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BY GERALD A. CARLINO AND JAKE K. CARR

he United States is home to some of the most 
innovative companies in the world, such as 
Apple, Facebook, and Google, to name a few. 
Inventive activity depends on research and 

development, and R&D depends on, among other things, 
the exchange of ideas among individuals. People’s physical 
proximity is a key ingredient in the innovation process. 
Steve Jobs understood this when he helped to design 
the layout of Pixar Animation Studios. The original 
plan called for three buildings, with separate offices 
for animators, scientists, and executives. Jobs instead 
opted for a single building with a vast atrium at its core. 
To ensure that animators, scientists, and executives 
frequently interacted and exchanged ideas, Jobs moved 
the mailboxes, the cafeteria, and the meeting rooms to 
the center of the building. 

There is nothing really new in the 
recognition that face-to-face contact 
among individuals is one key to in-
novation. Mervin Kelly, who for a time 
ran AT&T’s legendary Bell Labs, was, 
according to a New York Times article, 
“convinced that physical proximity was 
everything.”1 According to the article, 

Kelly personally helped to design a 
building that opened in 1941 “where 
everyone would interact with one an-
other.” Hallways were designed to be so 
long that when walking a hall’s length 

one would encounter “a number of ac-
quaintances, problems, diversions and 
ideas. A physicist on his way to lunch 
in the cafeteria was like a magnet 
rolling past iron filings.” Within this 
unique culture, Bell Labs’ employees 
developed some of the most important 
inventions of the 20th century, includ-
ing the transistor, the laser, and the 
solar cell. 

Most American companies are 
small in size, and they obviously lack 
the resources of companies such as Ap-
ple, Facebook, and Google. Does their 
small size deprive these firms of the 
benefits of knowledge spillovers — the 
continuing exchange of ideas among 
individuals and firms — that physi-
cal proximity provides? The answer 
appears to be no. There is an excep-
tionally high spatial concentration of 
individual R&D labs in the Northeast 
corridor, around the Great Lakes, in 
Southern California, and in Califor-
nia’s Bay Area. The high geographic 
concentration of R&D labs creates an 
environment similar to that found at 
Bell Labs, in which ideas move quickly 
from person to person and from lab to 
lab.2 This exchange of ideas underlies 
the creation of new goods and new 
ways of producing existing goods. 

In this article, we will discuss a 
recent study that we coauthored with 
Robert Hunt and Tony Smith. That 

2 Knowledge spillovers are the unintended 
transmission of knowledge that occurs among 
individuals and organizations. For example, as 
pointed out by AnnaLee Saxenian, although 
there is intense competition in California’s 
Silicon Valley, a remarkable level of knowledge 
spillovers occurs.

1 Jon Gertner, “True Innovation,” New York 
Times, February 25, 2012.
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study has two main goals. First, our 
study introduces a more accurate way 
to measure the extent of the spatial 
concentration of R&D activity. This 
new approach allows us to document 
the spatial concentration of more than 
1,000 R&D labs in the Northeast cor-
ridor of the U.S. An important finding 
that emerged from this approach is 
that the clustering of labs is by far most 
significantly concentrated at very small 
spatial scales, such as distances of 
about one-quarter of a mile, with sig-
nificant clustering attenuating rapidly 
during the first half-mile. The rapid 
attenuation of significant clustering is 
consistent with the view that knowl-
edge spillovers are highly localized. 

We also observe a secondary node 
of significant clustering at a scale of 
about 40 miles. This secondary node 
of clustering is interesting because its 
spatial scale is roughly the same as 
that of the local labor market. That is, 
firms will draw most of their work-
ers and most residents will commute 
to jobs within 40 miles.  Hence, this 
scale is consistent with the view that 
the efficiency gains and cost savings 
at the labor market level (e.g., bet-
ter matching of workers’ skills to the 
needs of labs) are important for inno-
vative activity. 

A second goal of our study is to 
provide evidence on the extent to 
which knowledge spillovers are geo-
graphically localized within the R&D 
clusters we identify. Data on patent 
citations have been used to track 
knowledge spillovers. Patents contain 
detailed geographic information about 
the inventors as well as citations to 
prior patents on which the inventions 
were built. If knowledge spillovers 
are localized within the clusters that 
we identify, then citations of patents 
generated within a cluster should come 
disproportionately from within the 
same cluster as previous patents. We 
find that citations are a little over four 
times more likely to come from the 

same cluster as earlier patents than one 
would expect based on the preexist-
ing concentration of technologically 
related activities. 

LEARNING IN CLUSTERS 
An enormous increase in the 

material well-being of individuals has 
been achieved over the past 200 to 300 
years. We not only have more of the 
same goods and services but also a va-
riety of new goods and services — such 
as the personal computer, the Internet, 
and cellular phones — whose specific 
characteristics could not have been 
imagined just 50 years ago. It took an 

accumulation of knowledge to design 
and build these goods and services and 
bring them to market. Inventions or 
innovations do not happen in a vacu-
um but instead are created by individu-
als working together to solve common 
problems. Often, new knowledge is 
tacit knowledge, that is, knowledge 
that is highly contextual and difficult 
or even impossible to codify or elec-
tronically transmit. 

