Value at Risk:

A New Methodology
For Measuring Portfolio Risk

Commercial banks, investment banks, insur-
ance companies, nonfinancial firms, and pen-
sion funds hold portfolios of assets that may
l{iclude stocks, bonds, currencies, and deriva-
tives. Each institution needs to quantify the
amount of risk its portfolio may incur in the
course of a day, week, month, or year.

For example, a bank needs to assess its po-
tential losses in order to set aside enough capi-
tal to cover them. Similarly, a company needs
to track the value of its assets and any cash

——
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flows resulting from losses in its portfolio. An
investment fund may want to understand po-
tential losses on its portfolio, not only to allo-
cate its assets better but also to fulfill its obliga-
tion to make set payments to investors. In ad-
dition, credit-rating and regulatory agencies
must be able to assess likely losses on portfo-
lios as well, since they need to set capital re-
quirements and issue credit ratings.

How can these institutions judge the likeli-
hood and magnitude of potential losses on their
portfolios? A new methodology called value at
risk (VAR or VaR) can be used to estimate these
losses. This article describes the various meth-
ods used to calculate VAR, paying special at-
tention to VAR’s weaknesses.
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WHAT IS VALUE AT RISK?

Value at risk is an estimate of the largest loss
that a portfolio is likely to suffer during all but
truly exceptional periods. More precisely, the
VAR is the maximum loss that an institution
can be confident it would lose a certain frac-
tion of the time over a particular period. Con-
sider a bank with a portfolio of assets that
would like to characterize its potential losses
using VAR. For example, the bank could specify
a horizon of one day and set the frequency of
maximum loss to 98 percent. In that case, a VAR
calculation might reveal that the maximum loss
is $1 million. Thus, on average, in 98 trading
days out of 100, the loss on the portfolio will
not exceed $1 million over a one-day horizon.
But on two trading days in 100, losses will, on
average, exceed $1 million.

VAR can be used to assess the potential loss
on a portfolio of assets generally. The user can
specify any horizon and frequency of loss that
fits his particular circumstances. But the
method of calculating VAR depends not only
on the horizon chosen but also on the kinds of
assets in the portfolio. One method may yield
good results with portfolios consisting of
stocks, bonds, and currencies over a short ho-
rizon, but the same method may not work well
over longer horizons such as a month or a year.
If the portfolio contains derivatives, methods
that differ from those used to analyze portfo-

lios of stocks, bonds, or currencies may be
needed.

VAR FOR A SINGLE SHARE OF STOCK
Ultimately, we want to calculate VAR for a
general portfolio of different assets, such as
stocks, bonds, currencies, and options.' Let’s
focus on the simplest case first: a single stock.
A portfolio consisting of one asset will allow
us to consider the different methods for assess-

'An option is a derivative security, i.e., its value is de-
rived from the value of some other asset.
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ing VAR in a simple context. Then, we can gen-
eralize the discussion by considering how the
calculation changes when the institution has a
portfolio of many stocks, bonds, or currencies.
Finally, we will consider how the inclusion of
derivatives in the portfolio can dramatically
change the methodology for calculating VAR.

Randomness in the Stock Market. Let’s con-
sider a portfolio consisting of a single share of
stock worth $1 at the beginning of trading to-
day. We want to find the VAR over a one-day
horizon at a 98 percent confidence level, that
is, the largest one-day price drop we are likely
to see on 98 out of every 100 trading days. Sinc‘e
VAR is essentially a statement about the likeli-
hood of losses on a stock, we need to character-
ize the unpredictability of daily changes in our
stock’s price.

One way to picture the unpredictability of
our stock’s return over one day is to imagine
the stock market spinning a roulette wheel. Of
course, this is a fiction, but a useful one: econo-
mists have found that stock returns have a ran-
dom component.

