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Appendix A: A Model of Matching and Innovation 

Introduction 
In our paper, we argue that the inventive output of cities may be explained in part 

by the nature of worker interactions within firms. A formalization of this intuition can be 
found in the labor market search model of Berliant, Reed, and Wang (2004), hereafter 
BRW. In this appendix, we develop a more general version of their model and derive a 
number of comparative static results. We extend their model in several ways. We assume 
a more general production function for inventions. We allow for consumption amenities 
that influence the equilibrium size of cities. Finally, we characterize the effect of an 
exogenous increase in land area on city population and inventive output.   

The Model 
Time is continuous. Workers live forever and discount consumption at the rate r. 

A measure N of these workers decides to live in the city because the increase in their 
income, plus utility derived from the available local public goods exceeds the utility lost 
to the effects of congestion (including higher rents and taxes). Once located in the city, 
workers meet randomly and decide whether to match in order to engage in R&D that 
results in inventions. If the agents agree to match, the match may continue indefinitely, 
but all matches are subject to a constant dissolution rate π . Workers consume equal 
shares of the resulting output and their resulting utility is linear in the output consumed.  

The output generated in a match depends on the characteristics of the workers 
matched together. Workers are differentiated in terms of the variety of knowledge they 
possess. Agents’ types are distributed uniformly along a circle of unit circumference. The 
most productive matches occur with an intermediate degree of heterogeneity. We focus 
on the properties of the unique symmetric stationary equilibrium of the game.  

In steady state, a measure of agents [0, ]M N∈  will already be matched and a 
corresponding measure U N M= −  will engage in search for a new partner. In a given 
match, workers produce inventions at the rate ( ).A y x⋅  A is a scalar that reflects the 
overall productivity of the city.1  Match-specific output depends on the Euclidean 
distance x between the type of an agent’s ideal partner and location of his actual partner. 

BRW assume ( )y x  is a linear, decreasing function of x. Here, we assume that 
expected output ( )y x  is continuous, differentiable, and strictly log concave. This implies 
that output falls more and more rapidly as we continue to increase x.2 To simplify the 
analysis, we also assume that matches between identical agents are un-productive.3  BRW 
make a comparable assumption, but they show the results are qualitatively the same when 

                                                 
1 In our empirical specification, A reflects the utilization of inputs other than labor plus any factors external 
to the firm. 
2 This assumption on production technology is sufficient to satisfy the conditions for assortative matching 
characterized in Shimer and Smith (2000).  
3 Let d  denote the Euclidean distance from the agent’s own type and his ideal partner. It is sufficient to 
assume there exists a value x d≤  such that ( ) 0y x = . 
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this assumption is violated, or if, instead, it is assumed that output is maximized by 
matching among identical agents.  

Unmatched workers engage in search for a new partner. The arrival rate of 
meetings between unmatched workers follows a Poisson process. In BRW, the meeting 
hazard rate is simply .Uµ α= ⋅ 4 The exogenous parameter α  is a measure of the 
efficiency of the meeting technology, which in turn may depend on the time required to 
travel to meeting places, the depth of the labor market, or both. 

Workers cannot recognize each other’s type until after they meet, and this implies 
that not all meetings result in matches. The probability that a meeting results in a match 
will depend on the selectivity of workers, which in turn depends on the opportunity cost 
of declining to form a match in the current meeting. In a symmetric equilibrium, agents 
will agree to match with any agent whose type is sufficiently close to the ideal, i.e., where 

,x δ≤  where δ  is endogenously determined. Agents choose the value of δ  that equates 
the output from the marginal match with the flow value of rejecting the match and 
waiting for the next encounter: ( ) UAy rVδ = . Let ( , )Uβ δ  denote the endogenous match 
rate, the product of the meeting rate µ  times the probability that a meeting will result in 
a match. 

