

of expectations formation and in�ation determination. Because of nominal price rigidities,

pricing decisions depend upon expectations of future in�ation. This creates a link from the

in�ation expectations to actual in�ation. This link is derived explicitly in a model with Calvo

(1983) pricing in section 2.3. That model illustrates how our assumptions regarding �rm

beliefs about in�ation are quite close to rational expectations � departing from them only

because of the need to estimate the long-run average rate of in�ation.
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2.1 A Reduced-form Model

When setting prices agents perceive the law of motion of in�ation to be

plm: �t = ��t + 't; (1)

where �t is in�ation; 't is a zero-mean stationary short-run component of in�ation dynamics;

and ��t is the average level of in�ation expected to prevail in the long run. Agents estimate

this long-run mean and, possibly, the law of motion for 't.

For simplicity adopt the following anticipated-utility assumption: although agents realize

they will be update their estimate of ��t as new data become available, when making decisions

in any period t, they expect ��t to remain constant � see Kreps (1998) and Sargent (1999).

Expectations of future in�ation are computed as

Êt [�t+T ] = ��t + Êt
�
't+T

�
where the operator Êt denotes subjective expectations.

Because of nominal rigidities, newly set prices remain in place for at least a few peri-

ods. And because of strategic complementarity, when choosing a price in period t �rms are

concerned about future expected in�ation. This renders actual in�ation dependent upon ex-

pectations of future in�ation. Suppose this dependence arises only through the perceived

long-run in�ation average. The actual law of motion of in�ation is then

alm: �t = T ��t + 't; (2)

where T < 1 is a parameter which controls the feed back from in�ation expectations to actual

in�ation. In general this coe¢ cient will depend on the details of the �rm�s optimal price-

setting problem. The perceived law of motion and the actual law of motion for in�ation di¤er

only in that the time-varying intercept in the actual law of motion for in�ation is T ��t rather

than ��t. If T is close to unity this di¤erence will be small.

It remains to specify the process by which agents update their estimates of average long-run

in�ation. Following Marcet and Nicolini (2003) beliefs are revised according to the learning

algorithm

��t = ��t�1 + k
�1
t�1 � ft�1; (3)

where

ft = �t � Êt�1�t:
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A complicated simultaneity is resolved by assuming that the ��t estimate (which a¤ects current

decisions) depends on the previous-period�s forecast error. This is a standard assumption in

the learning literature. The gain coe¢ cient kt > 1 is determined by

kt =

8>>><>>>:
�g�1, if

���Ê�t � Et�1�t��� > vpMSE
kt�1 + 1, otherwise

; (4)

where �g; � > 0 are parameters; Êt�1�t is the agent�s one-period-ahead forecast; Et�1�t is the

model-consistent one-period-ahead expectation; and

MSE = E [�t � Et�1�t]2

is the mean-squared error associated with one-period-ahead model-consistent expectations.

The state-dependent gain kt captures agents�attempts to protect against structural change.

A constant gain �g produces better forecasts when the economic environment changes, but it

does not converge in a stationary environment. In contrast, a decreasing gain estimator, such

as ordinary-least squares, converges in stationary environments. The proposed learning algo-

rithm uses ordinary least squares in periods of relative stability and switches to constant-gain

when instability is detected � that is when���Êt�1�t � Et�1�t��� > vpMSE:
The parameter � determines how alert agents are to model misspeci�cation. A stable envi-

ronment here is an economy where in�ation does not vary too much. In this case the distance

between an agent�s forecast and the model-consistent forecast tends to be small. The updat-

ing rule (3) can also interpreted in terms of the Kalman �lter. The model of the in�ation

drift is

��t = ��t�1 + �t (5)

where the variance of �t can take two values corresponding to di¤erent regimes: �
2
� = f��2�; 0g.

In the �rst regime ��t drifts according to a random walk. The constant-gain algorithm can

be interpreted as the Kalman updating of this model. The second regime corresponds to a

constant mean for in�ation, giving a decreasing gain � see Bullard (1992) for a discussion.

The updating rule (3) is, however, not optimal because it does not fully internalize the regime

switching in the variance of �t.
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Three assumptions are maintained throughout the paper.

Assumption 1. The process 't is exogenous and determined by

't = st + �t

st = �sst�1 + �t

where �t and �t are i.i.d. disturbances, normally distributed with mean zero and variances �
2
�

and �2� .

Assumption 2. Agents�conditional expectations for 't coincide with the model-consistent

expectation, that is

Êt
�
't+T

�
= Et

�
't+T

�
for T � t:

To obtain more intuition on the properties of this learning algorithm, use assumptions (1)

and (2) to write ���Êt�1�t � Et�1�t��� = j(1� T ) ��tj

=
��(1� T ) ���t�1 + k�1t�1 � ft�1���

=

�����(1� T )
"
��0 +

tX
�=0

k�1� f�

#�����
given ��0; f0; k0: The distance

���Êt�1�t � Et�1�t��� tends to be large when forecast errors happen
to be of the same sign for several periods. This pushes ��t away from its long-run mean, and

drives a wedge between the perceived and true model of the economy.

One may wonder how agents can switch to a constant-gain algorithm based on a criterion

that involves model-consistent expectations � which they are assumed not to know. This

assumption is made in the �as if�tradition in economics. Agents indeed do not know Et�1�t,

but they conclude that there must be something unusual happening when their forecasts �go

astray� in the sense that
���Êt�1�t � Et�1�t��� becomes too large. This assumption captures

agents� e¤orts to infer model instability by using statistical tools to detect time-variation

in their model�s intercept. They key here is that criterion to switch gains depends on past
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forecast errors. In turn, the size of forecast errors depends on the gain being used by agents.

This opens the door for multiple learning equilibria, a model feature discussed at length later

in the paper.

