Does Salient Financial Information Affect Academic Performance and Borrowing Behavior Among College Students?*,[†] Maximilian Schmeiser[‡], Christiana Stoddard[§], Carly Urban[¶] #### Abstract The rising incidence and amount of student loan debt among young adults has significant implications for their economic well-being. However, students are generally provided little information on how to finance postsecondary education and how much to borrow. This paper studies how information can change student loan behavior among college students. We exploit a natural experiment across two large public colleges in which some students at one institution above a specific loan amount received "Know Your Debt" letters with information about their student loan debt, suggestions on how to manage their debt, and incentivized offers for one-on-one financial counseling, while the remainder did not. Using a difference-in-difference-in-difference strategy and a rich administrative dataset on individual-level academic records and financial aid packages, we find that students receiving the letters borrow an average of \$1,360 less in the subsequent semester—a reduction of one-third. This reduction in borrowing does not adversely affect academic performance. In fact, those who receive the intervention take more credits and have higher GPAs in the subsequent semester. Keywords: student loans; higher education; information; financial cues ^{*}The views expressed in this paper are those of the authors and do not necessarily represent the views of the Federal Reserve Board, the Federal Reserve System, or their staffs. [†]We appreciate the assistance of Carina Beck, Director of the Allen Yarnell Office of Student Success, and Kayla Fields, Financial Education Program Manager, at Montana State University. We are also grateful for the comments and suggestions provided by Michael Collins, Alice Henriques, Lindsay Jacobs, Annamaria Lusardi, Justin Sydnor, and seminar participants at the Cherry Blossom Financial Education Institute. A special thanks to Christian Cox for providing excellent research assistance. The research is exempt from the requirement of Institutioanl Review Board review [CU082415-EX]. [‡]Senior Economist, Microeconomic Surveys Section, Federal Reserve Board [§]Associate Professor, Montana State University [¶]Corresponding Author: Assistant Professor of Economics, Montana State University Phone: (406) 994-2005, E-mail: carly.urban@montana.edu. ### 1 Introduction Student loans are typically the first borrowing decision made by young adults, and they have become an increasingly large financial commitment, with aggregate student loan debt totaling \$1.19 trillion as of June 2015 (Federal Reserve Bank of New York 2015). However, it is not clear whether students currently have transparent, relevant, and low-cost information about borrowing to finance postsecondary education. High school seniors generally have relatively limited exposure to the financial system and credit when they make the initial decision on college attendance and financing. The process of applying for aid is also confusing. Recent research highlights that the borrowing process and the details of the Federal Student Aid Application (FASFA) are burdensome for students with the lowest ability to pay and that providing these individuals with application assistance contributes to higher rates of FAFSA completion, an increased probability of attending college, and higher aid amounts (Dynarski and Scott-Clayton 2006; Bettinger et al. 2009). After receiving a loan, little information is typically provided to the student as they make further borrowing decisions. Federally required entry counseling for those looking to take on student loans is provided online and students only skim through material (Fernandez et al. 2015). Existing financial counseling for student loans is directed toward students close to graduation and tends to focus on loan repayment options. Moreover, the academic advising received by most college students is given independently of financial considerations, in spite of the fact that the financial status of students may influence their choice of a major, the time and effort they devote to studying, and their decision to remain enrolled (Deming and Dynarski 2009; Angrist, Lang and Oreopoulos 2009; Castleman and Long 2013; Cohodes and Goodman 2014; DesJardins and McCall 2007). This paper uses ¹One possible way to promote improved decision-making on borrowing for postsecondary education is to provide instruction on student loans in high school financial education courses. While early research on high school financial education has reached differing conclusions about its effectiveness for improving financial behaviors and outcomes (Bernheim, Garrett and Maki 2001; Tennyson and Nguyen 2001; Walstad and Buckles 2008), recent research has shown financial education courses to be effective at improving later life financial outcomes (Brown et al. 2013), particularly when rigorously implemented (Urban et al. 2014). a targeted intervention to causally determine how information early in college can change students' loan choices, majors, credits, and academic performance. This paper contributes to a growing body of research that examines how information influences borrowing decisions, showing that borrowers who lack financial knowledge tend to make suboptimal decisions (Lusardi and Tufano 2009; Calvet, Campbell and Sodini 2007, 2009; Agarwal et al. 2009). Furthermore, it contributes to the literature on how cues and decision-making contexts affect a variety of behaviors. This literature shows that cues that make information more salient influence a range of behavioral, consumption, and savings decisions.² Currently, little is known about how students respond to either cues or financial information by changing their borrowing behavior. The single paper on information and loan take-up is in the Netherlands, where student loan participation is rare, found little impact of information on borrowing (Booij, Leuven and Oosterbeek 2012). This raises the question of whether an informational intervention would change student behavior in the United States, where student loans are much more common. Not only are student loans a novel context for examining the role of salience, cues, and information, but key aspects of the student loans and borrowing decisions are contested, with a variety of research pointing to evidence of suboptimal decisions. As Avery and Turner (2012) describe, there is an active debate about whether loan amounts are "too large" or "too small." Those on the "too large" side typically make reference to high default rates, implying "mistakes" in financing. Furthermore, over the longer term, graduation with a significant amount of student loan debt has been loosely associated with numerous adverse outcomes, such as delays in forming independent households and reduced homeownership (Brown et al. 2015; Dettling and Hsu 2014). There is the possibility that the quality of human capital investment may also be related to its financing, with some evidence indicating that career choices are related to loan packages (Rothstein ²For example (Busse et al. 2013) show that the first digit of an odometer reading is influential for car purchases, Chetty, Looney and Kroft (2009) find posting after tax prices makes sales taxes more salient, while Finkelstein (2009) finds electronic toll collection affects driving behavior. ³See Federal Reserve Bank of New York (2015) for more on the current status of default rates on student loans. and Rouse 2011). However, student loans are clearly essential for human capital investment. While it is well established that individuals from low-income families are less likely to attend college, all else equal, there is still an active debate on whether this is entirely due to credit constraints.⁴ Based on existing research, it is unclear whether lack of financial knowledge may also contribute to behaviors that appear to be constrained or that are otherwise suboptimal in terms of the level of financing or type of loan obtained. This study analyzes a unique financial counseling and targeted debt information intervention aimed at students with debt levels—given by a specific debt and year formula based on their standing in school or college major—that suggest that they might have difficulty repaying their student debt with their prospective income. At Montana State University, the Allen Yarnell Center for Student Success sent letters to students whose loan amounts exceeded target amounts both informing them of their debt level and warning "If you continue to accept student loans at this rate you will accrue a debt level that may become difficult to repay, which may place you at risk for defaulting on your loan." Letters also contained general academic and financial advice and information, and encouraged student to seek free one-on-one financial counseling, with a modest financial incentive for attending the counseling session. We rely on a unique administrative dataset on the Montana University System that contains detailed information on students academic backgrounds, loan packages, and academic outcomes to analyze the effect of this intervention. We utilize a difference-in-difference-in-differences (DDD) strategy to exploit three comparisons. First, we compare students who received the letters at Montana State University to those that also had loans but were below the threshold for receiving a letter. Second, we compare students who received the letters at Montana State University to those that would have received the letters at the University of Montana had the same policy been in place on that campus. Third, we compare students who received the letters to those who would have received ⁴See, for example, Lochner and Monge-Naranjo (2011) and citations therein. them in the years before the policy was implemented. We find that students who
