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Abstract

This paper examines methodological approaches for extracting structured data
from large-scale historical document archives, comparing “hyperspecialized” ver-
sus “adaptive modular” strategies. Using 56 years of Philadelphia property deeds
as a case study, we show the benefits of the adaptive modular approach leveraging
optical character recognition (OCR), full-text search, and frontier large language
models (LLMs) to identify deeds containing specific restrictive use language—
achieving 98% precision and 90–98% recall. Our adaptive modular methodol-
ogy enables analysis of historically important economic phenomena including re-
strictive property covenants, their precise geographic locations, and the localized
neighborhood effects of these restrictions. This approach should be easily adapt-
able to other research involving deeds and similar documents.
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Executive Summary

This paper examines methodological approaches for extracting structured data from

large-scale historical document archives, comparing “hyperspecialized” versus “adap-

tive modular” strategies using 56 years of Philadelphia property deeds as a case study.

Hyperspecialized approaches rely on custom models optimized for specific tasks, poten-

tially achieving superior accuracy but requiring substantial investment while offering

limited flexibility. Adaptive modular approaches combine existing off-the-shelf or lightly

customized tools in ensemble to balance accuracy, cost-effectiveness, and flexibility.

Our case study using Philadelphia deeds shows the benefits of the adaptive modular

approach in practice. We use optical character recognition (OCR), full-text search, and

frontier large language models (LLMs) to identify deeds containing specific restrictive

use language—achieving 98% precision and 90–98% recall. We also demonstrate how

our approach proves particularly valuable when research questions evolve organically, as

modular components can be repurposed across multiple projects without (re)building

specialized models.

We find that LLMs can be particularly valuable in the context of a modular ap-

proach. While LLMs can be difficult to control and very costly to run on large amounts

of text, they work well in conjunction with other tools. Cost issues can be avoided by

focusing LLM tasks on a small subset of selected text. Limiting the scope of text eval-

uated by LLMs improves their performance and therefore requires less time for human

review. We also find that frontier LLMs are very good at overcoming even severe OCR

issues—much as human readers can.

Our adaptive modular methodology enables analysis of historically important eco-

nomic phenomena including restrictive property covenants, their precise geographic

locations, and the localized neighborhood effects of these restrictions. This approach

should be easily adaptable to other research involving deeds and similar documents.
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1 Introduction

For thousands of years, humans have produced vast archives of unstructured textual

data that remain largely inaccessible to most contemporary researchers. This unstruc-

tured textual data include, but are certainly not limited to diary and journal entries;

meeting minutes; organization bylaws; individual and business ledger books; property

transfers; birth, death, and marriage certificates; records of immigration and natural-

ization; shipping and business inventories.

Many administrative documents, including “public records”—such as property deeds

or mortgage documentation—have been “digitized” in the sense of scanning or digital

imaging. However, this format is unsuitable for large-scale analysis. Gathering, yet

alone analyzing, data from millions of pages of text isn’t feasible as a manual task and

must be tackled technologically.

Advances in optical character recognition (OCR), full-text search, and large lan-

guage models (LLMs) offer unprecedented opportunities to unlock insights from the

historical source material by making it economically and technically feasible to extract,

process, and analyze these data. The availability of this new technology and the relative

costs and benefits associated with each raises questions about usage and applicability

that we tackle by considering the trade-off between deep specialization for a specific

use case (“hyperspecialization”) versus an approach based on an ensemble of flexible

tools that can scale across multiple research questions (“adaptive modularity”).

Founded in 2023, the Philadelphia Federal Reserve’s Center for the REstoration of

Economic Data (CREED1) works to harness, refine, and customize these advancements

to produce high-quality, publicly available data, code, and economic research. In this

paper, we discuss CREED’s approach to data extraction and many of the thorny issues

that arise. We compare the advantages and disadvantages of two approaches to con-

verting historical source data into a research dataset—hyperspecialization and adaptive

modularity. Finally, we provide a case study of our work with 56 years of Philadelphia

property deeds (1910–1965) demonstrating how the flexibility of our adaptive modular

approach harnesses the most appropriate and cost-effective tools for the job.

2 Hyperspecialization or Adaptive Modularity?

Long histories of administrative data are often available only in physical form—

typically paper or microfilm. One approach to extracting data from these media is

to go down the path of hyperspecialization—building custom, highly tuned machine

learning (ML) models that can achieve results that meet or exceed those produced

1An homage to Apollo Creed and Rocky Balboa, two of Philadelphia’s cinematic heroes.
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when humans manually search the documents and transcribe and format the relevant

information. Hyperspecialization can be the best path—if the research question is very

well defined2 or the underlying data are highly uniform in terms of font, handwriting,

page layout, and image quality.

That said, hyperspecialization is not without its disadvantages. Building custom

models incurs costs in multiple ways:

1. Development time: This encompasses the process of writing the relevant code and

researching and testing the best models for the task.

2. Training time: The time it takes for a model to be “trained” (i.e., for the computer

to do the computations necessary to build and optimize the model). This can be

substantial depending on the complexity of the model and/or the size of the

dataset.

3. Acquiring training data: Training data are a selected subset of the real source

material where the data extraction process is completed manually by humans.3

The labels4 applied by humans serve as an answer key to “teach” a model what

the data look like, what information to extract, and how the information should

be formatted for output after extraction. The performance of a model is highly

dependent on the quality of training data. Biases in the training data can prop-

agate into model outputs. Heterogeneities in the data also need to be sufficiently

represented5 in the training data for the model to work well across the entire

dataset. Creating high-quality labeled training data requires substantial effort,

particularly for historical sources where overall trends and heterogeneities in the

full sample are likely not yet well understood at the beginning of a project since

they were previously in inaccessible formats.