We consider parameter restrictions for which learning converges to a constant in�ation

rate. The model therefore implies a unique steady state. Our third assumption is then that

the economic environments we study have a time invariant long-run mean of in�ation that is

eventually learned by market participants.

Assumption 3. The data-generating process for in�ation has a time-invariant mean

� = 0.

2.2 Models with an Exogenous In�ation Drift

Our framework relates to a recently popular class of model which posits in�ation is, in part,

determined by an exogenous source of drift. These include reduced-form models as in Stock

and Watson (1993, 2007), Cogley, Primiceri, and Sargent (2010), and Kozicki and Tinsley

(2012), models of the Phillips curve such as Cogley and Sbordone (2008), and various DSGE

models of the kind proposed by Smets and Wouters (2007), Cogley, Primiceri, and Sargent

(2010) and Del Negro, Giannoni, and Schorfheide (2015). In these models ��t evolves exoge-

nously according to

��t = �����t�1 + et (6)

with autoregressive coe¢ cient close to unity. In contrast, in the model studied here the

in�ation drift is determined endogenously and depends on agents�past in�ation forecast errors.

To see this, re-write the learning algorithm (3) as

��t+1 = ��t + k
�1
t

�
�t � Êt�1�t

�

= ���;t��t + ~et (7)

where

���;t =
�
1 + k�1t (T� � 1)

�

~et = k�1t ('t � Et�1't) = k�1t (�t + �t) :
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The second equation is obtained by substituting (2) for in�ation and by using assumptions

1 and 2. The evolution of ��t under (7) di¤ers in two key respects from (6). First, the

autocorrelation coe¢ cient, ���;t; and the innovation volatility, ~et, are time-varying and depend

on the state of the economy. Second, the innovations to ��t depend on in�ation forecast

errors. In the general model developed in the sequel, both persistent shocks to the economy

and policy mistakes create unexpected movements in in�ation, which can trigger movement

in the in�ation drift.

2.3 A model with explicit price-setting decisions

To derive an explicit link from expectations to actual in�ation consider the theory of price

setting proposed by Calvo (1983), as implemented by Yun (1996), and extended to arbitrary

subjective expectations by Preston (2005). Firm i maximizes the present discounted value of

pro�ts

Et

1X
T=t

�T�tQt;T

�
YT (i)

�
Pt(i)

PT
�MCT

��
where Qt;T is the discount factor, MCt is the real marginal cost and

Yt(i) =

�
Pt(i)

Pt

���p;t
Yt

is the demand curve that each �rm faces. The elasticity of demand across di¤erentiated goods,

�p;t, is time-varying. Each period, with probability �, the �rm�s price is reset optimally.

Alternatively, with probability 1��, the existing price is mechanically indexed to a weighted
average of past in�ation and the perceived long-run in�ation rate

��pt = ��
1�
p
t �


p
t�1:

To keep things simple, assume a constant steady-state mean of zero in�ation. In log-linear

deviation from steady state, the �rst-order conditions of this problem deliver the optimal

price-setting decision

p̂�t = Êt

1X
T=t

(��)T�t
�
(1� ��) (mcT + uT ) + ��

�
�T+1 � 
p�T � (1� 
p)��t

��
(8)

where ut denotes a cost push shock arising from time-varying elasticity of demand. With a

slight abuse of notation all variables are now interpreted as log-deviations from steady-state,
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with p̂�t = ln (Pt (i) =Pt) for all i. The optimal price depends on the expected future sequence of

marginal costs and also in�ation, adjusted for the economic e¤ects of indexation. The second

term arises from strategic complementarity in price setting, which engenders a tight connection

between expectations of future in�ation and current price decisions. Aggregating across �rms,

and using the fact that the aggregate price index satis�es the log-linear approximation

p̂�t =
�

1� ��t

delivers the following data-generating process for in�ation

�t = 
p�t�1 + (1� 
p)��t + (9)

Êt

1X
T=t

(��)T�t
�
� (mcT + uT ) + (1� �) �

�
�T+1 � 
p�T � (1� 
p)��t

��
where � = (1� �) (1� ��) =�.
The model is closed with a theory marginal cost determination. To keep matters simple,

assume marginal costs evolve according to

��t +mct = � t; (10)

where � > 0 is a parameter, and � t is exogenous and evolves according to

� t = ��� t + �
�
t (11)

where 0 < �� < 1. The assumption is interpreted as permitting some feed back from in�ation

to marginal costs, as a reduced-form way to model the e¤ects of monetary policy. When

� = 0 marginal costs would evolve exogenously, independently of monetary policy. The

speci�c form of the assumption also nests a popular policy speci�cation in the monetary

economics literature. In the canonical New Keynesian model, relation (10) can be interpreted

as deviations from a targeting rule, derived under optimal discretion, with a constant target

of zero in�ation. The deviations are given by the exogenous process � t. The parameter �

is shown below to be an important determinant of the drift in in�ation in the true data-

generating process.

What do agents know? To keep the framework as simple as possible, and in line with

the previous section, assume they know everything except for the long-run mean of in�ation.
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Agents estimate a long-run in�ation mean ��t in each period using the �ltering algorithm (3).

They form expectations of marginal costs and in�ation using the correct law of motion for

the marginal cost

mct = � t � ��t;

and the following equilibrium perceived law of motion (plm) for in�ation:

�t =
�
1� 
p

�
��t + 
p�t�1 + !� t + et;

where ! = ~�
�
1� ~���

��1
denotes the coe¢ cient that obtains under rational expectations

equilibrium with

~� =
�

1 + ��
; ~� =

�

1 + ��

and et is an i:i:d: innovation. The basic idea here is that �rms understand the rational

expectations dynamics up to the drift term. Uncertainty about long-run in�ation does not

a¤ect the rational expectations coe¢ cients on lagged in�ation or the exogenous component

of marginal costs. They are determined by a standard �xed-point problem.