Beginning with Alfred Marshall, 
economists have studied the benefits 
that individuals and firms gain from 
locating near one another, in what are 
referred to as agglomeration economies. 
Knowledge spillovers, an important 
aspect of agglomeration economies, 
have proved hard to empirically verify. 
The empirical evidence on knowledge 
spillovers is rather sparse. What the 
limited research suggests is that the 
transmission of knowledge rapidly 

diminishes the farther one gets from 
the source of that knowledge.  Look-
ing at innovative activity, Adam Jaffe, 
Manuel Trajtenberg, and Rebecca 
Henderson and, more recently, Ajay 
Agrawal, Devesh Kapur, and John 
McHale find that nearby inventors are 
much more likely to cite each other’s 
inventions in their patents, suggesting 
that knowledge spillovers are indeed 
localized. Mohammad Arzaghi and 
Vernon Henderson look at the location 
pattern of firms in the advertising in-
dustry in Manhattan. They show that 
for an ad agency, knowledge spillovers 
and the benefits of networking with 

nearby agencies are extensive, but the 
benefits dissipate quickly with distance 
from other ad agencies and are gone 
after roughly one-half mile. 

More than most economic activ-
ity, innovative activity such as R&D 
depends on knowledge spillovers. 
R&D labs will have an incentive to 
locate near one another if knowledge 
spillovers tend to dissipate rapidly with 
increasing distance from the source of 
that knowledge. 

A map of the spatial distribution 
of R&D labs reveals a striking cluster-
ing of R&D activity (Figure 1). In plac-
es that have little R&D activity, each 
dot on the map represents the loca-
tion of a single R&D lab. For example, 
there is only one lab in Montana, rep-
resented by the single dot. In counties 
with a dense clustering of labs, the 
dots tend to sit on top of one another, 
representing a concentration of labs. 

An important finding that emerged from our 
new approach is that the clustering of labs is 
by far most significantly concentrated at very 
small spatial scales, such as about one-quarter 
of a mile.
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A prominent feature of the map is the 
high concentration of R&D activity 
in the Northeast corridor, stretching 
from northern Virginia to Massachu-
setts. There are other concentrations, 
such as the cluster around the Great 
Lakes and the concentration of labs in 
California’s Bay Area and in Southern 
California. 

The high geographic concentra-
tion of R&D labs creates an environ-
ment in which ideas move quickly from 
person to person and from lab to lab. 
Locations that are dense in R&D ac-

tivity encourage knowledge spillovers, 
thus facilitating the exchange of ideas 
that underlie the creation of new goods 
and new ways of producing existing 
goods. The tendency for innovative 
activity to cluster raises a number of 
interesting and important questions. 
How strong is the tendency for R&D 
labs to cluster? Where in space do 
these labs cluster, and what are the 
geographic sizes of these clusters? How 
rapidly does the mutual attraction 
among labs attenuate with distance? 
Providing answers to these questions 

FIGURE 1
Location of R&D Labs

Sources: Directory of American Research and Technology and authors’ calculations

Each dot on the map represents the location of a single R&D lab in 1998. In areas with dense clusters of labs, the 
dots tend to sit on top of one another. 

is an important objective of our study 
with Hunt and Smith. 

MEASURING CLUSTERING OF 
ECONOMIC ACTIVITY 

Although R&D labs tend to 
be spatially concentrated, a similar 
pattern of geographic concentration 
would be found for either population or 
employment. Thus, studies that look at 
the concentration of R&D labs need 
to control for the general tendency 
for economic activity and population 
to cluster spatially. In a 1996 study, 
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David Audretsch and Maryann Feld-
man introduced the “locational Gini 
coefficient” to show that innovative 
activity at the state level tends to be 
considerably more concentrated than 
is manufacturing employment and that 
industries that stress R&D activity 
also tend to be more spatially concen-
trated.3 

Glenn Ellison and Edward Glaeser 
have identified a potential problem 
with the Audretsch and Feldman 
study. They argue that an industry may 
appear to be spatially concentrated if 
that industry consists of a few large 
firms. In this instance, the industry 
would be classified as industrially con-
centrated but not necessarily spatially 
concentrated. Ellison and Glaeser 
developed an alternative measure of 
spatial concentration — called the 
EG index — that controls both for 
the overall concentration of economic 
activity and for the industrial organi-
zation of the industry. Typically, the 
EG index has been used to gauge the 
geographic concentration of various 
manufacturing industries with fixed 
spatial boundaries, such as states, met-
ropolitan areas, and counties.4