receive the financial counseling letters are more likely to switch their major to one in the higher-paying fields of science, technology, engineering, and math (STEM) in the semester following the counseling than those who do not receive the letters. Treated students also reduce their student loan borrowing in the subsequent semester. For freshmen, the intervention increases retention rates for the subsequent semester and year. In addition, receiving a letter increases credits attained that semester, particularly for freshmen, suggesting that students complete courses from which they may have otherwise withdrawn. Students also increase their grade point average (GPA) in the semester of the intervention. These results suggest that early interventions that draw borrowers attention to their relatively high student loan debt balances and that offer information and financial counseling on managing their debt, can improve student academic outcomes and change financial decisions. This paper makes two novel contributions. It is the first study to examine the causal effect of an information-based intervention on subsequent loan amounts and academic performance. Second, the administrative data used in this paper is unique, and allow us to examine how students re-calibrate their decisions after receiving salient information; although we cannot determine precisely whether they are behaving optimally. ## 2 Background ## 2.1 Financing Postsecondary Education Students can finance their postsecondary education through a combination of several different sources: existing savings, parental contributions, employment income, grants, scholarships, subsidized and unsubsidized public student loans, and private student loans. Our research focuses on the federal options for borrowing. The federal government offers subsidized Stafford Loans to undergraduate students based on financial need and unsubsi- dized Stafford Loans to undergraduate students at all income levels. The borrowing limit for subsidized Stafford loans increases with each year of college, reaching a maximum of \$5,500 per year for college juniors and seniors who are still financially dependent on their parents and \$12,500 per year for financially independent students for the 2014-2015 academic year.⁵ As there is no underwriting done on Stafford loans, students are able to borrow for their education without consideration of their ability to repay the loan (U.S. Department of Education 2014). Parents can also borrow for their children's education using the Parent PLUS loan program. In addition to the Stafford and PLUS loans, students with exceptional demonstrated financial need can borrow from the government through their college using the Perkins loan program. For the 2014-2015 academic year, Perkins loans allowed qualifying undergraduate students to borrow up to \$5,500 per year to a cumulative maximum of \$27,500. Students from low-income families (or students who are independent and low income) can also receive a Pell Grant valued at up to \$5,730 for the 2014-2015 academic year; this grant does not require repayment. Students and their parents also have the option of borrowing from private financial institutions to finance their postsecondary education. Since 2008, the origination of private student loans to undergraduate students has declined substantially due to tighter lending standards and a drop in investor demand for the asset backed securities that funded many private student loans (Consumer Financial Protection Bureau 2012). Private student loans are generally more costly than federal student loans and have repayment terms that are much less flexible than those of federal loans (Lochner and Monge-Naranjo 2015; Consumer Financial Protection Bureau 2012). Moreover, private student loans are underwritten and therefore require a cosigner for approval unless the student has established a positive credit record. The underwriting requirements and reduced flexibility suggest that students should generally maximize their borrowing through the federal student loan programs before turning to private loans, although some students turn to private loans $^{^5{\}rm The}$ cumulative maximums are \$31,000 and \$57,500, respectively. before exhausting their supply of public loans (Avery and Turner 2012). #### 2.2 Context for the Intervention Montana State University and the University of Montana are peer institutions. Montana does not have a single state flagship campus; the two schools are complementary.⁶ As described below, this setting allows us to use the University of Montana as a control institution in a natural experiment framework. Furthermore, Montana State University and the University of Montana are ideal for research into the effects of student loans on postsecondary outcomes because these institutions are comparable to many public institutions throughout the United States. Both are public universities, with student enrollment of about 15,000 undergraduate students at Montana State University and about 14,000 at the University of Montana. This number is comparable to the average enrollment at public four-year universities in the United States of about 11,000 students. Admission standards are the same at both institutions: both require an ACT score of at least 22, a 2.5 high school GPA, or graduation in the top half of a students high school class. About 60 percent of undergraduate students at both universities come from Montana. In-state tuition at the University of Montana in the 2014-15 school year was \$6,330, about 15 percent lower than at Montana State (\$6,800); out-of-state tuition is about 5 percent higher at the University of Montana. Although tuition rates at these universities are below the national average, they are comparable as a fraction of state median household income. Graduation rates are also similar, with both colleges graduating about 45 percent of students in six years. The main difference between the two is that Montana State University is the land grant institution, with larger colleges of agriculture and engineering, while the University of Montana has a larger liberal arts program. Borrowing behavior is also similar at the two schools and approximates the national average. At Montana State, 65 percent of students graduate with student loan debt; ⁶For example, by design, Montana State University has the business school for the state, while the University of Montana has the law school. at the University of Montana, 62 percent graduate with student loans. The national average is similar, with 69 percent of college students graduating with student loans. In 2013, the average graduate of Montana State University had about \$27,000 in debt, which is slightly less than the average debt at the University of Montana (\$30,000), and the national average (\$28,400).⁷ About half of students at both institutions receive Pell grants, higher than the US average of about 40 percent. Students at these institutions also appear to behave in ways that suggest that information and cues about their student loan borrowing might influence their behavior. First, many students have only rudimentary understanding of their existing loans. To supplement the administrative data, we polled Fall 2015 students in Economics 101 and Economics 202, entry level courses required for many majors and overpopulated by freshmen. Based on a survey of 756 students, 40 percent took out loans. Of those, 56 percent took out both subsidized and unsubsidized loans and 25 percent took out just subsidized loans. The other 20 percent of borrowers reported either not knowing what kind of loan they took out or reported taking out only the unsubsidized loan. We also polled students on how they determined the amount to borrow. One third of borrowers said they took out the entire amount they were eligible to borrow, while and 26 percent said they took out a loan amount to cover tuition. Only 8 percent reported that they "figure out how much I could afford to repay after graduation and borrowed that amount. Another 24 report calculating the difference between projected spending and their other resources from savings, work, or parents. This suggests the majority of students are relating borrowing amounts to some outside factors. #### 2.3 Student Debt Intervention at Montana State University The intervention we study was initiated in fall 2012 by the Office of Financial Education, part of the Center for Student Success at Montana State University. During the fall ⁷The Project on Student Debt (2014), Student Debt and the Class of 2013. Institute for College Access and Success. Report accessed on May 14, 2015, at http://ticas.org/posd/home. semester, students who met specific debt thresholds were sent "Know Your Debt" letters. A sample letter is included in the Appendix. The threshold for receiving the letter varied by class standing and expected future salary calculated by the Center. The "Know Your Debt" letters were sent to students who met defined conditions: first-semester freshmen with more than \$6,250 in loans, sophomores with more than \$12,000 in debt, juniors with more than \$18,750 in debt, and any student with more than \$25,000 in debt. For context, these debt amounts targeted students whose annual borrowing represented about double the amount of in-state tuition; as noted previously, the average graduate at Montana State holds \$27,000 in debt. These thresholds exceed the federal subsidized loan limits and the loan limits for dependent students, but are below the federal loan limits for independent students. For example, freshmen can take up to \$3,500 in federal subsidized Stafford loans. Independent students can borrow an additional \$6,000 in unsubsidized Stafford loans, for a total of \$9,500. A few additional letters were sent to students whose total loan amount exceeded the median annual salary by major or whose expected monthly payments were anticipated to exceed 14 percent