Equilibrium 
BRW prove the existence of a unique, symmetric, stationary equilibrium of the 

game for two situations: (1) a city of fixed population and (2) an “open” city where 
population is endogenously determined. We explore the latter equilibrium, taking into 
account our assumption about the properties of expected output. Note that uniqueness 
follows from the fact that agents are distributed uniformly over the type space.5  

We begin by computing the steady-state value functions holding population 
constant and assuming that agents choose symmetric strategies. The flow value of being 
matched to an agent whose type is of distance x from one’s own is: 

ˆ ˆ( , , ) ( ) ( , ) ,m U mrV x U Ay x V U Vδ π δ⎡ ⎤= + −⎣ ⎦  

which consists of the instantaneous rate of inventions generated by the current match plus 
the capital loss associated with the cessation of the match, discounted by the arrival rate 
of the exogenous separation shock.  

The agent does not know the exact type of his next partner, so uV  is calculated as 
an expected value taking into account the agent’s selectivity δ . The next match does not 

                                                 
4 Note that the meeting technology exhibits increasing returns. BRW argue that the findings of empirical 
studies are consistent with this assumption, but they also point out that their results do not depend on this 
assumption.   
5 The closed city version of BRW can be mapped to a special case of the model in Burdett and Wright 
(1998), where agents’ payoffs from prospective matches are symmetric. Proposition 2 of that paper shows 
that if the distribution over types is log-concave, there is only one steady-state equilibrium. Proposition 4 
shows this holds even where the matching function exhibits increasing returns. Uniqueness is preserved in 
the open city version of the model because congestion costs are monotonically increasing in population. 
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arrive immediately after the current one is dissolved, so uV  also reflects the expected 
amount of time before meeting a suitable partner, and this depends on both U and δ . 
More explicitly: 

(A.1) [ ]( , ) ( , ) ( , ) ( , ) ,U m UrV U U V U V Uδ β δ δ δ= −  

which is simply the discounted present value of the capital gain resulting from the next 
match. Note that mV  is derived by integrating m̂V  over [0, ]x δ∈ , holding constant both U 
and δ . Thus 

(A.2) [ ]( , ) ( ) ( , ) ( , ) ,m U mrV U Ay V U V Uδ δ π δ δ= + −  

where ( )y δ  is the expected value of output from matches when agents’ selectivity is δ : 

[ ]
0 0

1( ) ( ) ( ) 1 ( ) ( ) ( ) ,y y x f x dx F y x f x dx
δ δ

δ δ
δ

= − = ⋅∫ ∫  

where f(x) and 1 ( )F δ−  are  the pdf and cdf, respectively, of the distribution of worker 
locations. The equality with the right hand side of the expression follows from our 
assumption that workers are distributed uniformly over a circle of unit circumference.  

Substituting for the value functions in (A.1) and (A.2), we find that 

(A.3) ( )( , ) .u
AyrV U

r
β δδ
π β

=
+ +

 

First Order Conditions. Agents that are currently matched enjoy the proceeds of the 
match until it is dissolved. Unmatched agents are engaged in search and must decide 
whether to match with the un-matched agents they meet. They choose δ  to maximize 

( , )UrV U δ . The associated first order condition is 

(A.4) [ ] [ ] 0.yr r y βπ β β π
δ δ
∂ ∂

+ + + + =
∂ ∂

 

Holding constant U and the selectivity of other agents, becoming less selective (raising 
δ ) increases the arrival rate of the next partner ( 0)β δ∂ ∂ >  but reduces the expected 
income generated in the next match ( 0).y δ∂ ∂ <    

Because agents’ types are distributed uniformly over the unit circle and we assume that 
matches of identical agents are unproductive, ( , ) 4 ( )U Uβ δ δµ= . This allows us to 
rewrite the first order condition: 

(A.5) ( ) 1 ,
( )

y
r y

β δ η
π β δ

= ≡ −
+ +

 

where ( )y δ  represents the output generated by a marginal match and η  is the elasticity 
of average output with respect to increases in δ .  