Suppose there are 100 equally likely out-
comes on the wheel, with each outcome COITe'
sponding to a specific percentage daily price
change or daily return for our stock.? In gen-
eral, positive and negative returns are included
on the wheel. To determine the return over one
day, the stock market spins the roulette wheel.
If the wheel comes up with a return of 25 per-
cent, our stock would be worth $1.25 at the end
of the day. Alternatively, a spin of the wheel may
generate a return of minus 25 percent, in which
case our stock would be worth $0.75 at the ef\d
of the day. We can't say for sure what the daily
return will be, but we know that it will be one
of the outcomes on the wheel.

?In reality, when economists imagine stock returns on a
wheel, they think of the wheel as having an infinite num-
ber of outcomes so that all possible returns are represented.
To simplify the discussion, I have used 100 outcomes on
the wheel as an approximation to an infinite-outcome wheel.
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larlF lrleimg the VAR for our $1 stock is particu-
Is ttg “I’EIple if we know the returns on the rou-
o eel. Suppose we look at the outcomes
invc‘lvercoulet’re W_heel and see that 98 of them
Wi twreturns bigger than minus 30 percent
i 300 Outcomes have returns smaller than
i . 1]:nercent. Then we have found the VAR
e stock: the VAR is $0.30 at a 98 per-
98 da nfidence level. We can be confident that
o YS out of 100 our daily stock loss will be
the dgger than $0.30. But two days out of 100,
Sual Y loss may indeed exceed $0.30.
find t}:TrZry Measures of Randomness. To
o R for our stock, we needed to know
o w}‘]efums on the wheel. But how do we
et at'the)f are? Imagine that, every day,
) Weet 1s’spmnmg the wheel behind a cur-
bitt e 5 CTH t see th-e outcpmes on the wheel,
locie i tﬂi‘ ow which daily returns were se-
R In the past—we can look them up in the
sl sh]:;a};er. By categc?rizing past daily returns,
il l'-:l d be able to infer the outcomes on the
SE10 -eor example, if we saw that daily returns
100 0?1 reent occurred on five trading days in
COrr;es average, we can assume that five out-
Simila:)]n the wheel involve a 10 percent return.
e Y, if Chal‘-lges of minus 5 percent oc-
et 3;1 19 trading days in 100, on average, a
ieCie Mminus 5 percent must correspond to
Al mes on the wljleel. By continuing this
all Ol.ltc:(; We can associate price changes with
. mes on the wheel. Then we will have
daily U-;I_CtEd the wheel that the economy spins
.7+ =SINg our reconstructed wheel, we can
easily find the VAR '
e ;::;pler way to do this reconstruction is to
tsing twlZe the 100 returns on the wheel by
and e 0 I]"UTn.bers: the average return (mean)
Gitienis vo atl.ht}’f (variance) of the returns. El-
Follone ;’Y Stat.lStICS teaches that if the returns
Bella 231' tEllll’l p_atte.rn, called the normal, or
e Whei] é dlst:rlbuhon, aI.l the outcomes on
Aibe, an be summarized by these two

We :
can estimate the average return as an
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equally weighted average of past daily returns
selected by the roulette wheel, returns that,
again, could be looked up in the newspaper.
For technical reasons, analysts often don’t per-
form this calculation but assume instead that
the average return is zero.” The second num-
ber, the volatility, tells us how much the return
is likely to deviate from its average value for
any particular spin. The volatility, then, mea-
sures the capacity of the roulette wheel to gen-
erate extreme returns, whether positive or nega-
tive, with respect to the average value of zero.
The higher the volatility of the roulette wheel,
the more it tends to select large returns. We can
estimate the volatility as an equally weighted
average of past squared returns. We could use
the same returns we looked up in the newspa-
per; we only need to square each change.

Armed with the average return of zero and
the volatility of our stock’s returns, we can find
the VAR over a one-day horizon at the 98 per-
cent confidence level by following a simple pro-
cedure. To calculate VAR for our stock, we need
only multiply today’s stock price of $1 times
the square root of the volatility times a number
corresponding to the 98 percent confidence
level, called the confidence factor. The confi-
dence factor is derived from the properties of
the normal distribution. At the 98 percent con-
fidence level, it equals 2.054.*

This procedure can be done on any day in

3Since the average return is estimated very imprecisely,
it may pay to set it to zero to avoid corrupting the rest of
the VAR analysis. For more discussion on setting the aver-
age return equal to zero, see the article by Steven Figlewski
and the 1995 article by David Hsieh.