Evaluating expectations in (9) delivers the actual law of motion (alm)

�t =
�
1� 
p

�
T ��t + 
p�t�1 + !� t + ~ut

where

T =

 
1

1 + ��
�
~� (1� �)
1� ��

!
+

�
~� (1� �)� ~����

� 1� 
p��
1� 
p

�
1

1� �� �

p

1� ��
p

�
and ~ut = 1

1+��
ut is the cost push shock. The alm displays a time-varying intercept that di¤ers

from the plm�s. The parameter T captures the degree to which beliefs about in�ation are

self-ful�lling. In the case that T = 1 there is a self-con�rming equilibrium in the language of

Sargent (1999) � beliefs about in�ation are con�rmed by observed data. More generally when

T < 1, beliefs are only partially validated observed data. Stronger responses of marginal costs

to in�ation, re�ected in a higher value of the parameter �, imply less feed back from beliefs to

in�ation � see Ferrero (2007) and Orphanides and Williams (2005). Similarly, price setting

that exhibits a lower degree of indexation to beliefs about long-run in�ation, ��t, re�ected in

a higher 
p, imply smaller feedback e¤ects from learning.
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3 Data and Estimation

This section details the data and estimation strategy. The idea is to estimate the model using

data on in�ation and various measures of short-term in�ation expectations. The empirical

success of the model is evaluated on several dimensions. One important source of external

model validation regards model predictions for long-term forecasts of in�ation which are not

used in estimation. A key result is the empirical model replicates well survey measures of long-

term in�ation expectations for the sample of countries considered. Because of survey data

limitations for international samples, we �rst discuss the benchmark data used to estimate

the US model. Subsequent discussion turns to the international samples and speci�c issues

confronting statistical inference.

3.1 The Benchmark Model

For all countries we estimate the following model

�t =
�
1� 
p

�
T ��t + 
p�t�1 + st + �t

��t = ��t�1 + k
�1
t�1 � ft�1

ft =
�
1� 
p

�
(T � 1) ��t + �t + �t

st = �sst�1 + �t;

where �t and �t are normally distributed with zero mean and variances �
2
s and �

2
�, and the

gain kt determined by (4). Writing the system in state-space form provides

�t = F (k
�1
t�1)�t�1 + SC�t

where the time-varying gain kt is pre-determined at time t and

�t =

2666664
�t

��t

ft

st

3777775 and �t =

24 �t
�t

35
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with the matrices F
�
k�1t�1

�
and SC de�ned in the appendix.

The model is estimated using full-information Bayesian methods. We seek to estimate the

following vector of structural parameters

�� =
�
�� � �g 
p T �s �2s �2�

�0
together with the variance of the observation errors to be discussed. The US and international

models are distinguished by both the adopted priors and also the speci�c set of observable

data used in estimation.

3.2 US Data

The model is estimated on quarterly data. For all countries in�ation is measured by the

CPI. This choice is driven by the broad availability of survey-based forecasts for this price

index. Short-term expectations are measured using mean consensus forecasts from di¤erent

surveys of professional forecasters. For the US, estimation employs two sources of short-

term CPI in�ation forecasts. The Livingston survey provides the longest series for short-term

forecasts. The data set contains forecasts for the price level. From those, two series measuring

6-month-ahead CPI in�ation forecasts are constructed. The �rst series, available starting in

1955, computes the in�ation forecasts from a base period, which is the last monthly price

level known at the time the survey was �elded. As this might not capture the information

set of the forecasters, we use an additional series for the 6-months-ahead forecast where the

forecasted in�ation rate is computed using the price level forecast for the month in which

the survey was taken (which is only available starting in 1992). These forecasts are available

twice a year, in the second and fourth quarter. We also use one- and two-quarters-ahead

CPI in�ation forecasts from the Survey of Professional Forecasters, which are available at a

quarterly frequency since 1981Q3. Figure 1 shows the available data used for the estimation.

The observation equation for US data is then

Y USt =

2666666664

�t

ESPFt �t+1

ESPFt �t+2

ELIV1t

�
1
2

P2
i=1 �t+i

�
ELIV2t

�
1
2

P2
i=1 �t+i

�

3777777775
= �� +H 0

t�t +Rtot
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Figure 1: The �gure shows the evolution of CPI in�ation (dashed grey line) and consensus
(mean) survey-forecasts for in�ation. In detail, the one- and two-quarters ahead forecasts
from SPF are shown by the solid blue and red lines, respectively. The blue and red circles
show the six months-ahead forecasts from the Livingston survey.

where the survey forecasts labelled �LIV1�uses the actual price level as a base, and �LIV2�

uses the forecasted price-level as a base. The vector ot includes observation errors for all

variables. We include an observation error on CPI in�ation as well as on the survey-based

forecasts as it allows �ltering a measure of underlying in�ation that drives short-term in�ation

expectations. The required forecasts are mapped into model forecasts in obvious fashion. For

example

ESPFt �t+1 = Êt�t+1 =
�
1� 
p

�
��t + 
p�t + !��� t;

where, again, Êt denotes price-setters�forecasts in the model. The matrices Ht and Rt are

time-varying because of missing observations.

The priors for the US are detailed in table 1 below.2 The priors on all parameters besides

�g and � are fairly loose and re�ect common choices in Bayesian estimation of DSGE models.