Lemma 1: There exists an interior solution to the worker’s optimization problem 
characterized by the equality in (A.5). 
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Proof: Existence follows from the fact that ( )y δ , ( )y δ  and β  are continuous and 
differentiable. If we take the limit as δ →  0, holding U constant, the right-hand side of 
(A.5) converges to 1 while the left-hand side converges to 0. Conversely, if we take the 
limit as δ δ→ , the right-hand side of (A.5) converges to 0, while the left-hand side 
converges to a value that is strictly greater than zero. Finally, note that the second order 
condition is simply [ ] ( ) 0r yπ β β δ δ′+ + < .■ 

The left hand side of (A.5) reflects agents’ discount rate and the rate of turnover 
between the states of being matched and unmatched. The first order condition implies 
that when the match rate β  is relatively large, the ratio of marginal to average output is 
close to one. The following lemma shows that if ( )y x  is log-concave, relatively large 
values of β  are associated with relatively small values of δ . This establishes the 
intuition that, in equilibrium, a higher arrival rate of matches is associated with more 
selectivity (lower values of δ ) even though 0

U
β δ∂ ∂ > .  

Lemma 2: If ( )y x  is strictly log-concave, η  is strictly increasing in x. 

Proof: This follows directly from the definition of ( )y δ , which is the expected value of 
output, conditional on the level of selectivity δ . Taking first and second derivatives of 

( )( )Ln y δ , we have 

1 ( )( ( )) 1 0;
( )

yLn y
y
δ ηδ

δ δ δ
⎡ ⎤ −′ = − = <⎢ ⎥
⎣ ⎦

  [ ]2

1( ( )) (1 )( ) ;Ln y δ η η ε η
δ

′′ = − − −  

where ( ) ( )y yε δ δ δ′≡ −  is the elasticity of marginal output with respect to agents’ 
selectivity. Thus strict log concavity of expected output implies that 

(A.6) .
1
η ε η
η
< −

−
 

A necessary characteristic of the production function, then, is that that marginal output 
falls proportionately more rapidly than average output as δ  rises. In addition, the first 
order condition implies that 1η ≤ .6 But these are sufficient conditions for our proof as  

( ) ( )( )1 ( ) ( ) ( ) ( ) ( ) 1 1
( ) ( ) ( )

y y y y y
y y y

δ δη δ δ δ δδ η ε η
δ δ δ δ δ

⎧ ⎫∂ − ′ ⎡ ⎤∂ −
⋅ = = ⋅ − − = − −⎨ ⎬⎢ ⎥∂ ∂ ⎣ ⎦⎩ ⎭

. ■ 

 In steady state the instantaneous measure of agents finding matches is just equal 
to the measure of agents whose matches are terminated: ( , ) .U U Mβ δ π=  Substituting 
for β  and ,M  we can solve a quadratic equation in U. One root is positive: 

                                                 
6 We know there are values of δ  where this condition holds because 

0
Lim ( ) (0).y y
δ

δ
→

=  
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( 1) 8U π λ αδ= −  where 1 16 1Nλ αδ π= + ≥ . The corresponding match rate is 
( , ) ( 1) 2Uβ δ π λ= − . 

Equilibrium Population Mass. To close the model, we formalize the worker’s 
participation constraint: 

(A.7) ( , ) ,urV U C w Nδ + ≥ ⋅  

where agents take U and the selectivity of other agents as given.7 C represents the utility 
derived from the available public goods, net of any lump sum taxes used to finance them. 
We assume 0C ≥ . The last term, ,w N⋅ represents the loss of utility that results from 
congestion, including the rise in costs that result as scarce local inputs are bid up or 
depreciate more rapidly.  

 Taken together, (A.3) and (A.5) imply that ( , ) ( )urV U Ayδ δ= . In other words, the 
flow value of being an un-matched agent is just equal to the output generated by the 
marginal match. In equilibrium (A.7) is satisfied with equality, so ( )( )N Ay C wδ= + . 
This in turn implies that 

( )( )( , ) 1 16 ( ) 1 .
2

U Ay C wπβ δ αδ δ π= + + −  

Comparative Static Results for Agents’ Selectivity and Population 

 We can substitute the preceding expression for β  into our first order condition 
and derive comparative static results based on a single equation. 