4. Computing costs: Training a custom model can require more computational power

(i.e., additional cores or GPUs) than available via a typical desktop computer.

Power can be gained via in-house high-performance computing environments or

by renting compute power via cloud services.

2Think, for example, of a credit scoring model to predict default risk or a model used to predict
customer response to a marketing campaign.

3Synthetic data are a promising solution to address bias, cost, and privacy concerns that arise
when constructing real-world training data. Most research and success in this area are focused on
synthetic image generation for computer vision models. Synthetic text training data presents additional
challenges and is, so far, less fruitful. See, e.g., Aranjuelo, Garćıa, Loyo, Unzueta, and Otaegui (2021);
Bauer et al. (2024); Li, Zhu, Lu, and Yin (2023); Liu et al. (2024).

4A “label” is qualitative or quantitative information assigned to part or whole of an image or piece
of text. A label could be “cat” for an image of a cat or “3” if it’s an image of 3 cats. A label for
a paragraph could be “happy” for the tone, or if it’s dialogue, the label could be the name of the
character speaking. It can also be exactly transcribed data for the purpose of training OCR models.

5“Sufficiently represented” is an active area of ML research and is not well defined or understood.
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5. Service costs: Frontier6 LLM models typically charge per input and output to-

ken.7 These costs can accumulate quickly when working with large amounts of

text. Output token usage is not easy to predict—generally there is not much

to constrain the length of an LLM’s response8—so there is some chance of cost

overruns when scaling up small tests to apply LLMs to a full dataset.

These costs tend to increase if the input data are not highly uniform—heterogeneous

inputs require more training data9 and more complicated models, and may increase the

risk of overfitting.10

Hyperspecialization is, by its very nature, inflexible, which often conflicts with the

practical demands of research. Projects can evolve quickly as more is learned about

the data, particularly with large new datasets where the contents have never been

studied or accessed before. Refining subsequent iterations in training data can lead

to the discovery of something that wasn’t known to exist or—worse—that invalidates

the initial research design. Moreover, even when projects evolve according to plan,

researchers often identify additional research questions that may inform future research.

If the new research question is sufficiently different from the initial question that the

model was trained on, the highly tuned machine must then be rebuilt from scratch—at

additional cost.11

Alternatively, an adaptive modular approach employs flexible, adaptive tools that

achieve high—but not the highest possible—accuracy while allowing a project to evolve

organically. This approach utilizes off-the-shelf technology to answer initial research

questions or develops new but generalized tools to facilitate a more thorough under-

standing of the data. Custom models can also be incorporated—typically those that are

less sensitive to the size and construction of training data. The underlying components

of this modular approach can then be applied to many other research projects.

We also note that these approaches are not mutually exclusive and may indeed

6“Frontier” is a common moniker for “cutting-edge” or top-tier LLM models—excluding things like
older open source or older closed source models.

7A token is similar to, but not exactly the same as, a word. Very roughly, a token averages four
characters including spaces.

8Often a hard cap on output tokens per query can be set but negatively impacts LLM performance—
it’s easy to chop off information you need from an LLM response.

9Generally speaking, each heterogeneity needs to be appropriately represented in the training data.
10Overfitting occurs when a model performs excellently on the training data (which the model has

seen as part of training or even evaluation) but poorly on data it has never seen before. Multiple
factors can contribute to overfitting, including model complexity and poor construction of the training
data, in one or more ways.

11This incremental cost can be nearly equal to the initial investment if the research question or
machine learning task is sufficiently different than originally conceived. For example, imagine that
your research question involves finding all the proper names in a collection of documents and later
you decide you also need all addresses. This now requires a new set of training data focused on
addresses—text and where that text is on the page.
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be complementary. An adaptive modular process can—and often does—help identify

where and how the investment in a more sophisticated or costly, targeted, and cus-

tomized approach is likely to yield a worthwhile return. This iterative approach can

minimize the risk of overengineering at too early a stage of data exploration while still

allowing for investment in specialized tools at points when the return is greatest.

3 Our Adaptive Modular Approach

CREED’s interest in historical data is varied and far-reaching. Our broad research

scope favors adaptive and modular approaches, complemented by strategic deployment

of hyperspecialization. This approach best supports CREED’s mission to facilitate the

development of tools that can be used by the broader research community in addition

to compiling high-quality, ready-to-use datasets.

Our adaptive modular approach to extracting relevant, structured data from im-

ages of textual data starts with scanned images of microfilm or paper records (“input

data”). Working with these images can be challenging. Paper records may be torn,

faded, creased, or otherwise damaged. The quality of the microfilm image can be de-

pendent on the technician operating the machine—images may be crooked, cut off,

blurry, under- or over-exposed, pages may be skipped in multi-page documents, etc.

Documents may have been handwritten by one person or by many people, each with

their own unique handwriting. Documents may have been typewritten by one person

using the same typewriter or multiple people using different typographical conventions

with multiple different typewriters, each of which can have unique keyboard structures

or other calibration quirks. Finally, these historical documents contain spelling, gram-

matical, and other types of errors innately expected of humans.

We accept that off-the-shelf OCR quality will be highly variable and often poor given

the above described characteristics of the input data. To partially offset these quality

issues, we implement flexible, fast fuzzy search12 to roughly extract data of interest.