‘From elementary statistics, 2.054 standard deviations
leave 2 percent of the normal distribution in its left tail,
which corresponds to stock losses occurring 2 percent of
the time. If the confidence level were 95 percent, the confi-
dence factor would be 1.65, because 1.65 standard devia-
tions leave 5 percent of the normal distribution in the left

tail.
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the future as well. Let’s assume that it’s now
tomorrow and the stock price is $0.95. If we
wanted to calculate VAR, we would follow the
same procedure as before but use a stock price
of $0.95. We don’t need to change the volatility
or the confidence number: they don’t vary from
day to day. When VAR is calculated in this fash-
ion, we are using a constant volatility method.

Time-Varying Volatility. The problem with
the constant volatility method is that substan-
tial empirical evidence shows volatility is not
constant from day to day but rather varies over
time.” A look at a graph of the daily dollar re-
turn on the deutsche mark shows that volatil-
ity tends to cluster together (Figure 1). Notice
that highly volatile times, characterized by large

°The evidence suggests that volatility is time-varying
for short horizons such as up to a week or 10 days. For longer
horizons, the evidence for time-varying volatility is weaker.
If a firm is interested in calculating VAR over a much longer
horizon, the time-varying volatility issue may not be so
important.

JULY/AUGUST 1996

up-and-down swings in the exchange rate, tend
to follow one another, while quiet periods, char-
acterized by smaller up-and-down swings, tend
to follow each other as well. For example, vola-
tility seems to have been higher in 1991 than in
1990. A graph of the daily return on the S&P
500 confirms this impression for stock prices
(Figure 2). The increase in volatility is particu-
larly apparent after the stock market crash in
1987. Time-varying volatility seems to be a gen-
eral feature of asset prices that is seen not only
in currencies but also in stocks. Consequently,
using the constant volatility method to calcu-
late VAR could be very misleading.

What does time-varying volatility mean for
our roulette wheel analogy? When the aver-
age return and the volatility don’t vary from
day to day, the returns on the wheel don’t vary
either. Thus, the market is spinning the same
roulette wheel every day. But if the volatility is
changing from day to day (time-varying vola-
tility), the returns on the wheel must also be
changing; therefore the market is spinning a

FIGURE 1
Daily Percent Dollar Return on Deutsche Mark
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different wheel each day.

If the market spins a different roulette wheel
every day, VAR becomes more complicated.
How do we know which returns will be on the
wheel today? Equivalently, how do we know
today’s volatility? The most common solution
to this problem was introduced in 1986 by
economist Tim Bollerslev, who generalized
work done by economist Robert Engle in 1982.
Bollerslev’s time-varying volatility technique,
called the GARCH method, allows us to base
our knowledge of today’s roulette wheel on
yesterday’s wheel.

Bollerslev’'s GARCH technique estimates the
volatility of today’s roulette wheel using
yesterday’s estimate of volatility and the
squared value of yesterday’s return. If
yesterday’s return was large, in either a posi-
tive or negative direction, and yesterday’s vola-
tility was high, today’s roulette wheel will tend
to have a high volatility. Thus, today’s spin of
the wheel will tend to produce large returns as
well. In this way, large returns, positive or nega-

t'Iu‘l-;[u'u P .I"fnlrllrh'."

tive, would tend to follow one another, leading
to periods of high and low volatility as we saw
in Figures 1 and 2.

How can we estimate today’s volatility and
find the VAR using Bollerslev’'s GARCH
method? The daily volatility using GARCH
turns out to be a weighted average of past
squared returns, just as it was in the constant
volatility case. The difference is that the con-
stant volatility method weights past squared
returns equally while Bollerslev’'s GARCH
method weights recent squared returns more
heavily than distant returns.