of monthly salary. These median salary levels come from Montana State University Career Destinations Survey of recent graduates. However, in practice very few students met this condition who did not also meet the debt threshold conditions. Roughly 2,300 letters were sent in the first year of the intervention. The "Know Your Debt" letters provided students with information about their debt levels, and contained a highlighted statement that the debt levels were high: "If you continue to accept student loans at this rate, you will accrue a debt level that may become difficult to repay, which may place you at risk for defaulting on your loans." Letters encouraged students to learn more about how to deal with debt. In particular, they encouraged students to take at least 12 credits to take advantage of constant tuition rates above this threshold. The letters also offered one-on-one financial counseling appointments with a financial coach. These appointments were incentivized with \$10 gift cards in the first year and \$20 gift cards in the second year, redeemable at a local grocery store and gas station. The in- tervention continued into the following year (2013) with the same criteria for letters and recommendations for appointments. The counseling services included an approximately one-hour appointment with a certified financial planner (CFP) who could help with a variety of topics, including formulating a budget, mapping out course schedules for the duration of the students college career, discussing the salary potential in the students major, and talking through some costly registration "mistakes" students can make. These registration mistakes include dropping a course before or after certain dates in the semester (which can cost between 10 and 90 percent of the tuition cost, depending on the date), registering for 12 credits instead of 15 (students pay the same tuition regardless of how many credits they take beyond 12 per semester), and dropping a course in the first week of class (which results in a tuition refund of less than 100 percent). Counseling services were not tracked consistently in connection with the letters, making it difficult to determine the take-up of these services. As a result, this study does not attempt to distinguish between the effect of receiving a targeted debt letter, the advice in that letter, and the one-on-one counseling sessions. However, even absent take-up of counseling services, the letter itself may have influenced borrowing and academic choices. Specifically targeted letters potentially make debt levels more salient to students: a student receiving a letter indicating that their debt level is considering high by their college may take that as a clear signal to make more informed borrowing decisions. The specific recommendation to take 15 credits instead of 12 credits also provides a mental reference point, a framing that in many contexts has been shown to influence subsequent choice. Although the University of Montana also offers financial counseling to all students, there is no parallel effort to target counseling offers and no corresponding initiative to let students know about their debt status other than through the regular process of applying for financial aid. This process is the same federal process all students are required to undergo.⁸ We therefore use the University of Montana as a control campus, allowing us ⁸See Fernandez et al. (2015) for a discuss of the details of federal counseling. to exploit a triple difference strategy, as explained in detail in the Methods Section. We compare outcomes at Montana State for students who received the "Know Your Debt" letters with students who did not, further compare students with similar debt loans in years before and after the intervention, and finally compare similar students in the same time period at the peer institution. ### 3 Data The data for this project are administrative panel data from the Montana University System (MUS). These data include students' high school information, demographic information, the Montana postsecondary campus attended, and the degree pursued. The MUS data are novel for the detailed individual-level college funding information provided. These data identify the source of funds (such as federal, institutional, state, or other), the type and amount of award (need-based, merit-based, athletic payments, work study, loans, etc.), and the fraction of tuition covered by the loans. Our data do not include any information on private loans; however, private student loans are only a small fraction of student debt at the undergraduate level. These data also include semester-by-semester enrollment, credits, major, GPA, courses taken, and retention. To our knowledge, we are among the first researchers to use administrative individual student loan data to examine effects of borrowing on postsecondary education outcomes. Our data span the years 2002 through 2014, or 36 semesters of data, allowing us to follow 57,334 undergraduate students with loans for at least some portion of their time in college. The sample yields a total of 229,669 undergraduate student-semester observations with full coverage across all variables. For the purpose of this study, we limit our analysis to the two largest four-year campuses in the state of Montana: the University of Montana and Montana State University. We also limit our analysis to in-state undergraduate students to abstract away from tuition and loan differences due to the choice of an out-of-state institution. We examine the effects of the amount of tuition covered by loans, as relative tuition charges at the University of Montana and Montana State vary from year to year, with a current difference in in-state tuition of about 15 percent (\$6,330 at University of Montana compared to \$6,800 at Montana State). Finally, we limit our analysis to all students who have some form of public loan. Table 1 reports summary statistics on the loan, demographic, and academic characteristics of the students we study. The average loan amount is \$4,200, which covers about 94 percent of annual tuition charges. Approximately one-half of students within our sample are Pell grant recipients, meaning they come from a low-income household. The average student enrolls in 12.2 credits per semester, or approximately four classes, which is less than a recommended course load of 15 credits per semester that typically would enable graduation in four years. Approximately 42 percent of students at these two universities declare a STEM major. The fraction of STEM majors may seem high at first glance, but given that Montana State is a land grant university with many agriculture-based majors, this number is not surprising. The data further contain demographic information: our sample is 87 percent white and 48 percent male. We obtain data from the American Community Survey from the Census Bureau on demographic characteristics for the student's ZIP code of high school graduation. These variables include educational attainment, racial composition, median household income, and population density of the ZIP code. Finally, we control for whether or not the student came from a metropolitan area of over 25,000 residents to proxy for urbanicity. #### 4 Methods As described earlier, beginning in fall 2012, Montana State University extended warning letters and targeted offers of intensive financial counseling to all students who were at ⁹The exact income threshold for Pell Grant receipt is based on the expected family contribution relative to tuition. According to the US Department of Educations 2012-13 report, about three quarters of Pell Grant recipients have a family income of \$30,000 or less (http://www2.ed.gov/finaid/prof/resources/data/pell-2012-13/pell-eoy-2012-13.html). risk of graduating with high levels of debt. Letters were sent based on debt as of the fall semester relative to a threshold that depended on the students year in school. Letters were also sent to students whose total debt exceeded the median salaries for Montana State graduates in their major field.¹⁰ The University of Montana offers financial counseling services to the student body at large, as does Montana State. In our data, we use the information on student loan amounts to determine freshmen, sophomores, juniors, and seniors who would have received the letters based on the debt criteria established by MSU. Table 2 reports the counts of individuals assigned to receive the letter at Montana State and those that would have received the letter using the same criteria at the University of Montana. We only include students with loans in this set of analysis, as those without loans are systematically different from those with loans. We examine the impact of these letters on academic outcomes by comparing University of Montana and Montana State students who received loans in fall 2012 or fall 2013 to each other and to their counterparts who had similar levels of debt in years prior to the letter program. In these models, it is important to control for some measure of parental income given its role in the determination of eligibility for grants, loans, and financial aid. The best measure we have for parental income in our data is the students Pell Grant status, a signal for having come from a very low-income family. We also control for ZIP codelevel demographics for a students home ZIP code to capture other dimensions of socio-economic status. These variables include percent non-white, median household income, educational attainment, urbanicity, and population density. We further control for students race, gender, the number of credits taken up to that semester, the number of semester the student has completed (i.e., their standing in school), the amount of non-loan aid a student receives (e.g., grants, scholarships), a campus dummy ("attends Montana State University"), the type of semester (fall, spring, or summer), and include year fixed
effects. Specifically, we estimate the Equation 1 for students with loans. ¹⁰These salaries were based on responses to MSUs Career Destinations Survey given to graduating seniors. The salary requirement is not binding for most students who receive the letter. Thus, we leave it out of the estimation strategy. $$\begin{split} Y_{i,t} &= \alpha_0 + \beta_1 \mathrm{Letter}_{i,t} + \beta_2 \mathrm{Montana~State}_{i,t} + \beta_3 \mathrm{Letter} \times \mathrm{Montana~State}_{i,t} \\ &+ \beta_4 \mathrm{Letter} \times \mathrm{Montana~State} \times 2012_{i,t} + \alpha_1 \mathrm{White}_i + \alpha_2 \mathrm{Male}_i + \alpha_3 \mathrm{Pell}_{i,t} \\ &+ \alpha_4 \mathrm{Credits}_{i,t} + \alpha_5 \frac{\mathrm{Loan}}{\mathrm{Tuition}_{i,t}} + \alpha_6 \mathrm{Non~Loan~Aid}_{i,t} + \alpha_7 \mathrm{Zip}_i + \delta_{\mathrm{year}} \\ &+ \gamma_{\mathrm{semester}} + \epsilon_{i,t} \end{split}$$ Note that the indicator variable Letter is equal to 1 for a student at either campus in any year whose debt levels would have qualified them for the "Know Your Debt" letters at Montana State University in 2012 or later. This varies by time because students may be letter eligible one semester and not the next. The primary parameter of interest is β_4 , as it captures the difference-in-differences (DDD) estimator of the counseling intervention.