Proposition 1: δ  is decreasing in α , A, and C, but increasing in w and π .  

Corollary: N is increasing in α , A, and C, but decreasing in w and π .  

In words, agents become more selective in response to an increase in the efficiency of the 
matching technology, the average productivity of matches, or local public goods. Agents 
become less selective in response to an increase in congestion costs or the separation rate. 

Proof:  For simplicity, we present the comparative static results in terms of elasticities. 
We begin with the result for α , the arrival rate of meetings per unmatched worker: 

( ) ( )1 1 1 0,
2 2

δ α λ λη η φ ε η
λ λα δ

∂ + ⎧ + ⎫⎛ ⎞ ⎛ ⎞⋅ = − − + − <⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭
  

where ( )( ) ( )Ay Ay Cφ δ δ δ′= − +  is the elasticity of population with respect to changes 
in δ . We do not wish to rule out the possibility that 1φ > , so we must verify that the 
denominator in the preceding expression is indeed positive. We begin by noting that 
ε φ≥  because we have assumed that 0C ≥ . It is then sufficient to verify that 
                                                 
7 The net benefit of living outside the city is normalized to zero. 
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( ) ( )1 1 0.
2
λ η ε ε η
λ
+⎛ ⎞ − + − >⎜ ⎟

⎝ ⎠
 

Dividing by η  and rearranging terms we have  

1 11 1 0,
2 2

ε λ λη
η λ λ
⎛ + ⎞ ⎛ + ⎞⎛ ⎞ ⎛ ⎞− − − >⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

which is positive if ( )y δ  is strictly log concave.  

Next, we consider the effect of increasing w, the coefficient on population that reflects 
utility lost to congestion: 

( ) ( )1 1 1 0.
2 2

w
w
δ δ π λ λη η φ ε η

λ λδ π δ
∂ ∂ + ⎧ + ⎫⎛ ⎞ ⎛ ⎞⋅ = ⋅ = − + − >⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

This is also the expression for the elasticity of δ  with respect to changes in the 
separation rate π . Now we consider an increase in A, the overall productivity of matches: 

( ) ( )1 ( ) 1 1 0,
2 ( ) 2

A Ay
Ay CA

δ λ δ λη η φ ε η
λ δ λδ

⎛ ⎞∂ + ⎧ + ⎫⎛ ⎞ ⎛ ⎞⋅ = − ⋅ − + − <⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟+∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠
 

where the extra term in the numerator is the elasticity of population with respect to A. 

Finally, we consider the effect of an increase in public goods available in the city: 

( ) ( )1 1 1 0,
2 ( ) 2

C C
Ay CC

δ λ λη η φ ε η
λ δ λδ

⎛ ⎞∂ + ⎧ + ⎫⎛ ⎞ ⎛ ⎞⋅ = − ⋅ − + − <⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟+∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠
 

where the extra term in the numerator is the elasticity of population with respect to C. 

The participation constraint (A.7) can be rewritten as ( )Ay C wNδ + = . Thus 
equilibrium population is inversely related to δ , which proves the corollary. ■ 

Comparative Static Results for Per Capita Output and Population Mass 

Here we present the main results characterized in our companion working paper: 

Proposition 2:  Per capita output of inventions is increasing in α , A, and C, but 
decreasing in w and π . 

Corollary: Per capita output of inventions is higher in cities with a larger population 
mass. 

Proof:  Per capita output is the product of the share of the population that is matched and 
the average productivity of matches: 

1( ) ( ) ( ).
1

M Ay Ay Ay
N

β λδ δ δ
π β λ

−⎛ ⎞Φ ≡ ⋅ = ⋅ = ⋅⎜ ⎟+ +⎝ ⎠
 

Again we present comparative static results in terms of elasticities, which take the form: 
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( ) ( )
2

2
1 .