Itis easy to calculate volatility using the con-
stant volatility method. Bollerslev's GARCH
method is much harder to implement: to find
the right weight for each past squared return,
we must employ a complicated, computer-in-
tensive procedure. Once we have found today’s
volatility, we can multiply the confidence fac-
tor times the square root of today’s volatility
times today’s stock price to find today’s VAR.
When we use Bollerslev’s GARCH method, the

FIGURE 2
Daily Percent Dollar Return on S&P500
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confidence factor is the only number that does
not change daily.

RiskMetrics™, Bollerslev’s GARCH method
has found widespread empirical support
among financial economists, but the difficulty
in estimating daily volatilities has slowed its
adoption by many institutions engaged in risk
management. To make the calculations easier,
J.P. Morgan introduced RiskMetrics™, a risk
management system that includes techniques
to approximate GARCH volatilities (see Pros
and Cons of Using RiskMetrics™ as a Risk-Man-
agement Tool). Like Bollerslev’s method, the
RiskMetrics™ estimate of daily volatility in-
volves a weighted average of past squared re-
turns, with recent squared returns weighted
more heavily. The RiskMetrics™ weights are
chosen to produce daily volatility estimates
similar to GARCH volatilities. The set of
weights calculated by the RiskMetrics™
method is easier to compute and can be used
for any asset in the portfolio. For example, the
analyst would use the same set of weights to

JULY/AUGUST 1996

calculate volatilities of stocks, bonds, and cur-
rencies. Bollerslev’'s GARCH method, in con-
trast, requires the computation of different
weights for each volatility calculation, and each
set of weights is harder to calculate than it
would be using the RiskMetrics™ method.*
Other Methods. Two other methods of cal-
culating volatility are sometimes used. The first
method relies on recognizing that pricing meth-
ods for options require the user to specify his
estimate of the future volatility of an asset. For
example, if a user wants to price an option on a
stock using a method such as the popular Black-
Scholes method, he must specify an estimate
of the volatility of the stock over the life of the
option.” Since option prices are observable in

®Under the RiskMetrics™ method, a different set of
weights is calculated for each of a series of over 400 assets.
The weights are then combined to yield a single composite

set of weights that can be used for any asset in the portfo-
lio.

Pros and Cons of Using RiskMetrics™
as a Risk-Management Tool

Pros

* Computationally convenient approximation
to Bollerslev’'s GARCH method. Thus, will
require relatively smaller investment in
research and information systems.

* Not a proprietary system The methodology is
explained in detail in ].P. Morgan publications.

¢ ].P. Morgan publishes volatilities and
correlations on a wide variety of assets free of

charge.

* Substantial third-party software support.

Cons

e Commits user to a one-size-fits-all method:
the GARCH method. This may be misleading
for stocks, especially following large changes
in stock prices. GARCH may also not describe
covariances well.

* There is no consensus on how well GARCH
models forecast volatility. Even if GARCH
models forecast volatility well in a statistical
sense, that is, make small forecast errors, they
may not forecast well in an economic sense.
For example, the RiskMetrics™ volatility
estimate may not maximize profits even if it
does forecast volatility well in a statistical sense.

* VAR may be the wrong methodology for the
firm.

FEDERAL RESERVE BANK OF PHILADELPHIA
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the marketplace, the market’s view of volatil-
ity can be backed out of the option price using
the Black-Scholes formula. Volatility estimates
inferred from option prices in this way are
called implied volatilities.

This method has two disadvantages that
limit its appeal. First, options may not be traded
on the particular asset of interest. Thus, implied
volatility estimates may not be obtainable for
some assets in the portfolio. Second, econo-
mists are unsure about whether implied vola-
tility estimates are better than GARCH esti-
mates of daily volatility.

The other method of estimating volatility is
based on judgment. The user analyzes the eco-
nomic environment and forecasts volatility
based on his subjective views. This method has
limited appeal as well, since testing the valid-
ity of a subjective view is difficult.