¹¹ This estimate should be thought of as an "intent to treat" measure, as it captures the effect on all students whose borrowing reaches the key thresholds, not just those who attended the one-on-one counseling sessions. The outcome $Y_{i,t}$ represents the outcome of a variety of decisions students can make in the subsequent semester after receiving the letter and, potentially, counseling. Again, we cluster standard errors at the individual student level. In order for our DDD estimation strategy to produce causal estimates of the effect of the "Know Your Debt" letters on student outcomes several assumptions must hold. The first is the parallel trends assumption that in the absence of the treatment (letters) the trends in the various outcomes across the groups (campuses and debt thresholds) would have remained the same. The second is that there are no spillover effects from the treatment to the control group (e.g. Montana State students who receive the letters do not talk to Montana State students below the debt threshold, or call up University of ¹¹We also estimate a difference-in-difference specification that only compares students within Montana State University before and after the intervention above and below the thresholds for the debt letters. Results remain consistent, but the standard errors are larger. We estimate an additional model that only compares the loans over the threshold to those with loan amounts equal to at least one-half of the threshold. Our results remain consistent. Montana students and tell them about the letter content). However, if this assumption is violated it would only lead to our estimates being biased downwards since some of the control group received a weak version of the treatment.¹² #### 5 Results Table 3 reports outcomes achieved in the subsequent semester (i.e., spring), including the semester GPA, semester credits, a declared STEM major, and semester loan amount. These results are based on the sample of all students with loans in any period. Table 3, Column (1) shows that the intervention increased students semester GPAs by 0.045 points. Students increase their credits by 0.066, but this effect is not statistically different from zero. While these effects are modest, they do suggest some positive effects for students that were exposed to the intervention. The letters increased the likelihood that students would declare a STEM major by 1.9 percentage points (Column (3)). Students subject to the intervention also reduced the amount they borrowed in student loans in the semester following receipt of the letter by approximately \$1,361. This represents the average decrease, but does not speak to whether the decrease in loans was concentrated among a few students with large changes, or many students with smaller changes in borrowing. The dependent variable in Column (5) instead is a binary variable for whether or not the amount borrowed in the subsequent semester was smaller than in the semester when the letter was sent. It shows that about 18 percent of students had lower loan amounts in the subsequent (spring) semester, indicating broad impacts across the distribution. The targeted letters and offer of one-on-one counseling appear to result in students either reducing their spending or finding alternative ways to finance their subsequent semesters in school. At a minimum, these results suggest that if students are reducing their loan amounts to work more, they are not doing so at the cost of their academic performance. ¹²While these data could potentially be explored with a regression discontinuity framework for students at Montana State University after the policy was implemented, in practice we do not have sufficient observation within reasonable bandwidths on either side of the threshold for this exercise, as the thresholds vary by class. This makes these estimates very unstable. It may also be that the explicit information about credit loads or the offer of Career Coaching may have contributed to the positive effects on choice of majors.¹³ How much are these effects driven by students who are close to graduation, for whom debt levels may be particularly salient, and how much are they driven by students early in their careers, who may be more able adjust their borrowing and academic behaviors? To identify the effects of early-targeted financial information, we replicate this exercise in Table 4 for first-semester freshmen only. 4 While we no longer see an effect statistically different from zero on GPA, the letter increases the likelihood of declaring a STEM major by 11 percentage points. This represents a 250 percent increase in the probability of declaring a STEM major among targeted students, suggesting that early financial information allows freshmen to change their academic career paths. Furthermore, freshmen decrease the amount they borrow in the semester following the counseling by an average of \$1,882, a 30 percent greater effect than the average effect on subsequent borrowing across all students presented in Table 3. Recall that freshmen receiving these letters have already taken out at least \$6,250 in loans. Given the magnitude of the effect on their borrowing, freshmen may be particularly appropriate targets for information about student loans. Furthermore, these effects appear to apply to a large fraction of the distribution: Column (5) shows that 28 percent of freshmen reduced their loan amounts in the subsequent semester due to the intervention. Because the letters were distributed in November, around the time when students make decisions about withdrawing from courses and studying for finals, we also look at performance and credits completed in the semester of the intervention. Table 5 shows that the intervention increases semester GPAs by 0.05 for all students and by 0.12 points for freshmen. Students are also more likely to complete the courses they are enrolled in, finishing the semester with 0.14 more credits for all students and 0.68 more credits ¹³We find no change in work-study participation as a result of the intervention. We do not have any data on external employment while in college. ¹⁴This analysis no longer controls for standing in school or cumulative credits, as these no longer have much variation. for freshmen. This finding suggests that the counseling increased students attention to their current-semester courses and that early interventions for freshmen are particularly effective. With these data, it is difficult to unambiguously identify financial "mistakes" that students make and potentially correct subsequent to the intervention. The closest approximation to potential "mistakes" we can identify relate to the number of credits taken. Students must enroll in at least 6 credit hours to be eligible for most federal and state aid (with the exception of Pell Grants), and they must be full time (12 credits or more) to receive a full Pell Grant or scholarship. Tuition and fees are constant above 12 credits, implying that the marginal financial cost for enrolling in more than 12 credits is zero. In order to complete the standard graduation credit requirements in four years, students need to enroll in 15 credits each semester. This objective implies that one potential improvement for many students would be to enroll in 15 credits instead of 12 credits, with no marginal financial cost. Students may be especially likely to enroll in more credits in the semester after they receive the letter. A second mistake would be to withdraw from classes in the current semester and jeopardize financial aid in the subsequent semester. To be eligible for aid in the subsequent semester, students must complete at least 67 percent of credits attempted. For example, a student taking 9 credits could not withdraw from a 3-credit class without losing eligibility for aid the next semester. For students taking more than 9 credits, withdrawing from a single 3-credit class would not affect future financial aid. Indeed, the letter provides explicit information both about the need to pass 67 percent of classes and about registering for 15 or more credits a semester. To investigate whether the effects are driven by uniformly higher credit-taking across the distribution or by larger changes from students at the margin of sub-optimal and optimal choices, we examine the effect of the letter and counseling offer across the distribution of credits. Table 6 reports the effects at two points: the effect of the intervention on the probability of taking at least 9 credits, and the probability of taking at least 15 credits. For both outcomes, we again examine the
effect in the current semester and in the subsequent semester. Columns (1) and (2) show that while the letter and counseling offers increased both probabilities in the current semester, the effect is greater for the probability of taking at least 15 credits. Column (2) of Panel B reports that freshmen who receive the intervention are nearly 5 percentage points more likely to complete at least 15 credits in that semester. The specifications that examine future credits in Columns (3) and (4) also condition on the number of credits taken the semester the letter was received. These specifications further help to center the analysis on potential corrections of past "mistakes." Some students likely balance other time or psychological constraints that lead them to consistently enroll in 12 credits even though the financial cost of an additional course to earn 15 credits is zero. If students were behaving optimally, the intervention would then have no effect after conditioning on the typical credit load. However, the specifications in Column (4) indicate that even conditioning on past credits, students who received the intervention were 2.5 percentage points more likely to enroll in 15 or more credits the following semester. ¹⁵ Tables 3 through 6 indicate that current and subsequent semester behaviors are significantly affected by the counseling intervention in ways that appear to indicate that students are correcting previous mistakes after receiving additional information. However, it may be that the letters have negative effects on academic outcomes if they cause students to become discouraged and drop out of the university. If subsequent semester outcomes are driven by the fact that some students select out of college completion, the results may overstate the positive effects on academic achievement. This does not appear to be the case. Table 7 examines the effect of the counseling intervention on student retention. This table reports retention two different ways: Columns (1) and (3) report whether the student was still enrolled and taking courses in the subsequent semester, and Columns (2) and (4) report whether the student was still enrolled and taking courses in the subsequent fall semester