2The priors on observation errors for both US and foreign countries, omitted in the table, are all Inverse
gamma with mean of 0.1 and unitary variance.
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The priors on �g and � re�ect some theoretical bounds which we deem as reasonable. For

example, the parameter �g is interpreted as giving weight (1� �g)N to the N th old observation

in the sample. For example, �g = 0:1 (the mean of the distribution) gives a weight close to zero

to observations older than ten years. Most of the probability mass is placed over the interval

�g 2 [0:05; 0:3]. Lower values of �g would be too hard to distinguish from a decreasing gain in

a sample as long as the one we have, while higher values imply forecasters discount heavily

even most recent data (less than 2 years). The parameter � measures when agents begin to

doubt the constancy of the in�ation rate. We assume agents have a good forecasting model

and therefore assume they would react if their forecast depart by a small amount from the

true model. As a result we impose a fairly tight prior on � attributing most of the probability

mass on values between 0:01� 0:03.
Given an estimate of the posterior mode, the Metropolis-Hasting algorithm is used to

simulate the posterior distribution

P
�
�USjY USt

�
= L(Y USt j�US)P (�US):

3.3 International Data

The sample of international data comprises the following countries: France, Germany, Japan,

UK and Sweden. In�ation expectations are measured using data available from Consensus

Economics. While the Consensus Economics data set includes short-term and long-term pro-

fessional survey forecasts for a wide set of countries, it presents two challenges for estimation.

First, Consensus Economics forecasts are made on a year-over-year basis. This formulation

prevents a clean identi�cation of the mechanism of the model, which links one-step-ahead

forecast errors to the beliefs about long-term in�ation, ��t. Second, in contrast with the US

forecast data, for most countries expectations data are only available from 1991, providing a

limited time series for estimation. The following discussion details how each of these compli-

cations is handled.

Mapping data to model concepts. Estimation employs available Consensus Economics

in�ation forecasts for the one- and two-years-ahead horizons. Because of the year-over-year

speci�cation, these forecasts give most weight to quarterly forecasts up to four quarters ahead.

They are reasonably classi�ed as short-term forecasts. Subsequent discussion shows these

forecasts di¤er signi�cantly from the long-term forecasts we aim to explain.
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To map the data concept into the model concept, note that year-over-year forecasts can be

approximated as a weighted average of quarterly forecasts at di¤erent horizons, with �tent-

shaped�weights. For the estimation, six sets of forecasts are used. The �rst two are forecasts

for the current year, made in the �rst and second quarter of the year. These forecasts can be

expressed as

EConst �year1;Q2 � EConst

6X
i=0

w(i)�t�3+i

EConst �year1;Q1 � EConst

6X
i=0

w(i)�t�4+i

where w(i) selects the i�th element of the vector w =
�

1
16

2
16

3
16

4
16

3
16

2
16

1
16

�
. The

various expectations can be easily computed using knowledge of the structural model. The

forecasts for the next calendar year are taken in each quarter of the current year. They can

be expressed as

EConst �year2;Q4 � EConst

6X
i=0

w(i)�t�2+i; E
Cons
t �year2;Q3 � EConst

6X
i=0

w(i)�t�1+i

EConst �year2;Q2 � EConst

6X
i=0

w(i)�t+i; E
Cons
t �year2;Q1 � EConst

6X
i=0

w(i)�t+1+i;

where the weights remain the same. The observation equation for each foreign country is then

Y Ft =

2666666666666664

�t

EConst �year1;Q2

EConst �year1;Q1

EConst �year2;Q4

EConst �year2;Q3

EConst �year2;Q2

EConst �year2;Q1

3777777777777775
= �F +HF 0

t �t +R
F
t ot

Because forecasts are di¤erent in each quarter, we have only one observation for each forecast

per year. The time-varying matrices HF
t and RFt again handle these missing observations.

Looking at the weights, a key observation is that what is common to all these forecasts is

that most of the weight (a fraction ranging from from 10=16 to 12=16) is given to quarterly

forecasts ranging from one to four-quarters ahead.
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Confronting a short sample. To handle the short available sample for the interna-

tional data we employ posterior information from the US model to shape the priors adopted

in estimation for these countries. In particular, the US posterior is used as a prior for all

parameters except for the steady-state in�ation rate and all observations errors. For these

latter parameters, we use the same prior distributions speci�ed for the US. One �nal assump-

tion is made. When simulating the posterior distribution of foreign parameters, the foreign

likelihood function is scaled by the parameter �F so that

P F
�
�F jY Ft ; Y USt ; �US

�
= L(Y �t j�US; �F )�

F

L(Y USt j�US)p(�US)p(�F ):

Smaller values of the parameter �F imply model predictions are more closely tied to the US

posterior distribution. There are two reasons to proceed in this way. First, by choosing a

low value of �F we can evaluate how the model estimated on US data performs in terms

of capturing long-term forecasts in di¤erent countries. Second, we estimated the model on

international data using CPI in�ation starting in the mid-to-late 1950s (depending on the

country), but survey data are available only starting in 1991. Because of this �unbalanced"

sample, and the other data limitations discussed above, the data are not too informative

about the mechanism of the model. In response to that we downweight the foreign Likelihood

function. The presented results consider the cases of �F = 0:2 and �F = 0:5. The �rst

case delivers a posterior distribution of the common parameters that is very close to the

distribution for the US model. The second case gives substantial weight on country-speci�c

data. The results are discussed in section 3.6.

3.4 US: The Benchmark Model

Table 1 reports the prior and posterior distribution of the parameters. For the most part the

data are informative about model parameters, with the exception of �, which has a fairly tight

prior. The learning algorithm parameters � and �g have median estimates 0.02 and 0.12. This

implies a switch from the decreasing-gain algorithm to the constant-gain algorithm occurs

when the scaled subjective forecasts depart from the model-consistent forecasts by more than

2.2 per cent. The constant gain parameter implies that long-term in�ation expectations are

quite sensitive to short-term forecast errors. Indeed, a gain of this value implies a weight of

approximately zero on ten-year-old data and a weight of about 0.1 on �ve-year-old data. The

model implies a high degree of self-referentiality, with the parameter T taking a value of 0.91
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� shifting beliefs about long-term in�ation are in large part self-ful�lling. The remaining

structural parameter 
p is quite low, revealing subjective beliefs are more important than

price indexation as a source of persistence.