The EG index suffers from a 
number of important aggregation 
issues that result from using fixed 
spatial boundaries. For example, when 
calculating EG indexes at the county 
level, researchers will not take into ac-
count any activity that crosses county 
borders. As a result, measures of spatial 
concentration will be underestimated 
for counties. For example, Philadelphia 
County shares a border with Mont-
gomery County. One stretch of City 
Avenue divides these two counties. 
Economic activity on the Philadel-
phia side of City Avenue is allocated 
to Philadelphia County, while activ-
ity on the Montgomery County side is 
assigned to that county. But this parti-
tion of economic activity is artificial, 
since this activity is really part of the 
same cluster. As a result, concentra-
tion will be underestimated for both 
counties. To avoid problems associated 
with fixed spatial boundaries, authors 
of several recent studies have used 
geocoded data to identify the exact 
location of establishments. These stud-
ies base their approach on the actual 
distance between establishments and 
are, therefore, not bound by a fixed 
geographical classification.5 

MEASURING THE CLUSTERING 
OF R&D LABS

In our study, we used 1998 data 
from the Directory of American Re-
search and Technology to electronical-

ly code the R&D labs’ addresses and 
other information. Since the directory 
lists the complete address for each 
establishment, we were able to assign a 
geographic identifier (using geocoding 
techniques) to more than 3,100 R&D 
labs in the U.S. in 1998. We limited 
our analysis to 1,035 R&D labs in the 
10 states (Connecticut, Delaware, 
Maryland, Massachusetts, New Hamp-
shire, New York, New Jersey, Pennsyl-
vania, Rhode Island, and Virginia) and 
the District of Columbia that make up 
the Northeast corridor of the United 
States. 

A key question we need to deter-
mine is whether an observed spatial 
collection of labs in this corridor is 
somehow unusual; that is, is it different 
from what we would expect based on 
the spatial concentration of manufac-
turing employment? We used manufac-
turing employment instead of manu-
facturing firms as our benchmark.6 
In our study, we start with a “global” 
measure of concentration that is based 
on the observed concentration of 
R&D labs at various distances, ranging 
from a quarter-mile to 100 miles. For 
example, suppose we want to calculate 
the average number of labs that are 
located within a quarter-mile radius of 

6 The concentration of R&D establishments is 
measured relative to a baseline of economic ac-
tivity as reflected by the amount of manufactur-
ing employment in the Zip code, as reported in 
the 1998 vintage of Zip Code Business Patterns. 
Since one of our objectives is to describe the 
localization of total R&D labs, manufactur-
ing employment represents a good benchmark 
because most R&D labs are owned by manufac-
turing firms. We elected to use manufacturing 
employment as our benchmark rather than the 
number of manufacturing establishments in a 
Zip code, since past studies (such as the study 
by Audretsch and Feldman) use manufactur-
ing employment as their benchmark. When we 
look at the clustering of R&D labs in specific 
industries relative to the location of all R&D 
labs in our data set, we find that the patterns 
of clustering in specific industries are highly 
similar to the overall clustering of labs that we 
found when we used manufacturing employ-
ment as the benchmark.

3 A locational Gini coefficient shows how simi-
lar (or dissimilar) the location pattern of em-
ployment (or innovative activity, in Audretsch 
and Feldman’s case) in a particular manufactur-
ing industry is to the location pattern of overall 
manufacturing employment. The larger the 
value found for the locational Gini, the more 
concentrated is employment (or innovative ac-
tivity) in a particular industry relative to overall 
manufacturing employment. See the Business 
Review article by Kristy Buzard and Gerald 
Carlino for a discussion of the construction of 
the locational Gini coefficient. The study by 
Audretsch and Feldman looked at the spatial 
concentration of innovative activity by industry. 
Their analysis, which is at the state level, uses 
1982 census data provided by the United States 
Small Business Administration. They construct 
a data set on innovations by state and industry 
that is culled from information on new product 
announcements in over 100 scientific and trade 
journals.

4 For examples of studies that use the EG index, 
see the studies by Ellison and Glaeser; Stuart 
Rosenthal and William Strange; and Glenn Elli-

son, Edward Glaeser, and William Kerr. See the 
Business Review article by Buzard and Carlino 
for a discussion of the EG index.

5 Another problem is that authors of stud-
ies based on the EG index often provide only 
indexes of localization, without any indication 
of the statistical significance of their results. 
Without such statistical analyses, it is unclear 
whether the concentrations found differ from 
concentrations that would have been found 
if the locations of economic activity were 
randomly chosen. See the article by Gilles 
Duranton and Henry Overman for a discussion 
of statistical issues with the EG index.
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one another. We start by choosing one 
of the labs and drawing a ring with a 
quarter-mile radius around that lab. 
We then count the number of other 
labs in that quarter-mile ring and enter 
that number in a spreadsheet. Next, 
we move to another lab and draw a 
quarter-mile ring around it; then we 
count the number of other labs in its 
quarter-mile ring and enter that num-
ber in the spreadsheet. We repeat this 
procedure for all of the 1,035 labs in 
the corridor. Finally, we can compute 
the global measure of concentration at 
the level of a quarter-mile by averaging 
the 1,035 entries in the spreadsheet. 
This gives us the average number of 
labs that are located within a quarter-
mile of one another.  