VAR FOR A PORTFOLIO OF ASSETS

Up to this point, we have considered only
how to calculate the VAR of a portfolio consist-
ing of a single stock. Now let’s look at a portfo-
lio of two stocks. The principles we are about
to discuss apply generally to portfolios of many
assets, but we will consider just two stocks to
make the ideas clear.

As before, ultimately we want to find the
volatility of the return on the portfolio. It’s clear
that the volatility of the portfolio should de-
pend on the volatility of the return of each stock
in the portfolio. So, we need to estimate the
volatilities of the returns of both stocks. But
stock returns may covary as well. For example,
if the covariance between the stocks in a port-
folio of two stocks is negative, then when one
stock has a positive return, the other has a nega-
tive return, and vice versa. Thus, the two stocks
dampen each other’s swings in return, produc-

“For an explanation of this method, see the article by
Fischer Black and Myron Scholes.
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ing a portfolio whose volatility is lower than
the volatility of each stock in the portfolio. Add-
ing more stocks to the portfolio would reduce
the volatility further, provided the additional
stocks’ returns are not highly positively corre-
lated with the return of the initial portfolio. To
account for this effect, we must also estimate
the covariance between the stocks’ returns.
Once we know the stock returns’ volatilities and
covariances, we can calculate the volatility of
the entire portfolio and find the VAR as before.

As an example of the calculation, suppose
we have invested $1 in stocks 1, 2, and 3. Then
by an elementary statistical formula, the daily
volatility of the portfolio would be

volatility(portfolio) = volatility(stock 1) +
volatility(stock 2) + volatility(stock 3) +
2.0 x covariance(stock 1, stock 2) +

2.0 x covariance(stock 1, stock 3) +

2.0 x covariance(stock 2, stock 3)

Notice that if the covariance between the
daily returns of stocks 1, 2, and 3 were zero, we
could sum the volatilities of each stock to get
the volatility of the portfolio. Thus, if covari-
ances between all assets were zero, we could
find the VAR of each asset separately and then
sum them to get the VAR of the portfolio. But
since covariances are, in general, not zero, we
can’t, in general, find the VAR of individual
assets and sum them to get the VAR of the port-
folio. Moreover, we can’t find the VARs of as-
set classes such as stock and currency portfo-
lios separately and sum them. We must account
for the covariances between asset classes as
well.

To calculate covariances between the assets’
returns using the constant covariance method,
we use an equally weighted average of the
products of each stock’s past daily returns.
However, since economists have found evi-
dence that covariances change over time, it may
be advisable to estimate time-varying covari-
ances using an extension of Bollerslev’s

rJ
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GARCH method or the RiskMetrics™ GARCH
approximation.®

WHAT ABOUT DERIVATIVES?

Many portfolios have significant numbers of
derivatives such as futures, options, and swaps,
all of which are securities whose value is de-
rived from the value of some other asset. Con-
sider a derivative on our $1 stock. We know
how to find the VAR of the stock over a one-
day horizon at the 98 percent confidence level:
we find the volatility of its return and multiply
its square root by the product of today’s stock
price and the confidence factor. But how can
we find the VAR of a derivative on this stock?

One method is to link the derivative to the
underlying stock and use the standard VAR
method. To do this, we use a derivative-pric-
ing method, such as the Black-Scholes model,
to calculate a number called delta, which gives
us a way to translate the derivative portfolio
into the stock portfolio. A derivative’s delta tells
us how the derivative’s price changes when the
stock price changes a small amount. For ex-
ample, if the delta is 0.5, the derivative’s price
goes up half as much as the stock’s price. For
small price changes, a derivative with a delta
of 0.5 behaves as if it is half a share of the $1
stock. So, using our estimate of the stock’s vola-
tility, we could calculate VAR as before: by
multiplying $0.50 times the square root of the
stock’s volatility times the confidence factor.

A serious drawback to this method is that it
works well only when stock price changes are
small. For larger changes, delta itself can change
dramatically, leading to inaccurate VAR esti-
mates. In general, we need to account for how
delta changes, considerably complicating the
analysis.