or one year later. The results indicate that the effects are ¹⁵While the magnitude is comparable for freshmen in Panel B, it is no longer statistically different from zero. again greatest for freshmen, for whom the counseling intervention increased the probability of retention by 3.6 percentage points in the next year. This effect is not statistically different from zero when upper-classmen are included in the analysis, showing that the information may not be as relevant for students who have already made decisions about whether to stay in college or drop out. #### 5.1 Heterogeneity We next look at potentially heterogeneous effects of the intervention in Table 8. Panel A begins by replicating Table 3 for four different sub-samples: borrowers above the Stafford subsidized limit, Pell recipients, females, and non-white students. Panel B replicates Columns (1) and (2) of Table 5 and Columns (1) and (2) of Table 6 for the same subgroups. Students that borrowed more than the subsidized Stafford limits in the Fall reduced their loan amounts in the subsequent semester 9 percent more than the average effect (Column (4)) reported in Table 3. These students further responded to the intervention by increasing their average credits by 0.21 in the subsequent semester. This could be a result of the letters' specific advice about the number of credits to take: "At MSU, tuition doesn't cost a penny more after you've registered for 12 credits in a semester. Please consider registering for more credits to graduate sooner and spend less on tuition!" These students also respond by improving their GPA by 30 percent more than the average effect, 0.065 points in the subsequent semester. This could be a direct response to the advice that "you must pass 67% of your classes each semester to meet the Satisfactory Academic Progress requirements to continue receiving student loan financing." Further, this group is more likely to respond by declaring a STEM major next semester. In unreported results, we find that the intervention reduced the probability of being over the Stafford subsidized limit in the subsequent semester by 26 percent for those that were above the Stafford subsidized limit in the given semester. This suggests that the letter makes students more cautious about excess borrowing. In the current semester (Panel B), students above the Stafford subsidized limit and exposed to the intervention finish 0.23 credits more, on average, and are 1.7 percentage points more likely to be retained in the next year. The next group we study is Pell grant recipients, who come from the lowest-income households. On average, the effect sizes for this group are consistent with the average effects in Table 3 in terms of loan amounts. This finding is consistent with Johnson (2013), who suggests that even though low-income individuals are credit constrained, they will not borrow more due to uncertainty of future earnings and employment. However, like the borrowers above Stafford limits, they are more likely to improve their academic performance, finishing more credits and with a higher GPA in the semester following the intervention than the average effect. These students also seem to respond to the letter by focusing more on the current semester. The effect size for this group is larger for current-semester GPA and current-semester credits, meaning that these students are most likely to complete courses they would have otherwise dropped and to focus on doing well in their final exams. Pell recipients are also most likely to be retained one year after receiving the letters; they increase their probability of being in school next year by nearly 3 percentage points. Given that we find no effect of the intervention on this retention measure for the full sample, this targeted effect on a relatively high-risk group is an interesting finding. Female students seem to respond to the letters by focusing more closely on academics, achieving higher GPAs the subsequent semester with an effect size almost double that of the average result. However, the effect on current semester GPA for females is the same as the average effect. Females do not respond to the intervention by completing more credits in the current or subsequent semesters and are no more likely to be retained. They also do not declare STEM majors at a higher rate because of the intervention. Females do respond by taking out less debt in the next semester, reducing their loan amount by an average of \$1,668. This amount is greater than the average effect, \$1,361, showing that female students may either be more risk-averse or more influenced by information on their debt amount and future salary. We find that the intervention produced no changes for non-white students in next-semester GPA, next-semester credits completed, the declaration of a STEM major, current-semester GPA, current-semester credits, or retention. However, even these students reduced their loan amounts by approximately \$1,159, though this is lower than the average effect. Note that in our data, only 13 percent of the student body is non-white, and these students are disproportionately American Indian. Caution should be taken in extending these results to other groups. #### 5.2 Discussion There are a few components to the experimental design that are worth mentioning. First, while we know the specific rules used to determine who would receive the letters, we do not know who exactly received the letters. In addition, the number of students who should have received letters, according to our counts, is slightly greater than the number of students to whom the Center for Student Success actually sent letters. ¹⁶However, this slight discrepancy would lead to a downward bias in our results relative to the actual effect size, as we classify students as receiving the intervention when they did not. Second, we do not know which students who received letters also chose the one-on-one counseling. Counseling was available for all students on both campuses, though it was not incentivized for the general population (no gift card). We cannot separately identify the effects of the counseling and the letter. It could be the case that the letter, even without the counseling option, is producing the estimated effects by making students cognizant of how much they are borrowing, that their borrowing levels are determined to be risky, and by providing advice about credits, pass rates, and future repayment options. The letter may also be a signal for students to visit with their academic advisor or talk with their parents about their finances, or simply to independently change their behavior because ¹⁶This difference could be due to refunds of student loans or a difference in the loan amounts at the given date in the data versus the loan amount on the given date for the Centers records. of the way their borrowing amounts are targeted, while their friends or roommates may have not received a similar letter. Third, there may be spillover effects present. For example, at-risk students who received a letter may see the counseling option and tell their roommates about their financial struggles or their experience at a counseling session. Even if the at-risk student does not go to counseling, his roommate can still see a one-on-one financial counselor at no charge. If the roommate attends, this bias would understate the true effects of the intervention. Fourth, while we know that the letter provided some relevant information for student borrowers, we do not know if it is the information, the nudges in the letter, or the getting the letter when your peers did not that changed behavior. Fifth, this is a sample of students in Montana and should be extrapolated away to other
states, private schools, and two-year schools with caution. ### 6 Conclusions Our study emphasizes the importance of high-quality administrative data for understanding student loans at the individual versus aggregate levels. The MUS data make it possible to evaluate interventions at both the university and federal levels without survey or aggregated data, allowing us to precisely identify the effects of a policy that varied both within a given university and across institutions. We find that students who received targeted information about debt levels and counseling offers increased semester GPAs and credits, were more likely to switch to a STEM major, and reduced borrowing levels in the subsequent semester relative to their peers. These estimates rely on comparisons with similar peers in pre-intervention periods, other borrowers with loans below the thresholds, and similar peers in the same time period at a comparable institution. Switching to a STEM major and reducing borrowing were particularly pronounced for freshman receiving the intervention, as their rate of choosing STEM majors increased by 11 percentage points and borrowing fell by about one-third. We also find that females are particularly likely to improve grades because of the intervention, while Pell grant recipients and borrowers above Stafford subsidized limits are more likely to change to a STEM major. Overall, this relatively low-cost intervention that provided financial information and offered counseling to students with potentially risky levels of debt led to large behavioral changes. However, it is not clear that a blanket policy of uniformly provided loan information to all students regardless of debt level would be as effective as this targeted intervention. This study comes at the wake of recent research on the increasing student loan default rates, where 90 or more day default rates are 11.5% (Federal Reserve Bank of New York 2015). Looney and Yannelis (2015) point out that some of this increase is explained by an increase in student borrowing at low quality for-profit and community colleges, where half of borrowers exiting school in 2011 attending a for-profit or two-year college. At the same time, these individuals comprised 70% of defaulters (Looney and Yannelis 2015). While policymakers and the media are concerned with the rising cost of college at highend private universities, as well as the presence of low-quality for-profit and community colleges, less focus is concentrated around public four-year institutions even though they educate 72% of all postsecondary students (for Education Statistics 2013). This paper provides insight into this understudied yet large portion of the population. #### References - Agarwal, Sumit, John C. Driscoll, Xavier Gabaix, and David Laibson. 