Once the corpus has been winnowed down to a smaller size, we can efficiently pursue a

more hyperspecialized approach. We can then apply custom ML or frontier LLMmodels

to further clean the data. We find that frontier LLMs can correctly comprehend even

very garbled OCR output, and that other older ML methods struggle without accurate

OCR. Even new but small language models or older versions of frontier LLMs do not

handle garbled OCR well. Throughout this process, we ensure that there is always a

12A fuzzy search can accommodate spelling differences, i.e., searching for “Jon Smit” will return
results with “John Smith.”
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“human in the loop”13 (Meng, 2023) by building tools to make it easy to check interim

steps14 and tweak the pipeline as needed. We always validate a large enough sample of

results by hand to quantify the accuracy of the broader sample.

We illustrate our adaptive modular approach by applying it to a challenging real-

world dataset: 56 years of property deeds from the City of Philadelphia. We begin by

discussing the broader value of property deed records before diving into our specific

application.

4 Case Study: Philadelphia Property Deeds

4.1 Background on Deeds

The legal process of recording property transfers generates a particularly rich ad-

ministrative dataset. Deeds have been used to study a wide range of economic, legal,

and historical subjects. Key examples include the long run effects of tangled titles15

(Hincken, 2021), property transfer under intestacy16 (Stein & Carpenter, 2022), building

development and use history, genealogy, environmental history, and the concentration of

and pattern of land ownership (Storey, 2018). These topics provide key insight into the

functioning of the real estate market—a large driver of the US economy—and therefore

into inflation, employment, and financial stability for the economy as a whole.

An additional important topic of ongoing research is the impact of historical zoning

practices on housing access, affordability, and quality (Asquith, Mast, & Reed, 2023;

Bartik, Gupta, & Milo, 2025). Before the legal ascendancy of zoning, properties were

subject to legal covenants that performed a similar, privately initiated, function to

zoning (Korngold, 2001; Weiss, 1987). Covenants in property deeds may restrict use,

ownership (Santucci, 2020; Surani et al., 2025), occupancy, and a variety of building

characteristics, such as height, setback, and exterior finish. To measure the long-term

effects of these types of restrictions, researchers must identify and extract the rele-

vant restrictive language and property characteristics and geographically locate each

property—all from information contained within the deeds themselves.

Modern versions of property transfer data—what might be found on a municipal

13Meng defines human-in-the-loop as the integration of human interaction, intervention, and judg-
ment to control or alter automated processes, a practice increasingly emphasized in ML and AI systems.

14We follow the maxim of “ABC—Always Be Checking.” We build tools to make quick visual and
mathematical checks of our results. This allows us to tweak our processes and to build a feedback loop
to optimize tool and model performance.

15Tangled titles, also referred to as “heir’s properties,” describe properties where the name of the
owner on the deed is not the same as the apparent owner of the property. Tangled titles are a major
issue impeding households from benefiting from property ownership.

16Intestacy occurs when an owner of a property dies without having written a will. Property transfer
under intestacy is a major cause of tangled titles.
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open data portal—contain some of the information necessary to facilitate the research

mentioned above. Such databases typically include only the last 15–25 years of records

and only select information, not the records in their entirety. For example, in Philadel-

phia, property transfer data from 1999 onward are publicly available as tabular data

but track only price, address, and buyer and seller names. In contrast, existent property

records in Philadelphia extend back to the city’s establishment in 1682 (Hughes, 1958),

nearly all of which are already available on microfilm.

4.2 Adaptive Modular Approach Applied to Philadelphia Deeds

Our exploration and analyses of Philadelphia property deeds require us to examine

a wide array of text and transaction types in our corpus of deeds. For example, when

identifying cases in which some language of interest exists (positive cases), we may also

need to capture a set of deeds that do not contain the item of interest (negative cases).

Negative cases can be used as control variables or as counterfactuals for causal analysis.

In addition, we want to extract tabular data from the deeds—for example, seller, buyer,

mortgage terms, covenant terms, or encumbrances. Finally, we want to pinpoint the

geographic location of the deeds of interest, ideally at the parcel level.

Through an ongoing partnership with the Philadelphia Department of Records

(DOR), CREED obtained digital images of property deeds from 1910–1965. This

dataset contains 4.7 million images representing at least 7 million pages and 2.4 million

deeds.17 Philadelphia’s deeds were recorded in three primary formats over time: 1)

transcribed by hand, 2) transcribed by typewriter, and 3) photostats18 made of the

original deed documents. We show examples of these formats in Figures 1, 2, and 3

below. The quality of the image captured in the microfilm varies substantially, ranging

from exceptionally clear to completely illegible. Variable document format and poor-

quality images are likely to be typical in other cities as well, particularly for anything

recorded prior to the mid-20th century. Our approach to these problems should be

adaptable to many other researcher’s use cases.

17The microfilm itself is old, produced by an initiative launched in 1949 (Hughes, 1958). The images
capture the deeds in a continuous stream, varying between one and two pages per image, with no
digital demarcation between documents. For this reason, we report image counts, not pages, and an
approximate count of deeds. Discussion of methods for dividing images into individual deeds is beyond
the scope of this article.

18The photostat machine was an early photocopier that used camera film instead of toner, producing
white-on-black negative copies.
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Figure 1: Example of a handwritten deed transcription found in Philadelphia prior to
approximately 1913. Note the similarity in structure to the typewritten deed transcription
in Fig. 2.

Figure 2: Example of a typewritten deed transcription found in Philadelphia from
approximately 1913–1935. Note the similarity in structure to the handwritten deed
transcription in Fig. 1.
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Figure 3: Example of a deed photostat found in Philadelphia after approximately 1935.
Note the variety in fonts (both typeset and handwritten), font sizes, and the section of text
on the left page that is rotated 90 degrees.