To avoid this complication, risk managers

SFor further discussion on covariance GARCH tech-
niques, see the paper by Robert Engle and Kenneth Kroner
and the 1990 paper by Tim Bollerslev.
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often use an alternative method called Monte
Carlo analysis. Using the volatility and covari-
ance estimates for the derivatives” underlying
assets as well as a derivative pricing tool such
as the Black-Scholes method, risk managers
construct a new roulette wheel. The new wheel
will still have 100 numbers, but each number
will correspond to a potential change in the
derivative’s price. The computer can then look
at the largest loss the derivative will sustain for
98 of the outcomes. Let’s suppose this loss is
$0.01. Then the VAR of the derivative over a
one-day horizon at the 98 percent confidence
level is $0.01. Since RiskMetrics™ yields vola-
tility and covariance estimates, Monte Carlo
evaluation of derivative portfolios can be done
under J.P. Morgan'’s system as well.”

WEAKNESSES OF VAR

When properly used, VAR can give an insti-
tution an idea about the maximum losses it can
expect to incur on its portfolio a certain frac-
tion of the time, making VAR an important risk-
management tool. Using VAR calculations, an
institution can judge how it should reallocate
the assets in its portfolio to achieve the risk level
it desires. But VAR methodology is not with-
out its weaknesses, and, improperly used, it
may lead an institution to make poor risk-man-
agement decisions. This can happen for one of
two reasons: either the VAR is incorrectly cal-
culated or the VAR is correctly calculated but
irrelevant to the institution’s real risk-manage-
ment goals.

What Is the Best Method for Estimating
Volatility? Bollerslev’s GARCH method works
better for currencies than it does for stock prices.
Financial economists have found that stock
volatility goes up more as a result of a large
negative return than it does as a result of a large

“For more detail on this process, see the RiskMetrics™
technical document. For an example of a related method-
ology, see the 1993 articles by David Hsieh.
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positive return. A weakness of Bollerslev’s
GARCH method is that GARCH volatility esti-
mates don’t depend on whether yesterday’s
return was positive or negative. Thus, this
method can’t allow for stock volatility’s asym-
metric response to past returns.

To account for this effect, financial econo-
mists have developed methods for estimating
asymmetric volatilities." These methods are
important because they can give very different
estimates of volatility for days following large
stock returns than would the GARCH or
RiskMetrics™ method. For small daily returns,
Bollerslev’s method, RiskMetrics™, and the
asymmetric volatility method yield similar one-
day-ahead volatility predictions, leading a user
to think, perhaps, that one model is as good as
the others for daily volatility predictions. But
for large daily returns, the one-day-ahead vola-
tility predictions of these methods can be sub-
stantially different. If an asymmetric volatility
method is appropriate for stock prices, both
Bollerslev’s method and RiskMetrics™ may
understate one-day-ahead volatility whenever
a large drop in stock prices occurred the previ-
ous day, thus producing a potentially substan-
tial underestimate of daily VAR. Similarly, the
GARCH or RiskMetrics™ method could over-
estimate the VAR after a large increase in stock
prices.

Robert Engle and Victor Ng have provided
evidence that a particular asymmetric volatil-
ity method well describes the volatility of Japa-
nese stock returns and that GARCH methods
can substantially underpredict volatility follow-
ing large negative returns. Thus, VAR estimates
of stock portfolios produced by GARCH or the
RiskMetrics™ GARCH approximation should
be viewed with caution if the calculations are
done on days with large stock returns.

Although having the right method for cal-

'The prototypical asymmetric volatility model is
EGARCH. See the article by Daniel Nelson.
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culating the volatilities of assets is important,
correctly calculating the covariances between
the returns on assets is also important. Unfor-
tunately, not as much work has been done by
financial economists to identify the right
method for calculating covariances. To date,
many methods have been proposed, but no
consensus has yetemerged. Thus, wedon’t yet
know for sure how we should handle covari-
ances in portfolios. This uncertainty introduces
the risk that any method we use may substan-
tially under- or overestimate VAR. In particu-
lar, RiskMetrics™ commits the user to a special
case of Bollerslev's GARCH method. Since we
don’t yet know whether Bollerslev’'s GARCH
method is adequate in describing covariances,
we should use even more caution in interpret-
ing results whenever we have used covariances
in our VAR calculations.