1
d z z z z
dz z z z

λ δ δφ ηλ
λ δ δλ λ

Φ ∂ ∂ ∂
⋅ = ⋅ + − ⋅ ⋅ − ⋅ ⋅
Φ ∂ ∂ ∂−

 

The first two terms reflect the change in the share of agents matched at any given time 
( )M N . These reflect changes in the intensive margin (holding N constant, does M rise 

or fall?) and the extensive margin (holding constant ( )M N , does N rise or fall?). The 
last term reflects the change in expected output per match, characterized in the previous 
proposition. Rearranging the expression, we have 

( ) ( ){ }
2

2
1 .

1
d z z z
dz z z

λ δφ ηλ
λ δλ λ

Φ ∂ ∂
⋅ = ⋅ + − − ⋅ ⋅
Φ ∂ ∂−

 

 Consider first an increase in the arrival rate of meetings per unmatched worker α : 

( ){ }
( )

( ) ( )

21
21 1 0.

1 1
2

d
d

λ η ε η
α δ αφ ηλ

λα λ α δ η φ ε η
λ

+⎛ ⎞ + −⎜ ⎟Φ ∂ ⎝ ⎠⋅ = + − − ⋅ ⋅ = >
+Φ ∂ ⎛ ⎞ − + −⎜ ⎟

⎝ ⎠

 

Next consider an increase in the overall productivity of innovations A: 

( ){ }
( )

( ) ( )

2( ) 1
( ) 2( ) 1 0.

1( ) 1
2

Ay
Ay Cd A Ay A

dA Ay C A

δ λ η ε η
δδ δφ ηλ
λλ δ δ η φ ε η
λ

⎛ ⎞⎧ + ⎫⎛ ⎞ + −⎨ ⎬⎜ ⎟⎜ ⎟+Φ ∂ ⎝ ⎠⎩ ⎭⎝ ⎠⋅ = + − − ⋅ ⋅ = >
+Φ + ∂ ⎛ ⎞ − + −⎜ ⎟

⎝ ⎠

 

Consider the effect of an increase in public goods C available in the city: 

( ){ }
( )

( ) ( )

21
( ) 2

1 0.
1( ) 1

2

C
Ay Cd C C C

dC Ay C C

λ η ε η
δδφ ηλ
λλ δ δ η φ ε η
λ

⎛ ⎞⎧ + ⎫⎛ ⎞ + −⎨ ⎬⎜ ⎟⎜ ⎟+Φ ∂ ⎝ ⎠⎩ ⎭⎝ ⎠⋅ = + − − ⋅ ⋅ = >
+Φ + ∂ ⎛ ⎞ − + −⎜ ⎟

⎝ ⎠

 

Finally, consider the effect of an increase in the utility lost due to congestion as 
population increases w (The effect of an increase in the separation rate π  takes on 
exactly the same expression): 

( ){ }
( )

( ) ( )

21
21 1 0.

1 1
2

d w w
dw w

λ η ε η
δφ ηλ

λλ δ η φ ε η
λ

⎧ + ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟Φ ∂ ⎝ ⎠⎩ ⎭⋅ = − + − − ⋅ ⋅ = <
+Φ ∂ ⎛ ⎞ − + −⎜ ⎟

⎝ ⎠

 

The corollary then follows from the previous corollary. ■ 
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Comparative Static Results for Changes in Land Area  

 In BRW population varies, while the physical size of the city is fixed  In other 
words, in terms of the model, changes in population and density are the same. Thus, in 
our empirical work it is important for us to examine the effects of both city size (the 
number of workers) and density (the number of workers per square mile). 

 But we also wish to consider the possibility that exogenous increases in land area 
might reduce density and therefore per capita output. This will occur if an insufficient 
number of workers respond to the reduction in congestion by moving into the city. To 
explore this possibility, we assume that the efficiency of the meeting rate parameter α  
and congestion coefficient w are decreasing in city land area L. We show the following: 

Proposition 3:  Increasing L decreases (increases) δ , and Φ  if α  is more (less) 
sensitive to changes in L than is w.   