We computed the global measures 
of the concentration of R&D labs for 
distances ranging from a quarter-mile 
to 100 miles. Finally, R&D clusters 
for a given distance, such as a quarter-
mile, are identified as “significant” 
only when they contain more R&D 
labs than would be expected at that 
distance based on manufacturing 
employment (see Appendix: Measuring 
Concentration Based on K-Functions). 
We show that for every distance we 
considered, the spatial concentration 
of R&D labs is much more pronounced 
than it is for manufacturing employ-
ment. As we have noted, physical 
proximity is a key ingredient in order 
for firms and individuals to maximize 
the benefits from knowledge spillovers. 
This suggests that we should expect 
to see evidence that the benefits from 
such spillovers decline rapidly with 
increasing distance among the labs. 
More important, we find that the con-
centration of labs is most significant 
when labs are located within a quarter-
mile radius of one another and that the 
significance of clustering of labs rela-
tive to manufacturing falls off rapidly 
as the distance among labs increases. 
The rapid attenuation of significant 
clustering at small spatial scales is con-

sistent with the view that knowledge 
spillovers are highly localized.

We also found evidence of a sec-
ondary node of statistically significant 
clustering at a distance of about 40 
miles. This scale is roughly comparable 
to that of a local labor market, sug-
gesting that such markets may provide 
additional spillovers that improve the 
efficiency of labs. One way dense loca-
tions improve efficiency is through the 
better quality of matches among labs 
and workers that occurs in large and 
dense labor markets. Workers and labs 
in larger, denser labor markets can be 

much more selective in their matches 
because the opportunity costs (the lost 
wages or profits when the worker or 
firm has not made a successful match) 
of waiting for a prospective partner are 
lower. That is because even though 
workers and labs are more selective, on 
average they form better matches and 
tend to match more quickly. As a re-
sult, the average output from matches 
(such as new ideas that lead to innova-
tion) is higher, and a higher share of 
the workforce and labs is engaged in 
productive matches. Another possi-
bility is that labs in larger and denser 
locations may share critical inputs into 
the production process. For example, 
Robert Helsley and William Strange 
argue that the necessary inputs into 
the process of innovation are more 
plentiful and more readily available in 
an area with a dense network of input 
suppliers. The dense network of input 
suppliers facilitates innovation by mak-
ing it cheaper to bring new ideas to 
fruition.

PLOTTING THE CLUSTERING 
OF R&D LABS 

The discussion to this point has 
revealed at what distances the cluster-
ing of labs is most significant, but it 
does not tell us where this clustering 
takes place. Therefore, we use a second 
approach, referred to as a “local” mea-
sure of clustering, to identify specific 
geographic areas within the corridor 
with high concentrations of R&D labs. 
Thus, a novel feature of our study is 
the use of a local measure of cluster-
ing to identify specific R&D clusters 
as well as the labs that belong to them. 

This approach allows us to show on 
a map the exact locations where the 
clustering of labs is occurring. For ex-
ample, suppose we want to know how 
many other labs are located within a 
half-mile radius of a given lab. To find 
this, as we did for the global measure 
of clustering, we draw a circle with a 
radius of a half-mile around a particu-
lar lab and count the number of other 
labs that fall within that half-mile 
circle. Before, to get the global measure 
of clustering, we computed the average 
number of other labs across all 1,035 
labs at a half-mile distance. To get the 
local measure of clustering, we are in-
terested in the number of other labs in 
the individual clusters themselves. The 
local measures of clustering focus on 
the size and locations of specific R&D 
clusters. 

Once again, we are confronted 
with the issue of whether the count of 
the labs in each of these half-mile cir-
cles is greater than would be expected 
based on the spatial concentration of 

R&D clusters for a given distance, such as 
a quarter-mile, are identified as “significant” 
only when they contain more R&D labs than 
would be expected at that distance based on 
manufacturing employment. 
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manufacturing employment. Figure 2 
shows the strength of the clustering of 
labs relative to manufacturing employ-
ment for labs located south of Central 
Park in New York City. The 11 black 
dots indicate that the data strongly sup-
port the concentration of labs relative 
to the concentration of manufacturing 
employment, while the grey dots indi-
cate somewhat less support.

To identify a half-mile cluster in 
New York City, we start by drawing 
rings with a half-mile radius around 
each of the 11 black dots shown in 
Figure 2. Figure 3 shows the pattern 
resulting from the construction of 
these half-mile rings. Notice that these 
rings tend to overlap one another, indi-
cating a mutual influence among these 
labs. Next, we take the union of these 
rings to form the “half-mile” cluster in 
New York City (Figure 4). An impor-
tant thing to note about this half-mile 
cluster is that its actual geographic 
distance is greater than a half-mile. 