We begin the process of analyzing the property deeds by converting the image files

we received from the DOR into textual data using OCR.19 A custom, fine-tuned OCR

model would be particularly challenging, given a wide range of fonts, handwriting,

document formats, and image quality. Instead, we leverage off-the-shelf software, in

this case Amazon Textract, which offers a balance of scalability, ease of use, cost, and

flexibility (i.e., performance across a wide range of inputs).20

Unfortunately, this approach produces messy results. Even text clearly legible to

humans can be mangled by the OCR process. If this process did read the text perfectly,

we could do a simple search for exact terms of interest. For example, for intestate prop-

erty transfer, we might search for “intestate” or “without will” and be confident that the

search results are true positives. However, both false positives and false negatives are

introduced by the OCR process. The word “intestate” could be read as “inte3tate”—a

false negative with a simple keyword search, or “interstate” could be read by OCR as

“intestate”—a false positive. We therefore need to use technology that will allow us

to cast a broad, fuzzy net. For example, we may want to search for the phrase “shall

not be sold,” allowing for other words to be inserted between the search terms (slop)

19This process is akin to converting an unsearchable pdf file into a searchable one.
20This is not an endorsement of Textract in particular. There are many other viable choices for

off-the-shelf OCR, including but not limited to Google Cloud Vision or Azure Computer Vision or
free-to-use options such as docTR OCR, EasyOCR, or Tesseract
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or allowing variable Damerau–Levenshtein (DL) edit distances.21

The particular search method used should be both flexible and fast, allowing for

fuzzy search, phrase reordering, and other natural language processing techniques to

facilitate balancing recall and precision.22 To this end, we employ OpenSearch,23 a

full-text24 search engine that can be found “under the hood” powering a wide variety of

consumer products and research programs. NASA uses OpenSearch to provide public

search access to Earth Observing System Data.25 E-commerce websites use it as a

search engine for customers to find products. A wide range of companies use it to

search log files or as an analytic backend, which can be used to identify and trouble-

shoot website or software issues, study consumer use pattern and purchase habits, and

power business analytics dashboards, amongst many things. In our research setting,

OpenSearch allows us to overcome some of the issues with OCR quality while avoiding

the process of constructing an expensive, custom OCR solution. OpenSearch offers

additional advantages, for example, it allows easy access to the underlying data in a

less technical, more intuitive way. Just as anyone can search an e-commerce website, a

researcher studying Philadelphia deeds can search our corpus of deeds for a variety of

research targets, including language banning the selling of “spirituous liquors,” finding

foreclosed properties, or finding the deeds associated with jazz great and Philadelphia

resident John Coltrane.

OpenSearch is not a panacea—while fuzziness can generate too many search re-

sults, it can also miss true positives where the OCR is particularly garbled. Fuzzy

search parameters create a fundamental trade-off between over-inclusiveness and under-

21Replacements, insertions, deletions, adjacent transpositions. Simple “edit distance” or “Leven-
shtein distance” does not permit adjacent transpositions. For example, the following are all Damerau-
Levenshtein edit distance of one; replacement: bat→bot, insertion: cat→cart, deletion: bread→read,
adjacent transposition: form→from.

22Recall is the ratio of items correctly labeled positive by a model over the number of positives in the
underlying dataset—(True Positives) / (True Positives + False Negatives) or the percent of relevant
labels found. Precision is the ratio of items correctly labeled positive by a model over the total number
of items labeled positive by the model—(True Positives) / (True Positives + False Positives) or the
share of positive labels correctly given. These measures are particularly useful as they retain their
meaning whether the positive class is very large or very small as a share of the total population, unlike
simple accuracy. Simple accuracy is (correct predictions) / (total predictions). Imagine a dataset with
ninety 1s and ten 0s—a model that always predicted 1 would have a simple accuracy of 90%, despite
the fact that this is obviously a bad model for the purpose of identifying the 0s. In this case, the model
would have a precision and recall of 0, correctly capturing the “always 1” model’s poor performance.

23This is not an endorsement of OpenSearch in particular. Many other full search engines are
available such as Elasticsearch, Lucene, Solr, and Tantivy.

24Full-text search greatly extends the concept of keyword or string searching. It breaks text down
into tokens (akin to, but not exactly words), keeps track of the relationship of tokens to each other,
removes punctuation and capitalization, and stems words (essentially finding the root of words; both
“running” and “ran” are stemmed to “run”). Terms and their positions are then indexed in a way that
allows for fuzzy word search, fuzzy phrase search (e.g., edit distance at the word level, extra words,
differing order), and more. This process both increases search flexibility and performance.

25See https://github.com/nasa/cmr-opensearch.
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inclusiveness, requiring iterative refinement of search strategies that balance precision

(percentage of predicted positives that are true positives) against recall (percentage of

all true positives identified). Errors are expected in any human produced text—spelling,

grammatical, and typographical errors—these are generally small in edit distance and

can be much improved via a simple spellchecker. However, our dataset has materi-

ally more issues due to image quality and underlying transcription method variation,

greatly impacting OCR accuracy for a substantial fraction of our data. The wide range

of possible errors and issues contained in the text extracted from the deed images means

that we cannot achieve high recall and high precision simultaneously with fuzzy search

alone.

By design, fuzzy search casts a broad net and returns inexact matches to the search

term. There are many standard metrics used to measure the degree of fuzziness or

how inexact matches can be. OpenSearch’s most permissive available measure is DL

distance with a cap of 2 edits.26 Whether this is an appropriate restriction is highly

dependent on the search term and the data quality. On one hand, it can result in

too many matches—“interstate” is DL distance 1 from “intestate” and is a word we

expect to see fairly often in contexts well outside of intestate property transfers. Thus,

in practice, some fuzzy searches in OpenSearch for terms of interest return tens of

thousands of matches of which only a handful are true positives.