In the long run, the volatility estimates pro-
duced by GARCH methods tend, in general, to
approach the values that the constant volatil-
ity method would have calculated. Thus, for
horizons much longer than one day, using the
constant volatility method to calculate VAR
may be warranted."

Frequency of Large Returns. Using either
Bollerslev’s GARCH model or the constant
volatility method, we could find the VAR by
assuming that the returns on the wheel follow
a normal distribution. However, a substantial
amount of evidence indicates that the normal
distribution is inadequate because large daily
returns, positive or negative, occur more often
in the market than a normal distribution would
suggest. One remedy is to use a different dis-
tribution for the price changes, one that gener-
ates more frequent large returns."” Alternatively,

!1See the article by David Hsieh (1993a) for a discussion
about when the constant volatility model may be appro-
priate.

"2For an example of this technique, see the article by
Daniel Nelson.
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we could use statistical methods that assume
the returns follow the normal distribution, but
which remain valid even if this assumption is
mistaken.

Whichever method we use, we are essen-
tially looking at the past frequencies and mag-
nitudes of returns and attempting to represent
them on a reconstructed wheel. Even if we ac-
count for the nonnormality of returns during
this process, there is still a problem: we’re go-
ing to put on the wheel only those returns we
saw in the past with the frequency we saw in
the past. So, if some potential negative returns
are rare or have not yet occurred, we may
underrepresent them on the wheel, implying
that the VAR will be underestimated.

Structural Shifts in the Economy. VAR may
be underestimated if the wheel the market is
spinning suddenly changes in an unpredictable
way because of a structural change in the un-
derlying economy. For example, consider the
European Exchange Rate Mechanism (ERM),
which kept daily returns of major European
currencies small. In 1993, in response to eco-
nomic pressures, much larger returns were sud-
denly allowed. Thus, the volatility of the returns
suddenly shot up faster than Bollerslev’s
GARCH method would have forecast based on
past volatilities and returns. If we had calcu-
lated the VAR the day before the shift, we would
have underestimated it because we would have
used an estimate of the volatility that was too
low. More subtly, since we never know when
the economy may suddenly shift to higher or
lower volatility as a result of a structural
change, we will incorrectly estimate the VAR
unless we explicitly account for this possibil-
ity.
Because of the problems caused by infre-
quent large returns and structural shifts in the
economy, it seems prudent, then, to supplement
statistical calculations of VAR with judgmental
estimates. For example, an institution could
have asked its economists to project the likely
price effects if the ERM suddenly allowed larger
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price changes. These projections could be based
on similar historical episodes, economic theory,
and empirical experience. VAR estimates based
on judgment could be generated for changes
in central bank monetary regimes, political in-
stability, structural economic changes, and
other events that have either never happened
or happen infrequently.

Liquidity of Assets. VAR measures the
maximum loss that an institution can expect a
certain fraction of the time over a specific hori-
zon. Losses are measured by assuming that the
assets can be sold at current market prices.
However, if a firm has highly illiquid assets—
meaning that they cannot quickly be resold—
VAR may underestimate the true losses, since
the assets may have to be sold at a discount.

Credit Risk. Another potential problem for
VAR is that the methods used to evaluate the
assets in the portfolio may not properly treat
credit risk. Suppose a bank buys a portfolio of
derivatives from many different firms. The de-
rivatives are valuable to the bank because they
impose obligations on the firms. For example,
one of the derivatives may obligate a firm to
sell foreign currency to the bank at a price be-
low the current market price, yielding a profit
to the bank under some conditions, but it may
also obligate the bank to deliver foreign ex-
change at a below-market price under other
conditions. Using the Black-Scholes method
and a Monte Carlo simulation, which assume
no derivative credit risk, the bank calculates a
VAR of $5 million at a 98 percent confidence
rate for a three-month horizon. But if some of
the firms may default on their obligations, the
true value of these derivatives is lower than
would be estimated by the Black-Scholes
method coupled with Monte Carlo analysis.
Thus, the true value at risk is larger than $5
million. To account for this possibility when
valuing derivatives, the bank should use a
method that includes credit risk. For some ap-
plications, credit risk may be small enough to
ignore, but, in general, users need to include
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credit risk analysis in their VAR methods.