Figure 5 shows the locations of the 
four half-mile clusters we identified in 
the Boston area. The largest (both spa-
tially and by number of labs) is found 
in Cambridge, MA, shown roughly at 
the center of the map. We also found 
two half-mile buffer clusters located 
along Route 128 and one such cluster 
located along Route 495. 

We repeated the procedure used 
to create half-mile clusters, but this 
time we constructed one-mile rings 
around each of the 1,035 labs. We 
identified eight one-mile clusters in 
the Boston area, which are shown in 
Figure 6. Notice that all four half-mile 
clusters are each contained within a 
unique one-mile cluster. Next, we fol-
lowed the same procedure to first cre-
ate a five-mile cluster (of which there 
are two in Boston) and then a 10-mile 
cluster (of which there is one in Bos-
ton). Figure 7 shows the two five-mile 
clusters (solid black line) and the 10-
mile cluster (dotted black line). 

There are 187 R&D labs within 

Each dot represents the location of a 
single R&D lab. The black dots strongly 
indicate a local cluster of labs relative 
to manufacturing employment. The 
grey dots indicate a less significant 
concentration of labs relative to 
manufacturing employment.

Sources: Directory of American Research and Technology and authors’ calculations

FIGURE 2

R&D Labs in New York City

FIGURE 3

Constructing Half-Mile Buffer Rings

This half-mile cluster in New York City 
was created by constructing rings 
with a half-mile radius around each 
black dot. These rings tend to overlap 
one another, indicating a mutual 
influence among these labs.

FIGURE 4

Half-Mile Cluster in New York City

To identify New York City’s half-mile 
cluster, we drew a line around the 
perimeter of the rings in Figure 3. It 
is important to note, however, that 
the actual geographic distance of this 
cluster is greater than a half-mile.
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of which conduct research on drugs. 
Figure 8 shows the clusters of 

R&D labs we identified in the Phila-
delphia region, where there are a total 
of 49 labs. The city of Philadelphia 
is shown by the darker grey area east 
of the center of the figure. The dot-
ted black ring depicts Philadelphia’s 
10-mile cluster. Of the 49 labs in this 
broad cluster, 16 conduct research on 
drugs, and another 16 perform research 
in the plastics materials and synthetic 
resins industry. The Philadelphia 
region contains two five-mile clusters, 
shown by the solid black boundaries in 
Figure 8. The most prominent subclus-
ter is centered in the King of Prussia 
area, directly west of the city of Phila-
delphia, and contains 30 labs, of which 
40 percent conduct research on drugs. 
Within this subcluster, there is a much 
tighter concentration of labs (indicated 
by the dotted brown ring in Figure 8) 
located near Routes 76 and 276. 

The second subcluster is centered 
in the city of Wilmington, DE, where 
about 25 percent of the labs are also 
engaged in research on drugs, but most 
(almost 60 percent) are conducting 
research on plastics materials and syn-
thetic resins. 

THE EFFECTS OF KNOWLEDGE 
SPILLOVERS

Innovation is important because it 
can directly affect a nation’s productiv-
ity growth and the economic welfare 
of society through the introduction of 
new or improved goods and lower pric-
es. In addition to these direct benefits, 
as we have argued in this article, the 
innovative activity of one person can 
also influence the innovative activity 
of others through knowledge spillovers. 
Paul Krugman has argued, however, 
that knowledge spillovers are impos-
sible to measure empirically because 
they “are invisible; they leave no paper 
trail by which they may be measured 
and tracked.” However, as Jaffe and co-
authors have noted, “Knowledge flows 

FIGURE 5

Half-Mile Clusters in Boston

FIGURE 6

One-Mile Clusters in Boston

Westborough

Franklin

Lexington

Newton

Cambridge

Westborough

Franklin

Lexington

Newton

Cambridge

Boston’s single 10-mile cluster. Most of 
these labs conduct R&D in five indus-
tries: computer programming and data 
processing, drugs, lab apparatus and 
analytical equipment, communications 
equipment, and electronic equipment. 
The largest five-mile cluster, which is 

shown in Figure 7, contains 108 labs, 
which account for 58 percent of all labs 
in the larger 10-mile cluster. At the one-
mile scale, Boston has eight clusters, 
six of which are centered in the largest 
five-mile cluster. The largest of these 
one-mile clusters contains 30 labs, half 

This figure shows four half-mile clusters of labs in Boston, the largest of which is in 
Cambridge at the junction of Route 90 and Route 93. 

Eight one-mile clusters of labs in Boston are indicated by dotted brown rings.  Notice 
that all four half-mile clusters, which are indicated by solid brown rings, are situated 
within one-mile clusters.
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do sometimes leave a paper trail in the 
form of patent citations to prior art.” 