On the other hand, fuzzy search can also yield too few matches due to OpenSearch’s

hard limit of DL distance 2.27 For example, “diedintestate” will not match “intestate”

as its DL distance is 4. Given OCR and transcription errors, it is not uncommon for

terms of interest to sit well outside DL distance 2. To overcome this issue, we employ

an expansive search strategy that begins with a comprehensive list of terms likely to

capture relevant deeds, then iteratively refine this list by incorporating fuzzy search

variants derived from verified positive matches. For example, once we know “interstate”

can sometimes be a true positive in our data, we then use “interstate” as the search

term in our query. The addition of the “r” effectively circumvents OpenSearch’s DL

distance limit and produces a query where the maximum DL distance from “intestate”

is actually 3. Similarly, a fuzzy search using the term “diedintestate” mostly overcomes

issues of dropped spaces and further increases the maximum DL distance compared with

only searching for “intestate.” While this technique does unearth previously unlocated

true positives, it quickly moves us from the problem of too few matches to the opposite

26See footnote 21 for a detailed definition of DL distance. OpenSearch’s hard cap of DL distance
2 means that “porches” will match “porch” (two deletions) but not “ponch” (two deletions plus one
substitution = DL distance of 3). However, “porches” can easily become “ponch” through common
OCR errors: missing the “es” ending and misreading “r” as “n”. Porches are a commonly restricted
feature in deed covenants.

27Even if we were able to search on fuzziness greater than DL 2, we would see many false positives
for most terms of interest.
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problem of too many matches, i.e., false positives.

Unfortunately, there does not exist any “one size fits all” rule that can perfectly

mitigate either of the issues discussed above. Rules by themselves will yield suboptimal

results compared with those achieved by ML or LLMs.

4.3 The Role of LLMs

As explained above, OCR and OpenSearch alone do not allow us to find a needle in

the haystack but do reduce the haystack to a hay bale. This is where a custom model

or LLMs come into play. Frontier LLM models do a good job comprehending simple

concepts even within very garbled OCR text. However, it is quite expensive to use

these models to label or search an entire corpus. For example, answering one simple

question such as “does this deed contain a covenant restricting what type of business

can be run on the property?” for all 4.7 million images in our sample would cost about

$13,800 in input tokens alone and close to $24,000 in total.28 If the prompt needed

tweaking or we wished to ask about a different type of restriction, this cost would be

incurred again. An alternative would be to pose multiple questions in a single prompt

during one pass through the corpus, but this approach has been shown to meaningfully

decrease the LLM’s performance of the labeling task (OpenAI, 2025).

OpenSearch allows us not only to find phrases of interest but to pinpoint where in the

document the phrase resides. Using this location, we can then extract a snippet of text

around the phrase—providing textual context to the phrase of interest. We then subject

this snippet to LLM interrogation. This is faster and much less costly than submitting

text from an entire deed or image because increasing the relevance of the text submitted

to the LLM decreases the false positives and time spent in extraneous human review.

Since LLM performance degrades as a function of the length of input information, this

targeted approach also improves accuracy (OpenAI, 2025). For example, in our work

examining covenants restricting ownership, use, or occupancy, false positives were 2.4

times greater when considering a whole page vs. a snippet of interest. Evaluating the

entire page produced only one additional true positive, or a 0.01% increase, which was

not located when using only snippets.29

Figures 4, 5, and 6 present several examples of an LLM in action differentiating

true positive and false positive matches for covenants restricting permissible commercial

28LLMs charge separately for input and output tokens—i.e., for the input data and question(s) posed
to the LLM and the output response from the LLM.

29These numbers quantify the performance of the LLMs labeling accuracy only. Error in highlighting
the right snippet on a page of text increases this number to 0.5% more true positives when using the
whole page. Above, we exclude these cases to focus only on LLM performance on longer input vs.
combining this with how well we extract passages of interest with OpenSearch.
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uses of property. These examples show how we ask an LLM30 to review a candidate

match found by an OpenSearch query. We provide an initial “system prompt,” which

provides the primary framework that determines how the LLM will interact throughout

the remainder of the “conversation.”31 In testing,32 a sizable challenge was ensuring

the LLM’s response was consistently formatted33 in such a way that we could easily

automate large numbers of prompts34 and responses. LLMs in general have been trained

to include their “thought process” in their response to better facilitate validation of

their response by the user. While well-intentioned, this “thought process” was the

largest hurdle to producing consistently formatted responses. We found that the key

to overcoming this hurdle was to provide a specific location in our desired response

format35 in which the LLM could store its “thought process.”

Below, we show the system prompt (Fig. 4) and two prompt and response inter-

actions using actual data—one each for true (Fig. 5) and false positives (Fig. 6) for

commercial use restriction. Human submitted prompts to the LLM are shown with the

header “Human” and an icon showing a person. Example responses from an LLM are

shown with the header “Assistant” and a robot icon. These visuals reflect the typical

interface for interacting with LLMs and demonstrate what our workflow looks like in

practice.

30Claude 3.7 Sonnet for these examples. This is not an endorsement of Claude in particular.
31This is where you can instruct an LLM to respond like Shakespeare or at a level that a child could

understand.
32Referred to as “prompt engineering.”
33We chose to use standard JSON format to structure the LLM response. JSON stores data values

as key-value pairs, like a dictionary—“LLM”: “large language model.”
34“Prompt” is the term used for any action a human takes in the LLM interface, i.e., asking a

question, providing text to summarize, or asking the LLM to perform a task.
35We called this location in our format “comments.”
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Figure 4: The system prompt provided to the LLM instructing it how to interact with the
data and how to format its response. The “comments” section provides a space for the LLM
to explain its reasoning.

