Gaetano Antinolfi, Francesca Carapella*, Charles Kahn, Antoine Martin, David Mills, Ed Nosal

*Federal Reserve Board1

January 2nd, 2014

The Federal Reserve Day-Ahead Conference on Financial Markets and Institutions

Federal Reserve Bank of Philadelphia

¹The opinions are the authors' and do not necessarily reflect those of the Eederal Reserve Board or its staff

Question

Optimal bankruptcy policy for repos: exempt from automatic stay?

- ▶ A repo is a sale of securities coupled with an agreement to repurchase the securities at a specified price on a later date
- Automatic stay: creditors cannot collect debts due or seize/liquidate collateral in the event of bankruptcy

Answer

- ▶ Effects of exemption from automatic stay:
 - 1. Increases volume of trade in repo mkt
 - 2. May cause externalities on other mkts (fire sales)
- Our results: exemption optimal when
 - ▶ market for collateral assets is liquid ⇒ no externalities
 - on net, externalities are beneficial

Fire Sale

- Literature: associates fire sales with welfare loss due to financial mkt frictions
- ▶ Empirically: market for collateral assets is Over The Counter
- ▶ Model: fire sales arise when search friction gets worse

Why do we care

- ▶ Repo: large market (\$5-10 trillions in 2008) for funding and securities lending
- ▶ Repo lenders of large defaulting borrowers may (have to) sell lots of collateral ⇒ fire sales
 - ▶ 1998: Long Term Capital Management
 - ▶ 2008: Term Securities Lending/Primary Dealer Credit Facility
 - ► Stein: ...prices being below long-run fundamental values may involve externalities...securities financing transactions are a leading example of the kind of arrangement that can give rise to such externalities

Model

- ▶ 2 goods: a (durable), c (perishable)
- ▶ 4 types of agents, physically separated, can commit

Date 1 - Lenders and Borrowers

- Lender
 - produces c at date 1
 - ightharpoonup consumes c after date 1
 - ▶ likes c more than a
 - $U^L = -c_1 + u(c_2) + \gamma(a_2 + a_3) + c_3$ with $\gamma < 1$
- Borrower
 - ▶ likes a at date 2
 - produces c at date 2
 - can convert $c \rightarrow a$, 1 for 1
 - $\qquad \qquad V^B = a_2 c_2$
- Mutually beneficial trade between L and B

Date 2

- ightharpoonup w.p. δ a fraction Δ of borrowers die
- if $\delta > 0$ and borrower dies holding asset a, asset dies with him
 - e.g. asset loses value because of default costs

Date 3 - Traders and Investors

▶ Trader

ightharpoonup endowment: \overline{c} units of good c

 $\qquad \qquad \mathbf{Preferences:} \ U^T = a_3^T + c_3^T \\$

Investor

ightharpoonup endowment: \overline{a} units of good a

lacktriangle technology f produces good c using good c as an input

• f is increasing and $f'(\bar{c}) > 1$

• Preferences: $U^I = \overline{a} - a_3^I + f(c^I)$

 $\delta=0 \to {\rm boring}; \ \delta>0 \to {\rm interesting} \ ({\rm L \ may \ cause \ congestion})$

Summary

If B defaults: L keeps a_2

Date 3 Matching (OTC)

- $lackbox{}{}$ $M^{ij}=$ probability agent i is matched with agent j
- ightharpoonup assume Leontief matching function and $M^{jj}=0$
- no borrower dies: I matched with T

$$M^{IT} = \frac{\min(n^I, n^T)}{n^I}$$

- \blacktriangleright $\delta\Delta$ borrowers die: I and L matched with T
 - $M_d^{IT} = \frac{\min(n^I + \theta \Delta M^{LB}, n^T)}{n^I + \theta \Delta M^{LB}} \le M^{IT} \text{ (congestion)}$

Decision problems

$$U^{L} = \max_{c_{1}} \left\{ -c_{1} + (1 - \delta \Delta) u (c_{1}) + \delta \Delta \theta \left[M_{d}^{LT} c_{1} + \left(1 - M_{d}^{LT} \right) \gamma c_{1} \right] + \delta \Delta (1 - \theta) \gamma c_{1} \right\}$$

$$U^{I} = \overline{a} + \left[(1 - \delta) M^{IT} + \delta M_{d}^{IT}(\theta) \right] (f(\overline{c}) - \overline{a})$$

Fire sale

▶ Recall: in default *congestion* externality

$$M_d^{IT}(\theta) \leq M^{IT}$$

Price of good a to investors

$$p_a = M^{IT} f'(c^I) + (1 - M^{IT})$$

$$p_a^d = M_d^{IT}(\theta) f'(c^I) + (1 - M_d^{IT}(\theta))$$

$$\Rightarrow p_a^d \le p_a$$

Important effects

- 1. Insurance effect: c_1 is weakly increasing in θ
- 2. Investment effect: $M_d^{IT}(\theta)$ is weakly decreasing in θ
- \Rightarrow 1 and 2: trade off for policy (θ)

▶ If the date-3 mkt for c is **liquid**: $\Delta M^{LB} + n^I \leq n^T$

- ▶ If the date-3 mkt for c is **liquid**: $\Delta M^{LB} + n^I \leq n^T$
 - ▶ Optimal policy: $\theta = 1$

- \blacktriangleright If the date-3 mkt for c is liquid: $\Delta M^{LB} + n^I \leq n^T$
 - ▶ Optimal policy: $\theta = 1$
- ▶ If the date-3 mkt for c is **illiquid**: $\Delta M^{LB} + n^I > n^T$

- ▶ If the date-3 mkt for c is **liquid**: $\Delta M^{LB} + n^I \leq n^T$
 - ▶ Optimal policy: $\theta = 1$
- ▶ If the date-3 mkt for c is **illiquid**: $\Delta M^{LB} + n^I > n^T$
 - Optimal policy depends on

$$\overbrace{(1-\gamma) \qquad \cdot \qquad \underbrace{c_1(\theta)}_{\text{Size of repo loan}} - \overbrace{(f(c^I) + \overline{a} - a_3^I)}^{\text{Investment effect}}$$

- If $n^I > n^T$ then either $\theta = 0$ or $\theta = 1$
- ▶ If $n^I < n^T$ then either $\theta = \theta^*$ or $\theta = 1$ where $\theta^* = \{\theta \in (0,1): \theta \Delta M^{LB} + n^I = n^T\}$

Conclusion

This paper:

- Simple comparison of costs and benefits of exemption
 - ▶ insurance vs investment effect (congestion externality)
 - ightharpoonup size of repo loan at t=1
 - liquidity of mkt for collateral at t=3

Conclusion

Exemption from automatic stay optimal if and only if

- a. market for collateral is liquid \Rightarrow no externalities occur
- $\left. \begin{array}{c} b. & \text{investment effect vs} \\ & \text{insurance effect small} \end{array} \right\} \quad \Rightarrow \text{externalities are beneficial}$