Table 1. Prior Distributions and Posterior Parameter Estimates for the US

Prior Posterior

Dist. Mean SD Mode Mean SD 5% Med. 95%

4�� Normal 2.0 1.2 2.21 2.49 .29 1.96 2.50 2.90

� Gamma .02 .006 .019 .022 .006 .013 .022 .033

g Gamma .10 .050 .124 .126 .028 .083 .124 .174

T Beta .7 .150 .952 .906 .041 .823 .914 .957

�s Beta .7 .150 .887 .879 .028 .834 .880 .925


p Beta .5 .260 .124 .140 .029 .095 .138 .191

�s IGamma .5 4 .087 .088 .009 .074 .088 .103

�� IGamma .5 4 .377 .358 .036 .300 .357 .419

Figure 2 shows the one-quarter-ahead forecast errors predicted by the model as compared

with the data. The model does a good job in capturing the evolution of forecast errors, which

largely appear to be contained in the 95% bands.

Recall that we discipline the estimation of the model with short-run in�ation forecasts

only. Hence, a comparison of the long-run in�ation forecasts produced by the model with

long-run survey forecasts is a legitimate �test� of the model as a description of long-run

in�ation expectations. Results of the estimated model are presented in Figure 3, showing

long-run in�ation forecasts produced by the model, and various measures of long-run in�ation

expectations that were not used in the estimation.

The �gure reveals that the model captures surprisingly well the dynamics of long-term

in�ation expectations as measured by survey data. The result is remarkable as the model

has very few degrees of freedom since the forecasts errors, ft, driving long-term forecasts

are observed. In fact, observation errors on the survey forecasts are relatively small, with

annualized standard deviations in the range of 1:18 for actual in�ation and a range of 0:08�0:3
for survey forecasts (modal estimates).
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Figure 2: The �gure compares the model�s predicted one-quarter-ahead forecast errors with
the data. In detail, the black solid line is the median (point-wise) prediction from the model.
The solid line is the one-quarter-ahead forecast from SPF. The green shaded area denotes the
95% bands.

Figure 4 shows both the path of long-term forecasts together with the path of the learning

gain implied by the estimated model at the parameters�posterior mode. The estimated model

tells a story in which in�ation expectations got unanchored in the 1970s, after a series of short-

run in�ation surprises. Agents kept using a constant-gain learning algorithm for quite a while

�until the late 1990s. At that point, they reverted back to a decreasing gain procedure, and

as a result the sensitivity of long-run in�ation expectations decreased. This explains why

long-run in�ation expectations have been remarkably stable in the face of relatively volatile

in�ation in the last decade.

3.5 Alternative Models of In�ation Drift

Next, we compare the model predictions to two alternative empirical models estimated using

the same data. The �rst model is the exogenous drift model discussed in section 2.2. Rather

than assume beliefs about long-term in�ation are generated by the learning algorithm (3) and
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Figure 3: The �gure compares the long-term forecast predicted by the model to di¤erent
measure of survey-based long-term forecasts. In detail, the black line is the (median) predicted
�ve-to-ten years forecasts from the model�s PLM, with the green shaded area showing the 95%
bands. Turning to the survey data. The red diamonds show 5-10 years CPI forecasts from
the Michgan households survey, the green circles show the 1-10years CPI in�ation forecasts
from the Decision-Makers Poll of Portfolio Managers, the blue squares show the 1-10years CPI
from Blue Chip Economic Indicators. The green diamonds show the 5-10years forecasts from
Blue Chip Economic Indicators. The red stars show the 5-10years forecasts from Consensus
Economics. Finally, and the blue stars are 5-10years implied forecasts from SPF.

(4), assume the in�ation drift is speci�ed by the exogenous process

��t = ����t�1 + "t:

To guarantee identi�cation, �x the persistence of ��t to �� = 0:995. Remaining model features

are unchanged, with actual in�ation determined by

�t =
�
1� 
p

�
��t + 
p�t�1 + st + �t:

Table 2 shows prior and posterior estimates for this model. The parameters in common

with the benchmark model take fairly similar values. However, the steady-state annual in�a-

tion rate is estimated to be somewhat lower (2.13 compared to 2.5 percent). The standard

deviation on the exogenous in�ation drift is reasonably small at 0.049.

19



1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

2

4

6

8

10

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.05

0.1

0.15

0.2

Figure 4: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t . The top panel shows the median prediction for the 5-10years forecast (black line) ,
with the 95% bands in green. The bottom panel shows the median prediction for the learning
gain k�1t , again with the 95% bands in green.

Table 2. Prior and Posterior Parameter Estimates Exogenous Drift Model

Prior Posterior

Dist. Mean SD Mode Mean SD 5% Med. 95%

4�� Normal 2.0 1.2 2.13 2.13 .360 1.54 2.13 2.72

��� IGamma .1 1 .047 .049 .009 .035 .049 .064

�s Beta .7 .150 .900 .891 .037 .827 .894 .948


p Beta .5 .260 .082 .089 .017 .065 .087 .117

�s IGamma .5 4 .088 .088 .010 .072 .088 .105

�� IGamma .5 4 .487 .480 .032 .426 .481 .528

Figure 5 shows model predictions for the long-term forecasts under an exogenous drift.

While the broad contours of long-run in�ation expectations are similar in each model, the
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Figure 5: The �gure show the predicted evolution of long-term forecasts from the model
with exogenous drift. In detail, the blue line is the median prediction from the model with
exogenous drift, while the black line is the median prediction from the baseline model. The
shaded green area denoted the 95% bands from the model with exogenous drift.

benchmark model clearly exhibits a superior ability to match sharp movements in the survey

data. Most notable being the rise in long-term in�ation expectations in the mid to late 1970s,

and the subsequent decline during the 1980s as a result of the program of disin�ation under

Chairman Volcker. In periods of relative stability in prices, such as the 1990s and 2000s,

the exogenous and endogenous drift models have remarkably similar predictions for long-term

in�ation outcomes.

