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Abstract

We study, theoretically and quantitatively, the equilibrium of an economy with

unsecured consumer credit with the following features. Credit suppliers take deposits

at a given interest rate and offer loans to households via a menu of credit levels and

associated interest rates. The loan industry is competitive, with free entry and zero

costs, and borrowers have a default option that resembles, in process and consequence, a

bankruptcy filing under Chapter 7 of the U.S. Bankruptcy Code. The theory part of the

paper demonstrates the existence of a competitive equilibrium for such an economy and

characterizes the circumstances under which a household defaults on its loans. We map

the theory to the data in the quantitative part of the paper. We show that the model

can be specified in such a way as to account precisely for the quantitative properties

of the main facts regarding bankruptcy and unsecured credit (the volume of unsecured

debt, the fraction of borrowers in the market, and the percentage of defaulters). We

then use the model to address the implications of two policy experiments, one of which

is a policy change that eliminates the Chapter 7 bankruptcy option for households with

median or above-median income (a proposal with a similar feature is currently under

consideration in Congress). We find that the welfare gain from this policy experiment

is substantial, being equivalent to a lump-sum transfer payment of about one-quarter

of average annual U.S. earnings.



1 Introduction

In this paper we analyze a model economy with unsecured consumer credit that incorporates

the main characteristics of U.S. consumer bankuptcy law and replicates the key empirical

characteristics of unsecured consumer borrowing in the U.S. Specifically, we construct a

model consistent with the following facts:

• Borrowers can default on their loans by filing for bankruptcy under the rules laid

down in Chapter 7 of the U.S. Bankruptcy Code. In most cases, filing for bankruptcy

results in seizure of all (non-exempt) assets and a full discharge of household debt.

Importantly, filing for bankruptcy protects a household’s current and future earnings

from any collection actions by those to whom the debts were owed.

• Post-bankruptcy, a household’s credit rating deteriorates and it has serious difficulty

in getting new (unsecured) loans for a period of about 10 years.1

• Households that default are typically in poor financial shape.2

• There is free entry into the consumer loan industry and the industry behaves compet-

itively.3

• There is a large amount of unsecured consumer credit.4

• A large number of people who take out unsecured loans default each year.5

Heretofore, accounting for consumer borrowing and default facts in the context of a model

with rational decision-making on the part of households and firms has posed somewhat of a

challenge (see, for instance, White (1998)). A key contribution of our paper is to establish

1This is documented in Musto (1999).
2This is documented in, for example, Flynn (1999).
3See Evans and Schmalensee (2000), Ch.10, for a compelling defense of the view that the unsecured

consumer credit industry in the U.S. is competitive.
4The Board of Governors of the Federal Reserve System constructs a measure of revolving consumer debt

that excludes debt secured by real estate, as well as automobile loans, loans for mobile homes, trailers, or
vacations. This measure is probably a subset of unsecured consumer debt and it amounted to $692 billion
in 2001, or almost 7 percent of the $10.2 trillion that consititutes U.S. GDP.

5In 2001, 1.45 million people filed for bankruptcy in the U.S., of which just over 1 million were under
Chapter 7 (as reported by the American Bankruptcy Institute).
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a connection between the recent facts on household debt and the bankruptcy filing rate and

the theory of consumer behavior that macroeconomists routinely use to address micro and

macro observations on household consumption. This connection is established by modifying

the model of consumer behavior in, say, Deaton (1991)) to have default and by organizing

the facts on consumer debt and bankruptcy filings in light of the model.

Turning first to the theory, we analyze an environment where households with infinitely

long planning horizons choose how much to consume and how much to save or borrow.

Households face uninsured idiosyncratic shocks to income and preferences and therefore have

a motive to accumulate assets and to sometimes borrow in order to smooth consumption.

We permit households to default on their loans. This default option resembles a Chapter

7 bankruptcy filing in that default results in a discharge of household debt, with creditors

having no further recourse to the debt owed them. We abstract from the out-of-pocket

expenses of declaring default (they seem to be rather minor in reality) but assume that a

bankrupt household’s credit rating deteriorates for some (random) length of time, which

is, on average, compatible with the length of time mandated by law that a household’s

bankruptcy can be kept on record. Consistent with available evidence, we assume that

households with a poor credit rating are shut out of the unsecured consumer credit market

and experience various minor inconveniences as well (we model these minor inconveniences

as a small reduction in a household’s earning capability).