Jaffe and coauthors pioneered a 

FIGURE 8

Ten-Mile Cluster in Philadelphia

method for studying the geographic ex-
tent of knowledge spillovers using pat-
ent citations. Every patent contains the 

names, hometowns, and Zip codes of 
the inventors named in the patent. A 
patent can be assigned to a location by 
using the Zip code of one of its inven-
tors (usually the first person named). 
Patent citations are similar to citations 
received by academic articles in that 
patent citations reference prior tech-
nology or prior art on which the citing 
patent builds. Therefore, Jaffe and co-
authors hold that patent citations are a 
useful proxy for measuring knowledge 
flows among inventors. If knowledge 
spillovers are localized within a given 
metropolitan area, then citations to 
patents within a given metropolitan 
area should disproportionately come 
from other inventors who are located 
within that metropolitan area. 

However, Jaffe and coauthors 
point out that just because we observe 
a geographic clustering of techno-
logically related activities, such as the 
clustering of the semiconductor indus-
try in Silicon Valley, this clustering 
is not necessarily evidence of knowl-
edge spillovers among these related 
activities. There are other sources of 
agglomeration economies in metropoli-
tan areas, such as better matching and 
sharing, that could explain the spatial 
clustering of activities in the semicon-
ductor industry. Jaffe and coauthors 
deal with the spatial clustering of 
related activities by constructing a set 
of control patents designed to match 
the existing geographic concentration 
of technologically related activities. 
To test for localized knowledge spill-
overs, Jaffe and coauthors construct 
three patent samples. The first sample 
consists of a set of originating patents. 
The second sample consists of a set of 
patents that cite one of the originating 
patents (referred to as citing patents). 
The final sample consists of a control 
patent chosen to match each of the 
citing patents. To qualify as a control 
patent, the patent must be as similar as 
possible (in terms of being in the same 
technology class and having an appli-

FIGURE 7

Ten-Mile Cluster in Boston

Westborough

Franklin

Lexington

Newton

Cambridge

Philadelphia

Wilmington

King of 
Prussia

This figure shows the two five-mile clusters of labs in Boston (solid black lines) and 
the single 10-mile cluster (dotted black line).  Notice that all four half-mile clusters 
(solid brown) identified for Boston are situated within one-mile clusters (dotted 
brown). Similarly, most of the one-mile clusters lay within the two five-mile clusters, 
and the two five-mile clusters are contained within the 10-mile cluster.

In the Philadelphia region, we identified a single one-mile cluster that is located west 
of the city (the city is shown in dark grey) approximately in the King of Prussia, PA, 
area. The Philadelphia region has two five-mile clusters (solid black lines) and one 10-
mile cluster (dotted black line). The second five-mile cluster is centered in the city of 
Wilmington, DE.
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cation date as close as possible) to the 
matched citing patent, but the control 
patent must not cite the matched 
originating patent. Jaffe and coauthors 
compute two geographic matching 
frequencies: one between the citing 
patents and the originating patents 
and one between the control patents 
and the originating patents. Their test 
for the localization of knowledge spill-
overs is whether the citation match-
ing frequency for a given geographic 
definition (states and metropolitan 
areas) is significantly greater than that 
associated with the control matching 
frequency. Jaffe and coauthors find 
that patent citations are two times 
more likely to come from the same 
state and about six times more likely 
to come from the same metropolitan 
area as earlier patents than one would 
expect based on the control patents.

In our study, we adopt Jaffe and 
coauthors’ methodology to look for evi-
dence of localized knowledge spillovers, 
except that we use the boundaries de-
termined by the nine five-mile clusters 
identified in our research instead of us-
ing state and metropolitan area bound-
aries.7 State boundaries are politically 
determined, rather than economically 
justified, and states are too big to ad-
equately capture knowledge spillovers, 
which are highly localized. In addition, 
the boundaries of metropolitan areas 
are determined by labor market flows; 
therefore, they are not well suited for 
analysis of spillovers among individuals 
engaged in innovative activity. Instead, 
we use the boundaries determined by 
our nine five-mile clusters as our basic 
geography, since these boundaries are 
determined by interrelationships among 

the R&D labs and more accurately 
reflect the appropriate boundaries in 
which knowledge spillovers are most 
likely to occur. 

The patent citation counts that 
we use are constructed from the NBER 
Patent Citations Database. Patents are 
assigned to locations according to the 
Zip code of the first inventor named on 
the patent.8 There were 9,105 patents 
applied for in the nine five-mile buf-
fer clusters we identified in our study 
during the period 1996–1997. After 
removing self-citations, these originat-
ing patents received 90,159 forward 
citations during the period 1996–
2006.9 But we were able to find control 
patents for only about 55,000 of the 
citing patents. This limits our analy-
sis to those citing patents for which 
we have controls.10 We find that, on 
average, a patent that falls within one 
of our five-mile clusters is 4.3 times 
more likely to cite an earlier patent in 
the same five-mile cluster compared 
with a control patent (a finding that is 
highly statistically significant). Despite 
the fact that knowledge spillovers are 
not directly observable, they do leave 
a paper trail in the form of patent cita-

tions. We find that these paper trails 
provide evidence consistent with the 
geographic concentration of knowledge 
spillovers.