2009. "The Age of Reason: Financial Decisions over the Lifecycle with Implications for Regulation." *Brookings Papers on Economic Activity*, Fall: 51–117. - Angrist, Joshua, Daniel Lang, and Philip Oreopoulos. 2009. "Incentives and Services for College Achievement: Evidence from a Randomized Trial." American Economic Journal: Applied Economics, 1(1): 136–163. - **Avery, Christopher, and Sarah Turner.** 2012. "Student Loans: Do College Students Borrow Too Much Or Not Enough?" *The Journal of Economic Perspectives*, 26(1): 165–192. - Bernheim, B. Douglas, Daniel M. Garrett, and Dean M. Maki. 2001. "Education and saving: The long-term effects of high school financial curriculum mandates." *Journal of Public Economics*, 80(3): 435–465. - Bettinger, Eric P, Bridget Terry Long, Philip Oreopoulos, and Lisa Sanbonmatsu. 2009. "The role of simplification and information in college decisions: Results from the H&R Block FAFSA experiment." National Bureau of Economic Research Working Paper Series, No. 15361. - Booij, Adam S., Edwin Leuven, and Hessel Oosterbeek. 2012. "The role of information in the take-up of student loans." *Economics of Education Review*, 31(1): 33–44. - Brown, Meta, Andrew Haughwout, Donghoon Lee, Joelle Scally, and Wilbert van der Klaauw. 2015. "The Student Loan Landscape." *Liberty Street Economics*, February 18, 2015. - Brown, Meta, Wilbert van der Klaauw, Jaya Wen, and Basit Zafar. 2013. "Financial Education and the Debt Behavior of the Young." Federal Reserve Bank of New York Staff Report, Number 634. - Busse, Meghan R., Nicola Lacetera, Devin G. Pope, Jorge Silva-Risso, and Justin R. Sydnor. 2013. "Estimating the Effect of Salience in Wholesale and Retail Car Markets." *American Economic Review*, 103(3): 575–79. - Calvet, Laurent E., John Y. Campbell, and Paolo Sodini. 2007. "Down or out: Assessing the welfare costs of household investment mistakes." *Journal of Political Economy*, 115: 707–747. - Calvet, Laurent E., John Y. Campbell, and Paolo Sodini. 2009. "Measuring the Financial Sophistication of Households." *American Economic Review*, 99(2): 301–348. - Castleman, Benjamin L., and Bridget Terry Long. 2013. "Looking Beyond Enrollment: The Causal Effect of Need-Based Grants on College Access, Persistence, and Graduation." National Bureau of Economic Research Working Paper Series, No. 19306. - Chetty, Raj, Adam Looney, and Kory Kroft. 2009. "Salience and Taxation: Theory and Evidence." *American Economic Review*, 99(4): 1145–77. - Cohodes, Sarah R., and Joshua S. Goodman. 2014. "Merit Aid, College Quality, and College Completion: Massachusetts' Adams Scholarship as an In-Kind Subsidy." *American Economic Journal: Applied Economics*, 6(4): 251–85. - Consumer Financial Protection Bureau. 2012. "Private Student Loans." - **Deming, David, and Susan Dynarski.** 2009. "Into College, Out of Poverty? Policies to Increase the Postsecondary Attainment of the Poor." *National Bureau of Economic Research Working Paper Series*, No. 15387. - **DesJardins, Stephen L., and Brian P. McCall.** 2007. "The Impact of the Gates Millenium Scholars Program on Selected Outcomes of Low-Income Minority Students: A Regression Discontinuity Analysis." *Bill and Melinda Gates Foundation Working Paper*. - **Dettling, Lisa J., and Joanne W. Hsu.** 2014. "Returning to the Nest: Debt and Parental Co-Residence Among Young Adults." *FEDS Working Paper No.* 2014-80. - Dynarski, Susan M, and Judith E Scott-Clayton. 2006. "The cost of complexity in federal student aid: Lessons from optimal tax theory and behavioral economics." National Bureau of Economic Research Working Paper Series, No. 12227. - Federal Reserve Bank of New York. 2015. "Quarterly Report on Household Debt and Credit." Microeconomic Surveys Sections Report. - Fernandez, Chris, Carla Fletcher, Kasey Klepfer, and Jeff Webster. 2015. "A Time to Every Purpose: Understanding and Improving the Borrower Experience with Online Student Loan Entrance Counseling." TG Research and Analytical Services. - Finkelstein, Amy. 2009. "E-Z Tax: Tax Salience and Tax Rates." The Quarterly Journal of Economics, 124(3)(3): 969–1010. - **Johnson, Matthew T.** 2013. "Borrowing constraints, college enrollment, and delayed entry." *Journal of Labor Economics*, 31(4): 669–725. - Lochner, Lance, and Alexander Monge-Naranjo. 2011. "Credit Constraints in Education." National Bureau of Economic Research Working Paper Series, No. 17435. - Lochner, Lance, and Alexander Monge-Naranjo. 2015. "Student Loans and Repayment: Theory, Evidence and Policy." *National Bureau of Economic Research Working Paper Series*, No. 20849. - Looney, Adam, and Constantine Yannelis. 2015. "A crisis in student loans? How changes in the characteristics of borrowers and in the institutions they attended contributed to rising loan defaults." *Brookings Papers on Economic Activity*, Fall. - **Lusardi, Annamaria, and Peter Tufano.** 2009. "Debt literacy, financial experiences, and overindebtedness." *National Bureau of Economic Research Working Paper Series*, No. W14808. - National Center for Education Statistics. 2013. "Digest of Education Statistics." - Rothstein, Jesse, and Cecilia Elena Rouse. 2011. "Constrained after college: Student loans and early-career occupational choices." *Journal of Public Economics*, 95(1–2): 149–163. - **Tennyson, Sharon, and Chau Nguyen.** 2001. "State curriculum mandates and student knowledge of personal finance." *Journal of Consumer Affairs*, 35(2): 241–262. - Urban, Carly J., Maximilian D. Schmeiser, J. Michael Collins, and Alexandra M. Brown. 2014. "State Mandated Financial Education and the Credit Behavior of Young Adults." Federal Reserve Board Finance and Economics Discussion Series, No. 2014-68. - U.S. Department of Education. 2014. "Fiscal Year 2015 Department of Education Justifications of Appropriation Estimates to the Congress." Government Document, U.S. Department of Education. - Walstad, William B, and Stephen Buckles. 2008. "The national assessment of educational progress in economics: Findings for general economics." *The American Economic Review*, 98(2): 541–546. ## 7 Tables Table 1: Summary Statistics | | Observations | Mean | Std. Dev. | |------------------------------------|--------------|--------|-----------| | Academic Characteristics | | | | | Semester GPA | 255,076 | 2.79 | 1.03 | | Semester Credits | 255,076 | 12.23 | 4.44 | | STEM Major | 255,785 | 0.42 | 0.49 | | Retention next semester | $245,\!271$ | 0.798 | 0.401 | | Retention next year | 208,262 | 0.759 | 0.428 | | Loan Characteristics | | | | | Loan Amount for Borrowers (\$000s) | 255,785 | 4.20 | 2.75 | | Non-loan Aid for Borrowers | 255,785 | 1.283 | 2.040 | | Student Characteristics | | | | | White | 255,785 | 0.87 | 0.33 | | Male | 255,785 | 0.48 | 0.50 | | Pell | 255,785 | 0.50 | 0.50 | | Census Characteristics | | | | | % Some College | 254,614 | 30.70 | 3.63 | | % HS Education | 254,614 | 23.10 | 7.70 | | % No HS Education | 254,614 | 5.98 | 3.34 | | % Non-White | 254,614 | 7.34 | 7.02 | | Median Household Income | 254,614 | 46,218 | 13,460 | | Population Density | 254,640 | 1,355 | 2,106 | | Urban Area | 235,047 | 0.82 | 0.39 | | Unique Students | 57,334 |
 | Notes: Separate summary statistics for University of Montana and Montana State University pre- and post-intervention are presented in Appendix Table A1. Table 2: Letter Descriptive Statistics | | Intended Letter | | No 1 | Letter | |-------------------------------|-----------------|------------|---------|------------| | | Montana | University | Montana | University | | | State | Montana | State | Montana | | Number Freshmen | 1,584 | 967 | 1,863 | 1,373 | | Number Sophomores | 1,204 | 1,110 | 909 | 882 | | Number Juniors | 1,105 | $1,\!155$ | 960 | 1,048 | | Number Seniors | 1,369 | 1,473 | 1,159 | 1,228 | | STEM Major | 3,142 | $1,\!457$ | 2,904 | 1,461 | | Cumulative Loan amount Fall | 28.9 | 28.9 | 8.7 | 9.0 | | Cumulative Loan amount Spring | 33.1 | 34.9 | 11.8 | 12.8 | Notes: Data for Fall 2012 and Fall 2013 only. Cumulative loan amounts in thousands. Table 3: Effect of Letters on Outcomes in Next Semester | | (1) | (2) | (2) | (4) | (F) | |---|-----------|-----------------|--------------------|-----------------|---------------------| | | (1) | (2)
Semester | (3)
STEM | (4) | (5) | | | GPA | Credits | | Loan | Loan
Amount Fell | | T attain | -0.159*** | -0.433*** | Major
-0.041*** | Amount 2.315*** | 0.026*** | | Letter | | | | | | | | (0.011) | (0.048) | (0.006) | (0.034) | (0.004) | | Montana State | -0.050*** | 0.201*** | 0.159*** | 0.035** | 0.048*** | | | (0.008) | (0.033) | (0.005) | (0.012) | (0.002) | | Montana State \times Letter | 0.075*** | 0.218*** | 0.038*** | -0.182*** | 0.039*** | | | (0.015) | (0.065) | (0.009) | (0.045) | (0.006) | | Montana State \times Letter \times Post | 0.045* | 0.066 | 0.019^{+} | -1.361*** | 0.178*** | | Montana State X Letter X 1 ost | (0.043) | (0.087) | (0.019) | (0.065) | (0.008) | | | (0.019) | (0.007) | (0.010) | (0.003) | (0.008) | | White | 0.191*** | 0.851*** | 0.016** | -0.094*** | 0.004^{+} | | | (0.009) | (0.038) | (0.005) | (0.016) | (0.002) | | Male | -0.257*** | -0.598*** | 0.189*** | -0.010 | -0.005*** | | | (0.006) | (0.023) | (0.003) | (0.010) | (0.002) | | Pell Dummy | -0.124*** | -0.943*** | -0.046*** | -0.152*** | -0.006** | | | (0.007) | (0.028) | (0.004) | (0.014) | (0.002) | | Cumulativel Credits | 0.009*** | 0.043*** | 0.001*** | 0.003*** | -0.001*** | | Cumulativer Credits | (0.000) | (0.001) | (0.001) | (0.000) | (0.000) | | | , | , | , | , | , | | Number Semesters | -0.066*** | -0.462*** | -0.004*** | -0.080*** | 0.006*** | | | (0.002) | (0.009) | (0.001) | (0.003) | (0.000) | | Loan to Tuition Ratio | -0.128*** | -0.394*** | -0.030*** | 3.345*** | 0.278*** | | | (0.006) | (0.027) | (0.003) | (0.012) | (0.002) | | Non-loan Aid | 0.038*** | 0.218*** | 0.006*** | -0.045*** | 0.009*** | | | (0.001) | (0.006) | (0.001) | (0.002) | (0.000) | | Observations | 203237 | 203237 | 203984 | 203984 | 203984 | | Adjusted R^2 | 0.089 | 0.083 | 0.087 | 0.530 | 0.205 | Notes: Standard errors are clustered at the individual student level and are reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Dependent variables are all for the subsequent (Spring) semester. Loan Amount Fell is a dummy variable equal to one if the semester loan in the Spring semester was lower than the Fall semester loan amount. Specifications condition on having loans in current semester. All models control for ZIP codelevel characteristics from