Proof: We derive the elasticity of per capita output with respect to changes in land area 
in the same manner as we did in Propositions 2 and 3: 

( )

( ) ( )

21 (1 )( ) ( ) 2 .
1( ) ( ) 1 2

d L L L w L
dL L w L

λ η ηα
λλ α η φ ε η
λ

⎧ ⎫
⎪ ⎪+ −′ ′⎛ ⎞Φ ⎪ ⎪⋅ = − +⎨ ⎬⎜ ⎟ +Φ ⎛ ⎞⎝ ⎠⎪ ⎪− + −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

■ 

 In the model, increasing land area has two effects on workers’ incentive to 
migrate to the city. The first effect is a reduction in the costs associated with congestion 
which, all else equal, induces additional migration. The second is a reduction in expected 
income that results from waiting longer for the next meeting with an unmatched worker. 
All else equal, this would discourage workers from entering the city. 

 It turns out that, in the absence of a fully specified model for the supply of 
developed land, we cannot sign the effect a priori. If the reduction in congestion costs is 
sufficiently large relative to the decline in the efficiency of meeting technology, both 
density and per capita output rises. But if the reduction in congestion costs is relatively 
small, density and per capita output will fall. 

APPENDIX B: Data Construction 

Patent Data 
Our patent data are derived from data sets furnished by the Technology Forecasting and 
Assessment Branch of the U.S. Patent and Trademark Office. These include the US 
Patent Inventor File 1977-99: All Grants; 75-76 Utility Patents Only and the PATSIC99 
file. We are grateful to Jim Hirabayashi of USPTO for his assistance with these data.  

We assemble the home address information of the first inventor named on each patent 
from the inventor’s file. We began with 1,198,376 patents granted to inventors with an 
American address over the years 1975-1999. We assigned a state-county FIPS code for 
each patent by matching address information against the 1998 vintage of NIST’s FIPS55 
place names data set. We obtained unique ZIP code-county and place name-county 
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matches for 81 percent of the patents. For another 8.5 percent of the patents, we could not 
initially identify a unique county for the inventor but we could identify a unique 
metropolitan area. Another 6.6 percent of patents were geographically located via 
matches against the location of an R&D lab of the firm owning the patent and manual 
searches.  

In all 1,155,133 patents were matched to a county or an MA, while 43,243 were not. Of 
those patents that were successfully placed in an MSA, 581,001 were granted between 
1990 and 1999 (inclusive); 46,647 were located outside an MSA. That leaves 534,354 
patents in MAs that were used to construct the patent variable.  

Patent classifications are obtained by matching patents in the inventor file to patents in 
the firm file. The patent class dummies (medical, chemical, computer, electrical, and 
mechanical) are constructed using the primary patent classes suggested in Appendix 1 of 
Hall, Jaffe, and Trajtenberg (2001). The industry mix of patents is obtained by matching 
patent numbers with those included in the NBER Patent Citations Data File, obtaining the 
CUSIP of the firm initially assigned the patent and obtaining the SIC of that firm from 
the 1999 vintage of Compustat. The high-tech patent share is derived using the set of 
R&D intensive three-digit SIC industries identified in Office of Technology Policy 
(2001).  

Our Definition of Metropolitan Areas 
Our MA definitions are based primarily on MSA definitions defined by the Office of 
Management and Budget in 1983 (http://www.census.gov/population/estimates/metro-
city/83mfips.txt). Several adjustments are made: 

- The six MSAs in Puerto Rico are removed. 

- New England County Metropolitan Areas (NECMAs) are used as our MAs in New 
England. 

- The Bureau of Economic Analysis (BEA) uses its own set of county-equivalent codes 
to tabulate data for independent cities and their surrounding counties together. For all 
data from the Regional Economic Information System (REIS), data for our MAs are 
built up including these independent cities. 

- Nine Consolidated Metropolitan Statistical Areas (CMSAs) are employed instead of 
their 25 component MSAs: Chicago, IL-IN-WI; Cincinnati-Hamilton, OH-KY-IN; 
Cleveland-Akron-Lorain, OH; Dallas-Fort Worth, TX; Houston-Galveston-Brazoria, 
TX; Kansas City, KS-MO; Portland-Vancouver, OR-WA; Seattle-Tacoma, WA; and 
St. Louis- East St. Louis- Alton, IL-MO. 