CONCLUSION 
In this article, we summarize 

the findings from our study that uses 
distance-based measures to analyze 
the spatial concentration of over 1,000 
R&D labs in the Northeast corridor of 
the United States. Rather than using 
a fixed spatial scale, such as counties 
and metropolitan areas, we attempt to 
describe the spatial concentration of 
R&D labs more precisely by consider-
ing the spatial structure at different 
scales. We find that the clustering of 
labs is by far most significant at very 
small spatial scales, such as distances 
of about one-quarter of a mile, with 
significance attenuating rapidly during 
the first half-mile. The rapid attenua-
tion of significant clustering at small 
spatial scales is consistent with the 
view that knowledge spillovers are 
highly localized. 

We introduce a novel way to iden-
tify the location of clusters and number 
of labs in these clusters. For example, 
this approach identified a number of 
clusters of R&D labs in the Boston, 
New York–Northern New Jersey, Phila-
delphia–Wilmington, and Washington, 
D.C., areas. We also found that each 
of these clusters has distinct character-
istics, especially in terms of the mix of 
industries the R&D labs serve.

Using patent data, we are able to 
provide evidence that knowledge spill-
overs are highly localized within the 
clusters of R&D labs that we identify. 
We find that patent citations are a lit-
tle over four times more likely to come 
from the same cluster as earlier patents 
than one would expect based on the 
preexisting geographic concentration 
of technologically related activities. 

8 The patent and citation data we use from the 
National Bureau of Economic Research (NBER) 
Patent Data Project provide the name, town, 
and Zip code of the principal (or first named) 
inventor on each patent. As is standard when 
assigning patents to areas, we assign patents to 
our clusters using the Zip code of the first inven-
tor named on the patent. Knowledge spillovers 
can occur among individuals who meet because 
they are part of either local technical or social 
networks. For example, AnnaLee Saxenian 
describes how Walker’s Wagon Wheel bar in 
Mountain View, CA, became a popular place 
for engineers who lived in Silicon Valley to 
exchange ideas.

9 Since self-citations may not result from knowl-
edge spillovers, we excluded not only inventor 
self-citations but also citing patents owned 
by the same organizations as the originating 
patent.

10 There was an insufficient number of control 
patents to confidently conduct the analysis for 
the one-mile or half-mile clusters.

7 We identified two five-mile clusters in Boston 
(Figure 7), three such clusters in New York, two 
in Philadelphia (Figure 8), and two in Wash-
ington, D.C. In this article, we present only the 
findings averaged across the nine clusters. See 
our working paper for details on the individual 
clusters.
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The Global K-Function

A popular measure of concentration is Ripley’s K-function, which we use to test for clustering at differing distances:

where ( )iC d  is the count of additional labs within distance d from lab (location) i and n is the total number of locations 
in the study (n = 1,035 in our study). To see how this works, set d equal to one mile. Take the first lab and draw a one-mile 
circle around that lab. Count the number of other labs in that one-mile circle and enter the resulting count of other labs 
into a spreadsheet. Go to the next lab and construct a one-mile circle around that lab. Count the number of other labs in 
that one-mile circle and enter the resulting number into the spreadsheet. Repeat these steps for all 1,035 labs. Sum over 
the 1,035 observations and divide by 1,035 labs. This is the average value of concentration of labs at a distance of one mile, 
denoted by ˆ (1)OK . We calculate the average observed value of concentration, beginning at a quarter-mile and increasing 
at quarter-mile increments below one mile and at one-mile increments from one mile to 100 miles. 

The key question of interest is whether the overall pattern of R&D locations in the 10 states and the District of Co-
lumbia exhibits more clustering than would be expected from the spatial concentration of manufacturing in those areas. To 
address this question statistically, our null hypothesis is that R&D locations are determined entirely by the distribution of 
manufacturing employment. 

We use a two-step procedure for generating counterfactual observations that are used to test the null hypothesis. In the 
simulations, we randomly allocated labs to Zip codes based on a probability proportional to manufacturing employment in 
that Zip code so that Zip codes containing a large share of employment are more likely to be assigned labs. For each distance, 
we compute a simulated distribution of labs. We compared the observed value for their K-functions (the ˆ ( )OK d ) with 
values obtained from a simulated distribution of R&D labs. If the observed value for the K-function for a given distance is 
large relative to the simulated distribution, this is taken as evidence of significant clustering of labs relative to manufacturing 
employment. P-values can be computed as: 