The second alternative model assumes �rms continue to face a �ltering problem to infer

long-run in�ation, but do so using only a constant gain. There is no switching to decreasing

gain. Table 4 shows prior and posterior estimates for this model. Again, the parameters

that are common across this and the benchmark model are quite similar. The most signi�cant

di¤erence concerns the estimated constant-gain coe¢ cient, which takes the value 0.095. The

95 percentile of the posterior distribution only just incorporates the constant-gain estimate

from the benchmark model.
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Table 3. Prior and Posterior Parameter Estimates for the US (Model with constant gain)

Prior Posterior

Dist. Mean SD Mode Mean SD 5% Med. 95%

4�� Normal 2.0 1.2 2.15 2.21 .38 1.59 2.21 2.84

g Gamma .10 .050 .094 .095 .018 .066 .095 .127

T Beta .7 .150 .903 .906 .057 .777 .889 .961

�s Beta .7 .150 .900 .899 .029 .850 .900 .946


p Beta .5 .260 .151 .159 .031 .112 .157 .213

�s IGamma .5 4 .085 .085 .009 .072 .085 .101

�� IGamma .5 4 .360 .359 .037 .299 .358 .422

Figure 6 shows this model�s prediction for the long-term forecasts. The constant gain

model performs better than the exogenous drift model, though still struggles to match the peak

movements in in�ation expectations in the late 1970s. Model predicted long-term in�ation

expectations also appear to be overly sensitive to short-run in�ation forecasts in the mid

2000s, re�ecting the constant-gain algorithm places relatively little weight on older data, even

in periods of relative stability.

3.5.1 Are households forecasts consistent with the model?

[To be added]

3.6 International evidence

Because of the limited survey data available on foreign countries, the foreign posterior distrib-

ution for all parameters, except average in�ation and the observation errors, is obtained using

the US posterior distribution as a prior. Moreover, the foreign likelihood receives a weight �F

less than 1. Table 2 show posterior estimates for the di¤erent countries for �F = 0:5. The

parameter � is omitted because, as in the case of the US its posterior distribution does not

deviate from the prior. The key observation is that, with the exception of the constant gain

estimate for France, the parameters�estimates are remarkably close to those of the US.
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Figure 6: The �gure show the predicted evolution of long-term forecasts from the model with
constant gain. In detail, the blue line is the median prediction from the model with constant
gain, while the black line is the median prediction from the baseline model for the 5-10years
forecast. The shaded green area denoted the 95% bands from the model with constant gain.
Finally the red lines denote the long-term forecasts from the surveys.

Table 5. Posterior Parameter Estimates for selected countries

US Japan France

5% Med. 95% 5% Med. 95% 5% Med. 95%

4�� 1.96 2.50 2.90 1.12 1.81 2.55 1.35 1.81 2.24

g .083 .124 .174 .081 .139 0.193 .188 .269 .360

T .823 .914 .957 .847 .924 .963 .923 .953 .973

�s .834 .880 .925 .867 .909 .956 .705 .799 .879


p .095 .138 .191 .093 .140 .203 .060 .106 .156

Germany Sweden UK

4�� 1.32 1.91 2.62 1.50 2.07 2.63 1.48 2.08 2.66

g .112 .155 .216 .039 .072 .150 .028 .052 .079

T .847 .915 .956 .730 .892 .953 .560 .830 .937

�s .830 .872 .908 .891 .956 .977 .963 .976 .991


p .099 .150 .215 .084 .119 .177 .082 .103 .131
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We now turn to describing the model�s ability to predict the evolution of long-term forecast

in the set of countries that we consider. For each country we present three sets of �gures. The

�rst �gure illustrates the evolution of short-term forecasts used in the estimation. The second

�gure shows the 5-10 year forecasts predicted by the model estimated with both �F = 0:5 and

�F = 0:2; and contrasts these �ndings with the 5-10 year forecast from Consensus Economics.

The third �gure illustrates the evolution of the learning gain. As mentioned above, all models

are estimated using actual data from the late 1950s. However the �gures illustrate model

predictions starting in 1980, since no survey forecast in our sample is available before 1991.

Rather than discussing the results country-by-country, our results are summarized by the

following three general remarks. First, the model characterizes surprisingly well the evolution

of long-term forecasts in the countries we consider: for most of the sample the survey-based

forecasts are inside the 95% bands. Even more surprisingly, the model�s predictions using

�F = 0:2; which delivers a posterior distribution similar to the US, does as well, with the

exception of France. For this country the posterior estimates of the gain �g are higher, which

helps predict the evolution of long-term forecasts in the early 1990s.

Second, most countries have experienced some form of anchoring of expectations during the

1990s, but some countries like Japan and Germany have experienced episodes of unanchoring

in the past 15 years, while other countries like France, Sweden and the UK have displayed

more stable expectations.

Third, the comparison between the model predicted paths and survey-based forecasts

suggests that in some countries short-term forecast errors might not have been the only

determinant of long-term expectations. For example Japan in the period 2000-2012 has shown

higher long-term in�ation expectations than predicted by the model, possibly re�ecting the

central bank of Japan unconventional policies implemented to �ght de�ation, or concerns

about long-term �scal sustainability. Sweden also displays a faster decline in survey-based

long-term forecasts compared to model predictions in the early 1990s. This coincides with the

announcement and adoption of an in�ation targeting regime in 1992-1995. These episodes

suggest that the model might be used to �lter the evolution of long-term expectations in

absence of announcement e¤ects or other policy-related factors that might shift expectations

beyond short-term in�ation forecast errors. However, the results, for both the US and the

other countries, show that measures of short-term in�ation expectations go a long-way in
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explaining the dynamics of long-term in�ation expectations. [more to be added.]