- Seven ad hoc metropolitan areas were also created: Denver-Boulder-Greeley 
(Boulder-Longmont, CO PMSA; Denver, CO PMSA; & Greeley, CO MSA); 
Greenville-Anderson (Anderson, SC MSA and Greenville-Spartanburg, SC MSA); 
Los Angeles-Anaheim (Anaheim-Santa Ana, CA PMSA and Los Angeles-Long 
Beach, CA PMSA); Midland-Odessa (Midland, TX MSA and Odessa, TX MSA); 
New York-Northern New Jersey (Bergen-Passaic, Jersey City, Middlesex-Somerset-
Hunterdon, Monmouth-Ocean, Nassau-Suffolk, New York, Newark, Orange County); 
San Francisco-Oakland (Oakland, CA PMSA and San Francisco, CA PMSA); and 
Sarasota-Bradenton (Bradenton, FL MSA and Sarasota, FL MSA).   
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We used these definitions for certain cities rather than the underlying MSAs because two 
or more cities shared a common border and we could not always assign some patents (a 
few thousand) to an MSA with certainty (see Patent Data above). If we used the 
underlying MSAs, we would either have to discard these patents or take the chance that 
the error rate in assigning patents to cities might vary across cities. The methodology 
used in USPTO (2000) assigns equal shares of patents to counties with common place 
names when a patent cannot be matched to a unique county. This too might imply a 
higher error rate in assigning patents when MSAs are close to each other.  

We compared our MSA patent counts to those reported in USPTO (2000) and found them 
to be extremely close except for a few instances. In some cases two or more MSAs were 
in close proximity (e.g., Dallas and Fort Worth). In a few others, the place name of the 
inventor’s address was common to more than one county, regardless of distance. The 
PTO algorithm divided those patents equally across those counties.   

Our definition of metropolitan areas or the manner of allocating patents to MSAs does 
not significantly influence our results. In an earlier version of this paper (Carlino, 
Chatterjee, and Hunt 2001) we estimated the relationship between patent intensity and 
employment density using a data set of 296 MSAs and PMSAs as defined by OMB in 
1983 and using patent counts built up from the data contained in USPTO (2000). The 
results were qualitatively the same as those reported here, although the estimated 
coefficients were somewhat larger.  

Missing Data 
Four MSAs are dropped in the analysis because of missing data. One MSA (Enid, OK) 
does not have a corresponding urbanized area. Owing to disclosure limitations, a 
Herfindahl index of industry employment shares cannot be calculated for Atlantic City, 
NJ, and Tallahassee, FL. In addition, manufacturing employment is not available in 1989 
for Columbus, GA-AL. 

Geographic Variables 
Urbanized Area land area for every county was obtained from Table 34 of Census Bureau 
(1993a). We also obtained comparable measures for urbanized areas defined in 1980 and 
1970 from Census Bureau (1979, 1984). 

There are a few instances where a county includes land area associated with more than 
one urbanized area. For example, portions of Bucks County, PA, are associated with the 
Philadelphia and Trenton urbanized areas. To be consistent with our other county-based 
measures, we attribute this land area (and associated employment) to the MA associated 
with that county (e.g., Philadelphia). 

The weather and topography instrumental variables are based on the USDA’s Natural 
Amenity Scale project (http://www.ers.usda.gov/data/naturalamenities). The data are 
reported at county level, which we aggregate, based on county land area, to MSAs. We 
use the variables indicating, for the years 1941-1970, mean hours of sunlight and 
temperature in January, mean temperature in July, the percent of land area covered by 
surface water, and five dummy variables for the presence of a particular type of 
geography (plains, tablelands, open hills and mountains, hills and mountains, and plains 
with hills and mountains) built up from a finer gradation in the ERS data. We also 
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included as an instrument the amount of MA area covered by water n 1990. Those data 
were obtained from a county level tabulation reported in the Census Bureaus Gazeteer 
(http://www.census.gov/geo/www/gazetteer/gazette.html).   