Human:

You are a lawyer very carefully reading deeds to find covenants restricting
use of property for business purposes. It is important that you read docu-
ments very carefully and in their entirety. The text you are reading will be
OCR’d text and will have some mistakes, you should try to correct these. You
must very carefully read and consider the document, taking in to account
the full context of the text I present. First consider how you would respond
in a more lengthy discussion where you explain things, then summarize
this into just a yes or no answer. You response will be in the form of the
following json, where you use proper escaping for quotes within strings
using backslashes:

{
“covenant exists”: boolean

, “comments”: string
}

Absolutely do not return anything but json. If you have more to say put
it in “comments”. Do not use any quotation marks of any form inside of the
body of “comments”. Only use them as appropriate to denote a string in a
json.
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Figure 5: A prompt and response example for a text snippet containing a true positive for
a business restriction. The snippet is correctly identified as a true positive by the LLM.

Human:

Does this snippet of a deed contain a covenant restricting what types of
business can be run on the property?

UNDER AND SUBJECT to the expyess restriction and condition that no gaso-
line station eervice station automobile accessory shop delicsteefen store or
drug stove shall be erected upon any part of the h ereby grant ed premises
neither shall the building er ect ed thereon be used for any of the above men-
tioned purposes noy shall any building thereon erect ed *be used as a store
OT be used roy any offensive use or occupation within Fifteen years fyom the
date hereof nor shall any building crect ed th ey eon or that may be erect ed
thereon be ext ended any nearer the building line of Martine Mill Road than
the now is within Firteen years from the dat e hereof.

Assistant:

{
“covenant exists”: true,
“comments”: “The deed contains explicit business restrictions prohibit-
ing gasoline stations, service stations, automobile accessory shops, del-
icatessen stores, and drug stores. It also includes a broader restriction
that no building shall be used as any type of store or for any offensive
use or occupation within fifteen years from the date of the deed. The
covenant contains OCR errors but its business restrictions are clear.”

}
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Figure 6: A prompt and response example for a text snippet identified to contain a phrase
of interest that does not actually contain a business restriction (a true negative). Leases and
other agreements are recorded with deeds in Philadelphia. This snippet belongs to the lease
of a drugstore rather than a property deed restricting the use of the building. However, the
similarity in language leads to the LLM classifying the snippet as containing a restriction,
an example of a false positive.

Human:

Does this snippet of a deed contain a covenant restricting what types of
business can be run on the property?

farther consideration for the said hiring and letting to the said pasty of the
second part that he the said party of the second part thall conduct seid Drag
Stere in his name and that he will punctually pay the hire as aforesaid on
the days and times above pextion mentioned and that he will take good care
of the said Drug Store and will and Conduct of the sald business up totte
standard

Assistant:

{
“covenant exists”: true,
“comments”: “This deed snippet appears to be about leasing or hiring a
Drug Store business rather than a property covenant. It contains terms
about how the party of the second part shall conduct the Drug Store busi-
ness (in his name, paying punctually, taking good care of it, conducting
it up to standard), but does not restrict what types of businesses can op-
erate on the property. The text describes operational requirements for a
specific business arrangement rather than a land use restriction. There
are several OCR errors in the text (thall should be shall, seid/sald should
be said, totte should be to the).”

}

In our work examining covenants restricting ownership, use, or occupancy, the per-

formance of the LLM is quite good. Approximately 98% of the text snippets the LLM

labels as positives are correct (precision), and it locates between 90-98% of all positives

(recall). That said, it is essential that we do not take the LLM result as the final

answer. To facilitate validation, we developed a tool that enables humans to review

labels generated by the LLM. The tool presents the human reviewer with text snippets

containing the terms matched in OpenSearch and the LLMs label and reasoning. A hu-

man reviewer can then quickly validate the LLMs labels, referring to the source image

where necessary.
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The combination of OCR, full-text search, and LLMs allows us to drill down to a

focused set of deeds for which a human can verify and quantify the LLM’s performance.

We send approximately 130,000 high- to medium-propensity36 OpenSearch matches

through an LLM. We then manually review on the order of 30,000 of the resulting

LLM labels. This subset is composed of all LLM positive labels and a sample of LLM

negative labels for snippets we most expect to be true positives, given the OpenSearch

query terms. We seek to fully quantify precision and recall, which requires substantial

verification of LLM-produced negative labels. At a minimum, all positive LLM labels

and all negative LLM labels of very high-propensity OpenSearch matches should be

reviewed. For example, when searching for intestate transfers, if OpenSearch matches

“intestate” exactly with no edits and an LLM labels this transaction as not an intestate

transfer, then this LLM negative label should be manually verified. In our case, the

minimum viable number of positive and negative LLM labels for review totaled less

than 9,000 snippets. We review substantially more to achieve more accurate estimates

of false negative and recall rates.

We also used LLMs to evaluate a substantial sample of low to very low propensity

OpenSearch matches—100,000 images out of 4.5 million. Among this sample of low-

probability images, we reviewed all 111 positive LLM labels and found only 17 true

positives. This high false positive rate was expected, given the very low probability

that these images would contain relevant content.

Overall, we found that only 0.016% of the sample images contained true positives.