Is VAR the Right Methodology? In many
situations, VAR may not be the correct risk-
management methodology. If we pick a specific
loss such as $1 million, VAR allows us to esti-
mate how often we can expect to experience this
particular loss. For example, using VAR we
might estimate that we will lose at least $1 mil-
lion on one trading day in 20, on average. Dur-
ing some 20-day periods, we might lose less
than $1 million. During other 20-day periods,
we might lose more than $1 million on more
than one day. VAR tells us how often we can
expect to experience particular losses. It doesn’t
tell us how large those losses are likely to be. In
particular, in any 20-day period, there is always
one day on which the worst loss is experienced.
If we want to know the size and frequency of
the worst loss, VAR provides no guidance.

One way of handling this is to use worst-
case-scenario analysis (WCSA), proposed by
Jacob Boudoukh, Matthew Richardson, and
Robert Whitlelaw. WCSA might show that on
the day with the worst price change in a 20-
day period, we can expect to lose at least $2.77
million 5 percent of the time, a number sub-
stantially bigger than $1 million. Thus, if a firm
is interested in the size of a worst-case loss, VAR
could underestimate it.

CONCLUSION

VAR is an important new concept in portfo-
lio risk management. It gives the maximum loss
that an institution can expect to lose with a cer-

Gregory F. Hopper

tain frequency over a specific horizon, and it
can be calculated by using a constant volatility
or time-varying volatility method. There are,
however, problems in implementation and in-
terpretation. To implement VAR calculations,
it is important to use the right method, espe-
cially under unusual circumstances such as
stock market crashes. Although much progress
has been made in describing how volatilities
change through time, not as much progress has
been made in the description of time-varying
covariances. Thus, VAR numbers should be
viewed with caution at this point.

Besides the problem of identifying the right
method, VAR measures may mislead unless
they properly account for liquidity risk, rare or
unique events, and credit risk. In many situa-
tions, it may not be the right risk-management
concept. An institution may want to investigate
an alternative, such as worst-case-scenario
analysis.

Despite the contribution that VAR can make
to a firm’s understanding of the risks in its port-
folio, these risks can be misunderstood if they
are not communicated effectively to a manage-
ment that understands the value and limitations
of sophisticated financial technology. Poor man-
agement practices, which could lead to unau-
thorized trades, may also contribute to this mis-
understanding. Thus, a firm should use VAR
in the context of a broader risk-management
culture, fostered not only by the firm’s risk
managers but also by its senior management.
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APPENDIX
VAR and Capital Requirements for Market Risk

In 1995, the Basle Committee on Banking Supervision at the Bank for International Settlements (Basle
Committee) issued a proposal for comment entitled “Internal Model-Based Approach to Market Risk Capi-
tal Requirements.” This proposal would establish a VAR-based method of measuring banks’ portfolio risk.
In January 1996, the Basle Committee approved an approach that would allow banks to use their own
internal risk-management models or the Basle Committee’s standard model. The internal risk-management
models would be subject, however, to qualitative and quantitative restrictions. U.S. regulators are expected
to implement this approach for nine or 10 of the largest U.S. banks. Some examples of the restrictions the
Basle Committee would impose on internal models are:

Quantitative Criteria:
* VAR must be computed daily using a horizon of 10 trading days.
* The confidence level should be set to 99 percent.
e Models should account for changing delta when computing VAR. In addition, VAR models should
account for the impact of time-varying volatility on option prices.
* Banks may use covariances within and across asset classes.

Qualitative Criteria:

¢ Banks should have independent risk-management units that report directly to senior management.
* VAR reports and analyses should be considered when setting trading limits.
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