Economic and Demographic Variables 
Our primary employment data are county-level values reported in the BEA’s REIS 
database and aggregated to the MA level. Those data are derived from the BLS Covered 
Employment and Wages Program (ES-202), which represents the average annual number 
of full- and part-time jobs held by all workers who are covered by unemployment 
insurance. Industry breakdowns are based on 1987 SIC definitions. 

Our measures of residency-based employment in 1990 were obtained from the Census 
Bureau web site (www.americanfactfinder.com). Those data are derived from the STF3 
(5 percent sample) tape. A separate count was obtained for every county that includes an 
urbanized area. These are aggregated to MAs in the same manner as our other variables. 

Our counts of employment for professional specialty occupations are derived from the 
1990 census (STF3). This is a residency-based count, but here we include all residents in 
the counties making up an MA, not just residents in the urbanized area portion of those 
counties. The occupation codes for this category of jobs are codes 043-202 in the 1990 
Census Occupation Classification System. 

Our counts of scientists and engineers are residency-based measures of workers in these 
occupations living in urbanized areas as reported in Table 34 of Census Bureau (1993c). 
We aggregated these counts to be consistent with our MA definitions.  

The shares of MSA land area, population, and employment contained in urbanized areas 
discussed on pages 13-14 are derived from Tables 48, 50-51 of Census Bureau (1993a) 
and Table 33 of Census Bureau (1993b) and Census Bureau (1993c). 

The Herfindahl-Hirschman Index (HHI) is calculated for 1989 and includes employment 
for ten industrial sectors. These include Construction, Manufacturing, Transportation and 
Public Utilities, Wholesale Trade, Retail Trade, Finance, Insurance, and Real Estate, 
Services, Civilian Federal Government, State and Local Government, and a category, 
other, that consists primarily of employment in the military, agriculture, and mining. The 
HHI is calculated at the MA level. Wherever county data are missing for 1989, either 
data from the previous or following year are used or MSA-level data are substituted when 
appropriate.  

The percentage of population with a college degree or more education is derived from the 
1990 Census American Fact Finder. Because these are MSA-level data, it was necessary 
to create a weighted average of component MSAs for the special CMSAs we created; this 
was done using 1990 Census Bureau mid-year population estimates aggregated from 
county level to MSA. The population data were also used to calculate our measure of 
patents per capita. 

Our instrumental variables include a measure of the number of restaurants and museums 
and crimes in 1989. These are derived from county-level data, as reported in County 
Business Patterns, and aggregated to the MA level. They are converted to intensities by 
dividing by population in 1989.  
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Research and Development Variables 

The amount of academic R&D in each MSA is derived from the National Science 
Foundation’s (NSF) “Academic Science and Engineering: R&D Expenditures,” as 
archived in the WebCaspar search engine at the NSF web site. Expenditures are averaged 
over the period 1987-89 and are normalized by the total fall enrollment as reported in the 
Integrated Postsecondary Education Data System assembled by the National Center for 
Education Statistics and archived on WebCaspar. S&E expenditures reported for a 
number of university systems were also allocated to particular campuses using advanced 
S&E degrees granted by those campuses (details are found in an extended data appendix 
available from the authors). Expenditures are built up from counties according to our MA 
definitions.  

Data on the location and resources of the Federally Funded Research and Development 
Centers were provided to us by Ronald Meeks of the National Science Foundation. 

Data on private R&D facilities were extracted from the 1989 edition of the Bowker 
Directory of American Research and Technology. They are matched to the SIC of the 
parent company using the 1999 vintage of Compustat. 
 
Trade Secrecy Index 
We assigned the industry-specific effectiveness rating in Table 1 of Cohen, Nelson, and 
Walsh (2000) to two-digit or three-digit SIC industries. These ratings are a categorical 
response to a question that asks for the proportion of product innovations for which trade 
secrets are effective in preserving the resulting profits. For each MA, we compute a 
weighted average of the industry ratings using as weights the shares of all private R&D 
facilities in the MA contained in those industries. 
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