Due to cost constraints, we did not apply LLMs to all remaining text. However, if

we ran the remainder of our dataset through an LLM, we estimate we could find an

additional 40837 deeds of interest—a 5.5% increase over our current total (Fig. 7). This

comprehensive analysis would cost approximately $22,262, or $55 per additional true

positive found. We could reduce costs by focusing only on deeds recorded before 1950,

after which the language of interest becomes extremely rare. This targeted approach

would cost about $36 per true positive and yield approximately 38038 additional matches

(94% of the total possible additional discoveries for 62% of the cost). However, finding

these matches would require reviewing approximately 2,500 text snippets, 85% of which

would be false positives. In contrast, we found our first 97% of true positive matches,

36By “propensity,” we mean the approximate probability of a true positive, given the OpenSearch
terms used. For example, when searching for intestate transfers, an exact match or edit distance 1 to
“intestate” would be a high-propensity match.

37We are certainly missing less than 5.5% of properties associated with our restrictions of interest.
Properties are likely to transact multiple times over our 56-year window—we’d need to miss them
multiple times to not have knowledge of their treatment state.

38It is worth noting we would still not have found all possible deeds of interest. In cases where
no legible indicative language was found via OpenSearch, LLM recall was around 60-80%. Assuming
omnipotence, this would boost the 408 to 510-680 and 380 to 475-633, perhaps as much as 9% of the
universe we have identified.
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or 91% factoring in the estimated 408 that we have not found due to cost constraints,

for just $0.05 per true positive.

Fig. 7 shows that the incremental cost of finding additional true positives increases

as a function of how likely the search terms used in OpenSearch are to identify docu-

ments containing true positives. As you move along the x-axis, the corpus of documents

being reviewed contains less specific language as identified via OpenSearch because it

did not match high-propensity words or phrases. For example, starting with near exact

matches to highly specific legal language, moving to less precise language with more

fuzziness, and finally to the entire remaining corpus. The gains to labeling unlikely

documents using an LLM are low. Our adaptive modular use of OpenSearch allows us

to spend LLM tokens only where they are likely to achieve an efficient return. Fig. 8

is a cumulative version of the prior figure, showing the point of extreme diminishing

return.

While we didn’t strictly need to expand the LLM application beyond high-probability

candidates, this exercise helped us quantify the benefits and limitations of our adaptive

modular approach combining OpenSearch and LLMs. By using OpenSearch to pre-

screen for high-probability candidates before applying LLMs, we reduce false positive

review costs and significantly reduce true positive detection costs while maintaining

high recall rates.
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Figure 7: The percentage of LLM-identified true positives (TP) compared with the average
cost per each LLM-identified TP. The incremental percentage is scaled by the total TP
correctly labeled by the LLM plus the estimated number of remaining true positives that
our LLM would identify if run on the entire corpus. The cost per TP increases as the search
criteria used in OpenSearch become less restrictive, fuzzier, and less likely to identify
documents containing true positives.
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Figure 8: Cumulative percentage of LLM-identified true positives compared with
cumulative percentage of cost. Cumulative percentage TP is scaled by the total estimated
number of TP. The bulk of a project’s cost is incurred identifying the “last few” true
positives.
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4.4 The Final Step: Geolocation

The final challenge is to geolocate the deeds of interest. Geolocation allows us to

quantify the localized and neighborhood effects of deed terms and restrictions on the

property market.39 Geolocation also helps to link property transfers through time.40

Since it is common for restrictions to be enumerated in detail only in the deed in which

they are first put in force, tracking properties through time is necessary to identify

the specific terms applying to a given property. Exact identification of deed terms, in

addition to when and where these terms apply, makes geolocation an essential step for

econometric analysis of deeds.

Address-based geocoding would be challenging but feasible if the deeds consistently

contained the address of the property being transacted. In such cases, we could isolate

the address string with an ML model or LLM and attempt to geolocate it—somewhat

difficult considering that historical addresses may no longer correspond to current street

names or numbering systems. However, this method provides limited usefulness, as only

about 30% of deeds prior to 1935 contain addresses.

Fortunately, Philadelphia deeds always contain a “metes and bounds” description

of the property. This is a textual, legal description of the location and boundaries of a

property as determined by a surveyor relative to a “stable” point of reference.41 This

description can be converted into geographic coordinates and a corresponding parcel

polygon (Wex Legal Dictionary, 2025). Depending on factors like the shape of the

parcel and the legibility of the deed image, the degree of difficulty in converting metes

and bounds descriptions to geographic coordinates ranges from moderate to extreme.

The case of John Coltrane’s house, a National Historic Landmark in the Strawberry

Mansion section of Philadelphia, highlights some of the very issues mentioned earlier,

including a tangled title that has stifled preservation efforts for many years (Jackson,

2024). We use this deed as an example of translating a relatively straightforward metes

and bounds description into a geolocated parcel. Figure 9 presents the first page of

the deed recording Coltrane’s purchase of the home. The blue box indicates that the

property is subject to building restrictions not described in this deed. This serves as

an example of the importance of the second use case of geolocation described above—

linking properties through time with the assistance of physical location. The metes and

bounds property description is highlighted by the yellow box.

39For example, covenants restricting ownership, use, or occupancy or transfer under intestacy or by
will etc.

40Geolocation can be used in conjunction with buyers, sellers, and references to previous property
transfer information, such as dates and the book and page in which the prior deed was recorded.

41At times, the point of reference can be something surprisingly fuzzy, such as “the large elm on the
northeast corner of the Smith farm.”
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Figure 9: First page of the deed describing John Coltrane’s purchase of his Philadelphia
home. The yellow box outlines the metes and bounds description of the property. The blue
box highlights the section of the deed listing the property restrictions. In this case, the
property restrictions refer to a previous deed rather than stating the restrictions in full.
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Figure 10 illustrates how the metes and bounds description of the Coltrane house

translates to a description of the geographic location and shape of the associated parcel.