the American Community Survey, including percent no high school education, percent high school education, percent some college, percent non-white, population density, and median household income. We also control for whether or not the individual is from a metropolitan statistical area (MSA) with over 25,000 residents as a proxy for urbanicity. All models include year fixed effects. Table 4: Effect of Letters on Outcomes in Next Semester, Freshmen Only | | (1) | (2) | (3) | (4) | (5) | |---|-----------|-------------|---------------------------|-----------|-------------| | | ` ' | Semester | $\widetilde{\text{STEM}}$ | Loan | Loan | | | GPA | Credits | Major | Amount | Amount Fell | | Letter | -0.033 | 0.292* | 0.014 | 5.169*** | 0.076*** | | | (0.032) | (0.133) | (0.014) | (0.082) | (0.012) | | Montana State | 0.042 | 0.221^{+} | 0.090*** | 0.246*** | 0.009 | | | (0.027) | (0.116) | (0.011) | (0.036) | (0.009) | | Montana State \times Letter | -0.053 | -0.505** | -0.009 | -0.695*** | 0.087*** | | | (0.041) | (0.180) | (0.019) | (0.109) | (0.017) | | Montana State \times Letter \times Post | 0.007 | 0.303 | 0.106*** | -1.882*** | 0.280*** | | | (0.053) | (0.246) | (0.024) | (0.214) | (0.022) | | White | 0.257*** | 1.084*** | 0.037*** | -0.063 | -0.000 | | | (0.024) | (0.109) | (0.010) | (0.052) | (0.008) | | Male | -0.270*** | -0.879*** | 0.190*** | 0.037 | -0.004 | | | (0.014) | (0.063) | (0.007) | (0.029) | (0.005) | | Pell Dummy | -0.327*** | -1.687*** | -0.060*** | -0.204*** | -0.018** | | v | (0.017) | (0.075) | (0.008) | (0.033) | (0.006) | | Loan to Tuition Ratio | -0.803*** | -4.147*** | -0.086*** | 3.904*** | 0.208*** | | | (0.039) | (0.166) | (0.019) | (0.075) | (0.017) | | Non-loan Aid | 0.070*** | 0.347*** | 0.017*** | -0.072*** | 0.021*** | | | (0.005) | (0.021) | (0.002) | (0.010) | (0.002) | | Observations | 21560 | 21560 | 21562 | 21562 | 21562 | | Adjusted R^2 | 0.070 | 0.089 | 0.071 | 0.534 | 0.460 | Notes: Standard errors are clustered at the individual student level and are reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Dependent variables are all for the subsequent (Spring) semester. Loan Amount Fell is a dummy variable equal to one if the semester loan in the Spring semester was lower than the Fall semester loan amount. Specifications condition on having loans in current semester. All models control for ZIP codelevel characteristics from the American Community Survey, including percent no high school education, percent high school education, percent some college, percent non-white, population density, and median household income. We also control for whether or not the individual is from a metropolitan statistical area (MSA) with over 25,000 residents as a proxy for urbanicity. All models include year fixed effects. Table 5: Effect of Letters on Current Semester Outcomes, All Students and Freshmen Only | | All Students | | Freshmen Only | | | |---|------------------|------------------|------------------|------------------|--| | | $\overline{(1)}$ | $\overline{(2)}$ | $\overline{(3)}$ | $\overline{(4)}$ | | | | ĠPA | Credits | ĠPA | Credits | | | Letter | -0.013 | 0.117** | 0.000 | 0.770*** | | | | (0.010) | (0.043) | (0.028) | (0.120) | | | Montana State | 0.089*** | 0.681*** | 0.145*** | 0.515*** | | | | (0.007) | (0.030) | (0.024) | (0.097) | | | Montana State \times Letter | 0.051*** | 0.434*** | -0.090* | -0.856*** | | | Montalia State × Letter | (0.014) | (0.056) | (0.037) | (0.157) | | | Montana State \times Letter \times Post | 0.051** | 0.135^{+} | 0.115* | 0.680*** | | | Montana State × Letter × 1 ost | (0.017) | (0.072) | (0.046) | (0.205) | | | White | 0.212*** | 0.967*** | 0.230*** | 1.274*** | | | White | (0.008) | (0.034) | (0.022) | (0.092) | | | | , | , | , | , , | | | Male | -0.264*** | -0.579*** | -0.251*** | -0.603*** | | | | (0.005) | (0.021) | (0.013) | (0.053) | | | Pell Dummy | 0.008 | -0.478*** | -0.300*** | -1.637*** | | | | (0.006) | (0.026) | (0.015) | (0.064) | | | Cumulative Credits | 0.011*** | 0.065*** | | | | | | (0.000) | (0.001) | | | | | Number Semesters | -0.099*** | -0.675*** | | | | | | (0.002) | (0.008) | | | | | Loan to Tuition Ratio | -0.359*** | -1.256*** | -1.129*** | -6.392*** | | | | (0.006) | | (0.032) | (0.130) | | | Non-loan Aid | 0.043*** | 0.249*** | 0.075*** | 0.367*** | | | 1.011 10011 1110 | (0.001) | (0.005) | (0.004) | (0.018) | | | Observations | 236,200 | 236,200 | 23,993 | 23,993 | | | Adjusted R^2 | 0.139 | 0.171 | 0.099 | 0.147 | | Notes: Standard errors are clustered at the individual student level and are reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Dependent variables are all for the current (Fall) semester. Specifications condition on having loans in current semester. All models control for ZIP codelevel characteristics from the American Community Survey, including percent no high school education, percent high school education, percent some college, percent non-white, population density, and median household income. We also control for whether or not the individual is from a metropolitan statistical area (MSA) with over 25,000 residents as a proxy for urbanicity. All models include year fixed effects. Table 6: Effect of Letters on Distribution of Credits in Current and Next Semester | Panel A: All Students | | | | | |--|--|--|--|---| | | (1) | (2) | (3) | (4) | | | Current | Semester | Next Se | $\underline{\mathrm{emester}}$ | | | ≥ 9 | ≥ 15 | ≥ 9 | ≥ 15 | | | Credits | Credits | Credits | Credits | | | 0.017^* | 0.023** | -0.003 | 0.025** | | | (0.007) | (0.009) | (0.007) | (0.009) | | Current Credits ≥ 9 | | | 0.411^{***} | | | | | | (0.005) | | | Current Credits ≥ 15 | | | | 0.307^{***} | | | | | | (0.003) | | Observations | 122,370 | 122,370 | 107,023 | 107,023 | | Adjusted R^2 | 0.119 | 0.094 | 0.191 | 0.156 | | | | | | | | Panal B. Brochman Students (Inl | | | | | | Panel B: Freshmen Students Onl | <u> </u> | (2) | (0) | (4) | | Taner B. Freshmen
Students On | (1) | (2) | (3) | (4) | | Tanei D. Freshmen Students Om | (1)
Current | Semester | Next Se | $\underline{\mathrm{emester}}$ | | Tanei D. Freshmen Students Om | $ \begin{array}{c} (1) \\ \underline{\text{Current}} \\ \geq 9 \end{array} $ | $\frac{\text{Semester}}{\geq 15}$ | $\frac{\text{Next So}}{\geq 9}$ | $\frac{\text{emester}}{\geq 15}$ | | | $\begin{array}{c} (1) \\ \underline{\text{Current}} \\ \geq 9 \\ \text{Credits} \end{array}$ | $\frac{\text{Semester}}{\geq 15}$ Credits | $\frac{\text{Next So}}{\geq 9}$ Credits | $\frac{\text{emester}}{\geq 15}$ $\frac{\text{Credits}}{}$ | | Montana State × Letter × Post | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | | | | $\begin{tabular}{ll} \hline Montana State \times Letter \times Post \\ \hline \end{tabular}$ | $\begin{array}{c} (1) \\ \underline{\text{Current}} \\ \geq 9 \\ \text{Credits} \end{array}$ | $\frac{\text{Semester}}{\geq 15}$ Credits | $ \frac{\text{Next So}}{\geq 9} $ Credits $ -0.012 $ $ (0.019) $ | $\frac{\text{emester}}{\geq 15}$ $\frac{\text{Credits}}{}$ | | | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | | | | $\begin{tabular}{ll} \hline Montana State \times Letter \times Post \\ \hline \end{tabular}$ | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | $ \frac{\text{Next So}}{\geq 9} $ Credits $ -0.012 $ $ (0.019) $ | | | $\begin{tabular}{ll} \hline Montana State \times Letter \times Post \\ \hline \end{tabular}$ | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | | $\frac{\text{emester}}{\geq 15}$ $\frac{\text{Credits}}{0.022}$ (0.022) 0.241^{***} | | Montana State \times Letter \times Post Current Credits ≥ 9 Current Credits ≥ 15 | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | | $ \frac{\text{emester}}{\geq 15} \\ \frac{\text{Credits}}{0.022} \\ (0.022) $ | | $\frac{\text{Montana State} \times \text{Letter} \times \text{Post}}{\text{Current Credits} \geq 9}$ | (1) Current ≥ 9 Credits -0.013 | $\frac{\text{Semester}}{\geq 15}$ $\frac{\text{Credits}}{0.047^*}$ | | $\frac{\text{emester}}{\geq 15}$ $\frac{\text{Credits}}{0.022}$ (0.022) 0.241^{***} | Notes: Standard errors are clustered at the individual student level and are reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Dependent variables are all for the current (Fall) semester. Specifications condition on having loans in current semester. All models control for ZIP codelevel characteristics from the American Community Survey, including percent no high school education, percent high school education, percent some college, percent non-white, population density, and median household income. We also control for whether or not the individual is from a metropolitan statistical area (MSA) with over 25,000 residents as a proxy for urbanicity. All models include year fixed effects. Table 7: Effect of Letters on Retention, All Students and Freshmen Only | | All Stu | dents | Freshme | n Only | |---|------------------|------------------|------------------|---------------------| | | $\overline{(1)}$ | $\overline{(2)}$ | $\overline{(3)}$ | $\overline{(4)}$ | | | Retained | Retained | Retained | Retained | | | 1 Semester | 1 Year | 1 Semester | 1 Year | | Letter | 0.002 | 0.002 | 0.009 | 0.032*** | | | (0.006) | (0.004) | (0.012) | (0.007) | | Montana State | 0.042*** | 0.032*** | 0.034** | 0.028*** | | | (0.006) | (0.004) | (0.010) | (0.008) | | Montana State \times Letter | -0.020* | -0.000 | -0.031+ | -0.019 ⁺ | | | (0.008) | (0.006) | (0.017) | (0.010) | | Montana State \times Letter \times Post | 0.018^{+} | 0.011 | 0.045^{*} | 0.036** | | | (0.009) | (0.008) | (0.019) | (0.012) | | White | 0.031*** | 0.016*** | 0.040*** | 0.021*** | | | (0.006) | (0.004) | (0.009) | (0.006) | | Male | -0.013*** | 0.003 | -0.033*** | -0.003 | | | (0.003) | (0.003) | (0.006) | (0.004) | | Pell Dummy | -0.049*** | -0.030*** | -0.077*** | -0.037*** | | | (0.004) | (0.003) | (0.007) | (0.004) | | Cumulative Credits | 0.007*** | 0.007*** | | | | | (0.000) | (0.000) | | | | Number Semesters | -0.051*** | -0.063*** | | | | | (0.002) | (0.002) | | | | Loan to Tuition Ratio | -0.162*** | -0.137*** | -0.226*** | -0.147*** | | | (0.010) | (0.007) | (0.015) | (0.010) | | Non-loan Aid | 0.011*** | 0.011*** | 0.015*** | 0.013*** | | | (0.001) | (0.001) | (0.002) | (0.001) | | Observations | 55,127 | 59,914 | 22,057 | 23,845 | | Adjusted R^2 | 0.240 | 0.085 | 0.201 | 0.052 | Notes: Standard errors are clustered at the individual student level and reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Retained 1 semester and Retained 1 year are dummy variables equal to