4 Counterfactuals

[To be added]

5 Discussion

5.1 Role of policy

[To be added]

5.2 Individual rationality

A desirable feature of the learning algorithm describe above is that it should asymptotically

converge to the truth ��t = 0, given that no actual regime switch occurs in the model. This

is guaranteed provided the switching parameter � is not too �small�. From, the convergence

properties of the model described above, for t su¢ ciently large it is possible to �nd a � such

that the condition
�
1� 
p

�
(1� T ) ��t > v is satis�ed almost surely. As � is estimated, we

would need to verify that the parameter in fact satis�es this restriction. This corresponds to

the Asymptotic Rationality requirement in Marcet and Nicolini (2003). What happens if �

is too large? In that case never switches to constant gain, preventing what we call learning

equilibria.. However, during the transition, agents make large and persistent forecast errors.

In the paper we estimate � and, predictably enough, it will be consistent with switches to

the constant gain algorithm. Another property of the learning algorithm that we imposed

is what Marcet and Nicolini (2003) refer to as Internal Consistency. This refers to the fact

that agents have to be satis�ed with the parameters of the learning algorithm (in particular

the focus in of the gain �g). It is going to be formalized in later version of the notes but the

idea is that �g is a best response for each agent in the model. Any agent facing the actual

law of motion for in�ation and choosing an alternative gain should not be able improve her

forecasting performance meaningfully. Hence, she would like to stick with the equilibrium

gain. If such a gain exist (and we shall verify that the estimated gain satis�es this property),

then as the algorithm switches to constant gain, the economy is in a learning equilibrium

where in�ation expectations drift and agents have no incentive to deviate from the learning
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rule they use. Intuitively, the closer T is to one, the more likely the economy has a learning

equilibrium other than �g�1 ! 0 (which corresponds to the rational expectations equilibrium).

Summing up, agents�estimate eventually converges to the correct in�ation mean. How-

ever, during the transition the economy can switch to a period of volatile long-term in�ation

expectations as agents�algorithm switches to a constant gain In detail, a su¢ ciently large

shock to in�ation (or a sequence) is likely to induce a switch to constant gain. This in turn

generates strong feedbacks from in�ation expectations to in�ation, increasing volatility and

reinforcing the choice of a constant gain algorithm (learning equilibrium). Eventually, a se-

quence of shocks leads the long-term estimate of in�ation close to the truth. The algorithm

switches to OLS, inducing stability into the in�ation process. As the gain becomes su¢ ciently

low (and ��t su¢ ciently close to its true value), the condition
�
1� 
p

�
(1� T ) ��t is satis�ed at

all times and the learning process converges. However, during the transition process, agents

can switch few times between OLS and tracking, as a large shock can hit in�ation for still

relatively high values of the decreasing gain, prompting a switch back to the constant gain.

Learning equilibria. In this section we evaluate whether the estimated gain is consistent

with a speci�c equilibrium concept, which we de�ne as a learning equilibrium (this is the

Internal consistency requirement in Marcet and Nicolini, see above). We evaluate this through

simulation.

To make the whole business simple, let us focus on the model where there is not switching.

In principle we should evaluate the learning equilibrium for both � and �g, but for simplicity

we focus on the constant gain. Then what matters is how good the predictor is once you

switch to the constant gain. (more on this.)

One can then compute or simulate and compare the mean square errors associated to

di¤erent predictors. As in Marcet and Nicolini, the learning algorithm is Internally Consistent

if

E [ft (�g)]
2 � min

�g0
E [f 0t (�g; �g

0)]
2
+ �

for � small. It is easy enough to show that it holds in our paper, as shown in the �gure

below (we can also show through simulation of the nonlinear algorithm but the result would

be fairly similar). So learning equilibria exists for these parameter values. These equilibria

depend on the strength of feedback between expectations and actual in�ation, which in this
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case is captured by the evolution of ��t

��t =
�
�g�1
�
1� 
p

�
(T � 1) + 1

�
��t�1 + �g

�1 � Shocks:

with
�
�g�1
�
1� 
p

�
(T � 1) + 1

�
close to unity the actual drift of in�ation is very close to a

random-walk, the agents�perceived drift. As mention before, the drift depends on of strongly

the marginal cost responds to in�ation. [Results to be added]

6 Conclusion

[TO BE ADDED]
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7 Appendix

7.1 State-Space model and Likelihood

The model is described by the following equations (described in the main text)

�t =
�
1� 
p

�
T ��t + 
p�t�1 + st + �t

��t = ��t�1 + k
�1
t�1 � ft�1

ft =
�
1� 
p

�
(T � 1) ��t + �t + �t

st = �sst�1 + �t:

It can be cast in the following state-space form

�t = F (k
�1
t�1)�t�1 + SC�t;

where

�t =

2666664
�t

��t

ft

st

3777775 ; �t =
24 �t

�t

35 ;

F (k�1t�1) =

2666664

p

�
1� 
p

�
T k�1t�1

�
1� 
p

�
T �s

0 1 k�1t 0

0
�
1� 
p

�
(T � 1) k�1t�1

�
1� 
p

�
(T � 1) 0

0 0 0 �s

3777775
and

SC =

2666664
1 1

0 0

1 1

1 0

3777775 :
In compact terms

�t = F (k
�1
t�1)�t�1 + SC�t:
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The model can be then estimated using the standard Kalman �lter recursions

�tjt = �tjt�1 + Ptjt�1Ht
�
H 0
tPtjt�1Ht +Rt

��1 �
Yt � �� �H 0

t�tjt�1
�

Ptjt = Ptjt�1 � Ptjt�1Ht
�
H 0
tPtjt�1Ht +Rt

��1
H 0
tPtjt�1

kt =

8>><>>:
�g�1, if

��(T � 1) �1� 
p� e2�tjt�� > vpMSE
kt�1 + 1, otherwise

�t+1jt = F (k�1t )�tjt

Pt+1jt = F (k�1t )PtjtF (k
�1
t )

0 + SC��S
0
C

where e2 =
�
0 1 0 0

�
and �� denotes the variance-covariance matrix of �t.