The right half of Figure 10 provides a map of Coltrane’s property; the blue region

denotes the exact parcel. The left half of Figure 10 provides an exact42 transcription of

the metes and bounds text highlighted in the yellow box in Figure 9. The color of the

text in the metes and bounds description matches the lines on the map corresponding

to the steps taken to trace the outline of the property’s boundary, starting from a point

of reference and ending in a closed polygon representing the parcel.

Figure 10: Transcribed text of the metes and bounds description of John Coltrane’s home.
This text is an exact transcription without OCR errors. The blue shaded region is the
actual parcel of the property. The color of the text has been matched to the color of the
corresponding line described by the text.

This example uses an exact transcription of a fairly simple property description

and shape, but this is not at all typical. OCR often introduces text errors that, when

combined with highly complicated descriptions of property boundary lines43 and/or

ambiguous starting points,44 make georeferencing a challenge for humans and machine

alike. In our application, neither direct elicitation45 of address nor translation of metes

42This example contains no OCR errors; it is an exact transcription.
43Metes and bounds descriptions can be extremely long—from several paragraphs to several pages—

and describe complicated polygons with dozens of segments both straight and curved.
44A reference or starting point can be described as something like “1017 feet 8-7/8 inches North-

westwardly from an old stone at the intersection of the middle of School House Lane (40 feet wide)
and the middle of said Wissahickon Avenue.” This is actual text that is part of the metes and bounds
description from one of our deeds of interest from 1925.

45As a large fraction of our deeds do not contain an explicit address.
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and bounds are particularly useful for large-scale automated georeferencing.

To address these limitations, we are developing an alternative approach focused on

achieving block-level or street-corner precision rather than exact parcel identification.

Our approach relies on the structural logic of metes and bounds descriptions within a

city street grid. This logic is fairly consistent across any East Coast city laid out in

a grid.46 Each description must reference at least two intersecting streets. The first

street mentioned typically indicates the property’s frontage, while the intersection of

the first and second street serves as an anchor for the rest of the boundary description.

Additional street references (e.g., a third or fourth street) will describe the rest of the

closed city block containing the property. The approach leverages the fact that there

is a finite set of valid reference street combinations that define the boundaries of any

closed city block. By analyzing the frequency and sequence of street name mentions

against the set of valid street combinations, we score matches to probabilistically assign

deeds to their most likely geographic locations. This allows, in many cases, not just

block-level georeferencing but block corner precision, i.e., saying that the property is

inside the city block formed by streets a, b, c, d and is closest to the corner of a and

b. This method will allow us to geolocate a substantial portion of properties—at least

two-thirds of them. We are developing additional geolocation techniques for rooftop

precision. Regardless, our block-level geolocation makes human translation of metes

and bounds to an exact parcel shape easier and faster.

This geolocation method takes advantage of our adaptive modular approach. We

adopted full-text search with the primary purpose of identifying language of interest.

Given the flexibility of this tool, we are also able to use it to perform the georeferencing

logic mentioned above. With OpenSearch, we can search documents for combinations

of street names corresponding to real block combinations—identified via street data

sourced from the City of Philadelphia. OpenSearch also allows us to understand where

in the document and in what order these streets are mentioned. This allows us to

identify the most likely block corner matching a particular deed. Thus, with no in-

cremental data processing or infrastructure work, we are able to implement logic for

georeferencing deeds.

46Material variations arise in Western cities where land is delineated with reference to the Public
Land Survey System – a universal, regular grid. Older US cities use metes and bounds, mostly inherited
from England, based on reference to key natural or manmade features. In cities, this mostly means
street intersections.
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5 Deeds: Next Steps

We are now diving deeper into a subset of deeds of interest identified via our adap-

tive modular approach. For approximately 7,500 deeds,47 we are working with a data

labeling firm to gather high-quality labeled data—that is, to exactly transcribe text of

interest, and to associate this text with its exact location on the page, i.e., enumerating

the “bounding box” containing the text. Labeled data themselves are valuable—they

will allow econometric measurement of the effects of specific types of deed restrictions.

They will also allow us to make an informed decision on whether further hyperspecial-

ized modeling will yield worthwhile improvements or new insight.

Our restrictive language of interest is very rare as a percentage of all deeds recorded

between 1910 and 1965—less than one-quarter of a percent.48 In ML terms, we would

say that there is severe “class imbalance”—negative cases are orders of magnitude more

common than positive cases. In more common parlance, one might say that the signal-

to-noise is small. Any standard sampling strategy would have resulted in far too few

(likely no) positive cases in the training data and therefore not enough positive cases

to successfully train a model. Class imbalance is frequently addressed by oversampling

the rare class—which can be very difficult when you don’t yet know which cases are the

rare class, i.e., in completely unlabeled data. Our adaptive modular approach allows us

to focus our work on a sample already selected for syntactical context—i.e., words often

or always associated with our restrictive language of interest. This highlights why we

believe our adaptive modular approach is the most efficient approach to working with

historic data, especially in cases with low signal-to-noise.

6 Conclusion

Historical administrative text data, which has been largely inaccessible for analysis

due to format constraints, can now be efficiently processed and analyzed at scale, thanks

to recent technological advances. At the Center for the REstoration of Economic Data

(CREED), we are working to understand, harness, refine, and customize these advance-

ments to produce high-quality publicly available data, code, and economic research. In

this paper, we evaluate two competing paradigms for large-scale historical document

digitization and demonstrate why adaptive modular methodological approaches can

offer better performance across the entire research process.

47Each deed on average covers multiple properties. We are working on an accurate estimate of
property count.

48They are significantly less rare as a percentage of all properties in Philadelphia, as deeds on average
cover multiple properties.
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