For example, if we performed 1,000 simulations and there are 10 simulated values at least as large as ˆ ( )OK d , then 
there is only a one-in-a-hundred chance of observing a value at least as large as ˆ ( )OK d . In this example, there is signifi-
cant clustering of R&D locations at the 0.01 level of statistical significance at spatial scale d. However, we found that the 
clustering of labs is so strong relative to manufacturing employment that the estimated p-values were uniformly 0.001 for 
all the distances we considered. We obtained sharper discrimination by calculating the z-scores for each observed estimate,
ˆ ( )OK d , as given by

where dK  and ds  are the corresponding sample means and standard deviations for the 1N +  sample K-values. These 
z-scores are shown along the vertical axis in the figure, while the horizontal axis shows distances among R&D labs. The 
higher the z-score for a given distance, the more spatially concentrated the R&D labs are at that distance relative to manu-
facturing employment. Notice that the highest z-score we found, which is more than 30 standard deviations away from the 
mean, occurs at the shortest distance among labs we considered (one-quarter of a mile) and declines rapidly with distance 
up to a distance of about five miles. The rapid decline in z-scores (significance of clustering of R&D labs) at short distances 
is consistent with the view that knowledge spillovers are highly geographically localized. Notice that the lowest z-score 
obtained, which occurs at a distance of about five miles, is still more than 7 standard deviations away from the mean, 
indicating that R&D labs are significantly more concentrated than manufacturing employment over all the distances we 
considered. We also observe a secondary mode of significance at a scale of about 40 miles, which is roughly associated with 
metropolitan areas. 
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Appendix:  Measuring Concentration Based on K-Functions

The number of simulated values at distance  that are at least as large as the observed value ( )
Number of simulation performed

dP d  
=  
 
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ˆ ( ) ( )i iK d C d=

The Local K-Function 
	
Basically, the local version of Ripley’s K-function for a lab at a given location is simply the count of all additional labs 

within distance d of the given lab. In terms of the notation, the local K-function, ˆ ( )iK d, at location i  is given for each distance, 
d, by,

     			 

We use the same null hypothesis employed in the global K-function analysis that R&D labs are distributed in a manner 
proportional to the distribution of manufacturing employment. The only substantive difference from the procedure used 
in global K-function analysis is that the actual point associated with location i is held fixed when computing the simulated 
values for the local K-function. That is, for a given distance, holding the location of the lab fixed, we compute a simulated 
distribution of labs at that point. We compared the observed value for their K-functions (the ˆ ( )iK d ) with values obtained 
from a simulated distribution of R&D labs. If the observed value for the K-function at a given point is large relative to the 
simulated distribution, this is taken as evidence of significant clustering of labs relative to manufacturing employment at 
that location. The set of radial distances (in miles) used for the local tests was {0.5,0.75,1,2,5,10,11,12..,100}D = . 

In our global analysis, the p-values were essentially the same for nearly all spatial scales. That is not the case for the local 
analysis. It is not surprising to find that many isolated R&D locations exhibit no local clustering whatsoever; therefore, wide 
variations in significance levels are possible at any given spatial scale. Thus, p-values are used in the local K-function analysis. 

An attractive feature of these local tests is that the resulting p-values for each point i  in the observed pattern can be 
mapped. This allows us to check visually for regions of significant clustering. In particular, groupings of very low p-values 
serve to indicate not only the location but also the approximate size of possible clusters. 

Because we conduct tests for local clustering over many locations and spatial scales, we need to address two aspects of 
the “multiple testing” problem. First, suppose that there is, in fact, no local clustering of labs. In our simulations, we would 
nonetheless expect to find that 5 percent of the 
observed values for the local K-functions for 
a given distance are statistically significant at 
the 5 percent level of significance. Therefore, 
when many such tests are conducted (1,035 tests 
for each distance considered), we are likely to 
find some degree of significant clustering using 
standard testing procedures. The incidence of 
this type of “false positive” findings is mitigated 
by reducing the threshold level of significance 
(the p-value) deemed to be “significant.” That is, 
we can minimize the incidence of false positives 
due to the multiple testing problem by focus-
ing on labs with very high levels of statistical 
significance (p-values of 0.001 or lower). We 
refer to these as core points — the black dots in 
Figure 2 in the article.a A second condition of 
a core point is that there must be at least four 
other labs at a given distance. This condition 
is imposed to exclude isolated labs that happen 
to be in areas with little or no manufacturing 
employment. 

Clustering of Labs Attenuates Rapidly with Distance

a The grey dots in Figure 2 are associated with p-values no 
greater than 0.005.

b *Z-scores are shown along the vertical axis, while the horizontal axis shows distances among R&D labs. The higher the z-score for a given distance, 
the more spatially concentrated the R&D labs are at that distance relative to manufacturing employment. For example, a z-score of 10, occurring at 
a distance of about two miles, indicates that the concentration of labs at that distance is 10 standard deviations away from the mean at that distance, 
indicating that labs are significantly more concentrated at that distance relative to manufacturing employment. 
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