Finally, the likelihood is computed as

2��n=2
��H 0

tPtjt�1Ht +Rt
���1=2 �

exp

�
�1
2

�
Yt � �� �H 0

t�tjt�1
�0 �
H 0
tPtjt�1Ht +Rt

��1 �
Yt � �� �H 0

t�tjt�1
��
;

where Yt denotes the vector of observables.
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Figure 7: The �gure shows the short-term forecast used in the estimation for Japan. The grey
dashed line denotes CPI in�ation, the blue diamonds show in�ation forecasts with a forecst
horizon of less than a year. The blue solid line denotes yearly forecasts that give nost weight
to quarterly forecasts ranging from one to four quarters ahead.
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Figure 8: This �gure shows the predicted long-term forecast for Japan. In detail, the grey
dashed line denotes CPI in�ation, the black solid line denoted the median model predicted
path for the 5-10years forecast using estimates with �F = 0:5, and blue solid line shows
the predicted forecast using estimates with �F = 0:2. The green area denotes 95% bands
corresponding to the estimates with �F = 0:5. Finally, the red circles show the 5-10years
forecasts from Consensus Economics.
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Figure 9: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t for Japan (�F = 0:5). The top panel shows the median prediction for the 5-10years
forecast (black line) , with the 95% bands in green. The bottom panel shows the median
prediction for the learning gain k�1t , again with the 95% bands in green.
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Figure 10: The �gure shows the short-term forecast used in the estimation for France. The
grey dashed line denotes CPI in�ation, the blue diamonds show in�ation forecasts with a
forecst horizon of less than a year. The blue solid line denotes yearly forecasts that give nost
weight to quarterly forecasts ranging from one to four quarters ahead.
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Figure 11: This �gure shows the predicted long-term forecast for France. In detail, the grey
dashed line denotes CPI in�ation, the black solid line denoted the median model predicted
path for the 5-10years forecast using estimates with �F = 0:5, and blue solid line shows
the predicted forecast using estimates with �F = 0:2. The green area denotes 95% bands
corresponding to the estimates with �F = 0:5. Finally, the red circles show the 5-10years
forecasts from Consensus Economics.
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Figure 12: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t for France (�F = 0:5). The top panel shows the median prediction for the 5-10years
forecast (black line) , with the 95% bands in green. The bottom panel shows the median
prediction for the learning gain k�1t , again with the 95% bands in green.
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Figure 13: The �gure shows the short-term forecast used in the estimation for Germany. The
grey dashed line denotes CPI in�ation, the blue diamonds show in�ation forecasts with a
forecst horizon of less than a year. The blue solid line denotes yearly forecasts that give nost
weight to quarterly forecasts ranging from one to four quarters ahead.
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Figure 14: This �gure shows the predicted long-term forecast for Germany. In detail, the grey
dashed line denotes CPI in�ation, the black solid line denoted the median model predicted
path for the 5-10years forecast using estimates with �F = 0:5, and blue solid line shows
the predicted forecast using estimates with �F = 0:2. The green area denotes 95% bands
corresponding to the estimates with �F = 0:5. Finally, the red circles show the 5-10years
forecasts from Consensus Economics.
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Figure 15: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t for Germany (�F = 0:5). The top panel shows the median prediction for the 5-
10years forecast (black line) , with the 95% bands in green. The bottom panel shows the
median prediction for the learning gain k�1t , again with the 95% bands in green.
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Figure 16: The �gure shows the short-term forecast used in the estimation for Sweden. The
grey dashed line denotes CPI in�ation, the blue diamonds show in�ation forecasts with a
forecst horizon of less than a year. The blue solid line denotes yearly forecasts that give nost
weight to quarterly forecasts ranging from one to four quarters ahead.
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Figure 17: This �gure shows the predicted long-term forecast for Sweden. In detail, the grey
dashed line denotes CPI in�ation, the black solid line denoted the median model predicted
path for the 5-10years forecast using estimates with �F = 0:5, and blue solid line shows
the predicted forecast using estimates with �F = 0:2. The green area denotes 95% bands
corresponding to the estimates with �F = 0:5. Finally, the red circles show the 5-10years
forecasts from Consensus Economics.
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Figure 18: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t for Sweden (�F = 0:5). The top panel shows the median prediction for the 5-10years
forecast (black line) , with the 95% bands in green. The bottom panel shows the median
prediction for the learning gain k�1t , again with the 95% bands in green.
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Figure 19: The �gure shows the short-term forecast used in the estimation for UK. The grey
dashed line denotes CPI in�ation, the blue diamonds show in�ation forecasts with a forecst
horizon of less than a year. The blue solid line denotes yearly forecasts that give nost weight
to quarterly forecasts ranging from one to four quarters ahead.
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Figure 20: This �gure shows the predicted long-term forecast for UK. In detail, the grey
dashed line denotes CPI in�ation, the black solid line denoted the median model predicted
path for the 5-10years forecast using estimates with �F = 0:5, and blue solid line shows
the predicted forecast using estimates with �F = 0:2. The green area denotes 95% bands
corresponding to the estimates with �F = 0:5. Finally, the red circles show the 5-10years
forecasts from Consensus Economics.
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Figure 21: The �gure shows the model predictions for long-term forecasts and the learning
gain k�1t for UK (�F = 0:5). The top panel shows the median prediction for the 5-10years
forecast (black line) , with the 95% bands in green. The bottom panel shows the median
prediction for the learning gain k�1t , again with the 95% bands in green.
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