one if the student continued to matriculate in the given timeframe. Specifications condition on having loans in current semester. All models control for ZIP codelevel characteristics from the American Community Survey, including percent no high school education, percent high school education, percent some college, percent non-white, population density, and median household income. We also control for whether or not the individual is from a metropolitan statistical area (MSA) with over 25,000 residents as a proxy for urbanicity. Models include year fixed effects. Table 8: Heterogeneous Effects Panel A: Next Semester Outcomes | | (1) | (2) | (3) | (4) | |--|--|--|---|---| | | () | () | $\stackrel{\frown}{\mathrm{STEM}}$ | Loan | | | GPA | Credits | Major | Amount | | Borrowers Above Stafford Su | ıbsidized | Loan Ai | nounts | | | Montana State \times Letter \times Post | 0.065^{**} | 0.206^{*} | 0.034^{**} | -1.490*** | | | (0.021) | (0.096) | (0.011) | (0.069) | | Observations | 94,995 | 94,995 | $95,\!321$ | 95,321 | | Pell Recipients | | | | | | Montana State \times Letter \times Post | 0.061* | 0.284* | 0.034* | -1.359*** | | | (0.031) | (0.136) | (0.015) | (0.072) | | Observations | $54,\!341$ | 54,341 | 54,500 | 54,500 | | Female | | | | | | Montana State \times Letter \times Post | 0.082** | 0.139 | 0.016 | -1.668*** | | | (0.030) | (0.129) | (0.016) | (0.095) | | Observations | 56,208 | 56,208 | $56,\!435$ | $56,\!435$ | | Non-White | | | | | | Montana State \times Letter \times Post | -0.005 | 0.108 | 0.016 | -1.159*** | | | (0.061) | (0.273) | (0.031) | (0.200) | | Observations | $13,\!275$ | 13,275 | 13,313 | 13,313 | | De al D. C. and Grander O. And | 1 . | D . 4 4 | | | | Panel B: Current Semester Outco | | | (2) | (4) | | | | | | | | | (1) | (2) | (3) | (4) | | | , | () | Retained | Retained | | Domowons Above Stafford Sv | GPA | Credits | Retained
1 Semester | ` ' | | Borrowers Above Stafford Su | GPA
ıbsidized | Credits Loan A | Retained 1 Semester nounts | Retained
1 Year | | Borrowers Above Stafford Su
Montana State × Letter × Post | GPA obsidized 0.057** | Credits Loan Ai 0.231** | Retained 1 Semester mounts 0.013 | Retained
1 Year
0.017 ⁺ | | Montana State \times Letter \times Post | GPA absidized 0.057** (0.019) | Credits Loan Ai 0.231** (0.079) | Retained 1 Semester nounts 0.013 (0.008) | Retained
1 Year
0.017 ⁺
(0.009) | | Montana State \times Letter \times Post
Observations | GPA obsidized 0.057** | Credits Loan Ai 0.231** | Retained 1 Semester mounts 0.013 | Retained
1 Year
0.017 ⁺ | | Montana State × Letter × Post Observations Pell Recipients | GPA absidized 0.057** (0.019) 108,357 | Credits Loan Ai 0.231** (0.079) 108,357 | Retained 1 Semester nounts 0.013 (0.008) 53,010 | Retained
1 Year
0.017 ⁺
(0.009)
48,882 | | Montana State \times Letter \times Post
Observations | GPA lbsidized 0.057** (0.019) 108,357 0.072** | Credits Loan Ai 0.231** (0.079) 108,357 0.232* | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028* | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014) | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations | GPA lbsidized 0.057** (0.019) 108,357 0.072** | Credits Loan Ai 0.231** (0.079) 108,357 0.232* | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028* | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567 | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ | Credits Loan Ai 0.231**
(0.079) 108,357 0.232* (0.110) 63,246 0.082 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018 | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female Montana State × Letter × Post | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ (0.026) | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 0.082 (0.105) | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 (0.011) | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018
(0.013) | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female Montana State × Letter × Post Observations | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 0.082 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018 | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female Montana State × Letter × Post Observations Non-White | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ (0.026) 64,311 | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 0.082 (0.105) 64,311 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 (0.011) 31,191 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018
(0.013)
28,734 | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female Montana State × Letter × Post Observations | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ (0.026) 64,311 0.006 | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 0.082 (0.105) 64,311 0.298 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 (0.011) 31,191 0.028 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018
(0.013)
28,734
0.030 | | Montana State × Letter × Post Observations Pell Recipients Montana State × Letter × Post Observations Female Montana State × Letter × Post Observations Non-White | GPA absidized 0.057** (0.019) 108,357 0.072** (0.027) 63,246 0.050+ (0.026) 64,311 | Credits Loan Ai 0.231** (0.079) 108,357 0.232* (0.110) 63,246 0.082 (0.105) 64,311 | Retained 1 Semester nounts 0.013 (0.008) 53,010 0.007 (0.012) 29,267 0.009 (0.011) 31,191 | Retained
1 Year
0.017 ⁺
(0.009)
48,882
0.028*
(0.014)
26,567
0.018
(0.013)
28,734 | Notes: Standard errors clustered at the student level and reported in parentheses. $^+$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 Specifications condition on having loans in currents semester. All models include the same controls as Table 3. # 8 Appendix «First_Name» «Last_Name» «Address_Line1» «City», «State» «Zip» Dear «First Name», At Montana State University, we are serious about your education. We know higher education requires a real investment in time, energy, and financial resources, and we think you made a good choice by investing in yourself. However, we want to be sure the financial choices you make now do not negatively impact your future. To that end, we want you to *know your debt* and be informed of important programs and options at MSU as well as Federal Student Loan terms and conditions: - As of September 18, 2014, you have accepted \$ in student loan debt at Montana State University.* - Current federal loans for undergraduate students have interest rates as high as 6.8%. - In order to remain in good financial aid standing, you must pass 67% of your classes each semester to meet the Satisfactory Academic Progress requirements to continue receiving student loan financing. - When you are in the repayment period of your loans, there are multiple repayment plans available for you. For example, The Public Service Loan Forgiveness plan allows borrowers who work full-time at a qualifying public service organization to have the balance of their loans forgiven if they have made 120 on-time, full, scheduled monthly payments. - For more information about your current loan amount, please visit www.NSLDS.ed.gov. - At MSU, tuition doesn't cost a penny more after you've registered for 12 credits in a semester. Please consider registering for more credits to graduate sooner and spend less on tuition! Check out montana.edu/freshman15 for more information. Again, we want you to know we think you made an excellent decision to invest in your future. Generally, college graduates earn more, have a lower unemployment rate, and live longer than those who do not have a college degree. We want to be sure you find the right balance so that student loan debt isn't going to negatively affect your financial future. Schedule an appointment with a Financial Coach to learn more about repayment options, budgeting, and tips for managing your debt. To set up an appointment with a Financial Coach, call the Office of Financial Education at 406.994.4388 or email MakeChange@montana.edu. If you continue to accept student loans at this rate you will accrue a debt level that may become difficult to repay, which may place you at risk for defaulting on your loans. We are so certain an appointment with a Financial Coach will be beneficial we are willing to pay you to attend. When you meet with one of the Financial Coaches in the office by DATE, you will receive a \$20 gift card to help supplement grocery or gas expenditures. We also recommend you meet with a Career Coach. Outside of earning a degree, we believe one of the most important steps you can take to secure a solid financial future is to develop an internship and career plan. Your Financial Coach will refer you to a Career Coach during your first meeting to assist with this effort. Sincerely, ^{*}Please note, Nursing Loans, private education loans, and debt accrued at another institution are not included in this debt total. Loan balance does not reflect any payments or repayments made on the loans. To view your complete federal student loan borrowing history at all schools attended, please visit the National Student Loan Data System (NSLDS.ed.gov). Table 9: Letter Descriptive Statistics | | Monton | s State | University Montana | | | |-----------------------------|---------|---------|--------------------|----------|--| | | Montan | | | <u> </u> | | | | Pre | Post | Pre | Post | | | Academic Characteristics | | | | | | | Semester GPA | 2.777 | 2.804 | 2.807 | 2.812 | | | | (0.986) | (1.018) | (1.080) | (1.039) | | | Semester Credits | 12.202 | 12.164 | 12.299 | 12.119 | | | | (4.254) | (4.580) | (4.528) | (4.771) | | | STEM Major | 0.506 | 0.558 | 0.331 | 0.298 | | | | (0.499) | (0.497) | (0.471) | (0.457) | | | Retained following semester | 0.827 | 0.636 | 0.821 | 0.658 | | | | (0.378) | (0.481) | (0.383) | (0.474) | | | Retained Following Year | 0.785 | 0.478 | 0.777 | 0.537 | | | | (0.411) | (0.500) | (0.416) | (0.499) | | | Loan Characteristics | | | | | | | Loan Amount for Borrowers | 4.071 | 5.692 | 3.885 | 5.195 | | | | (2.546) | (4.087) | (2.437) | (3.142) | | | Non-loan aid for borrowers | 1.410 | 2.062 | 1.446 | 2.105 | | | | (1.626) | (2.319) | (1.495) | (1.948) | | | Student Characteristics | | | | | | | White | 0.894 | 0.860 | 0.858 | 0.850 | | | Male | 0.506 | 0.519 | 0.455 | 0.444 | | | Pell | 0.485 | 0.490 | 0.510 | 0.555 | | | Observations | 107,693 | 19,371 | 109,307 | 19,414 | | Notes: Data for all periods where Pre signifies before the intervention and Post contains all years after the intervention. Means reported with standard deviations in parentheses. Loan amounts in thousands.