It should be clear from this basic setup that an indebted household will weigh the benefit

of maintaining access to the unsecured credit market against the benefit of declaring default

and having its debt discharged. Accordingly, credit suppliers who make unsecured loans will

have to price their loans taking into account the likelihood of default. We assume a market

arrangement where credit suppliers can link the price of their loans to the observable total

debt position of a household and to a household’s type. The first theoretical contribution of

the paper is to show that when credit suppliers take the cost of funds as given in a world

market, there exists a loan price schedule that is consistent with each credit supplier making

zero profits, i.e., there exists a loan price schedule in which the price charged on a loan

of a given size made to a household of a given type exactly compensates lenders for the

objective default frequency on loans of that size made to households of that type. This

demonstration is made somewhat challenging by the fact that the default option generally

leads to discontinuous decision correpondences (as opposed to continuous decision rules) at
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the household level.

A second theoretical contribution of the paper is a characterization of default behavior

and of the loan price schedules. Specifically, we demonstrate that for each level of debt and

for each household type, the set of earnings that trigger default is a closed interval. While

filing for bankruptcy relieves a household of its debt burden, it also induces the household

to consume all of its filing-period income. Importantly, a household has no incentive to use

any portion of its filing-period income for savings because any savings in the filing period

is seized in the bankruptcy process. Consequently, an income-rich household is better off

repaying its debt and saving, and an income-poor household is better off repaying its debt

and borrowing. The “closed interval” property of the default set follows, essentially, from

this point. It is worth emphasizing that besides being a nice theoretical point, the “closed

interval” result is important for the computation of equilibria because it makes the task of

determining equilibrium default probabilities feasible.

A third theoretical contribution is that the characterization of default behavior also allows

a characterization of equilibrium loan price schedules. In particular, we demonstrate that

our equilibrium loan price schedules determine, endogenously, the borrowing limit facing

each household type. This is theoretically significant since borrowing constraints play a key

role in a lot of empirical work regarding consumer spending. Thus, we believe it is important

to provide a theory of borrowing constraints that derives from the institutional and legal

features of the U.S. unsecured consumer credit market.

Turning to our quantitative work, we start by presenting some facts on consumer debt

and bankruptcy that are conformable to the model set out in the theoretical section. For

the most part, these facts serve as the targets for the calibration of the model. In our

model, the optimal response of individuals to uninsurable idiosyncratic risk generates an

endogenous wealth distribution and heterogeneous bankruptcy filings. We organize the data

from the 1998 Survey of Consumer Finances to be consistent with the reasons, cited by PSID

survey participants who declared bankruptcy between 1984 and 1995, that can be captured

by our model. Our baseline model successfully matches these statistics and is qualitatively

consistent with a further set of “overidentifying statistics.”

We then examine the properties of equilibrium borrowing rates and credit limits, as well

as the wealth distribution in our baseline model. We show that for small values of debt (up
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to 40 percent of the value of average yearly earnings), households pay low interest rates.

As the size of debt increases past this point, households begin to default (either voluntarily

or involuntarily). Recognizing the household decision rule, firms raise equilibrium interest

rates substantially past that point and eventually refuse to make loans above an endogenously

determined limit. This limit varies across household types, being more stringent for those

households most likely to default. Our model allows for demographic turnover and generates

a pattern of the wealth distribution that is typical of overlapping generations models and

broadly consistent with U.S. data.

Finally, we use our calibrated model to answer two regulatory questions. First we ask

what is the quantitative significance of a 50 percent reduction in the length of time that credit

bureaus can legally store the information that agents have filed for bankruptcy. Second, we

seek the quantitative significance of a proposal currently under consideration in Congress to

prevent “above-median-income” households from filing under Chapter 7. We find the first

experiment has minimal quantitative effect but that the second has a substantial impact.

Under such a policy there is almost a three-fold increase in the level of debt extended, without

a significant increase in the total amount defaulted. We also find a significant welfare effect;

households are willing (on average) to pay a once-and-for-all transfer up to a quarter of

their earnings to implement such a policy (the flow value of this amount is 0.125 percent of

earnings).

Our paper is related to several recent strands of literature on unsecured debt. One strand

studies optimal contractual arrangements in the presence of commitment problems. For

instance, Kocherlakota (1996) designs state (earnings) contingent bilateral contracts where

the threat of punishment to autarky is sufficient to ensure that a given household does

not default. Similarly, Kehoe and Levine (2001) embed this idea in a general equilibrium

framework. These papers have the implication that it is in the state where earnings are high

that households want to default, but the binding individual rationality constraint prevents

equilibrium default. To model equilibrium default, we depart from this literature in an

important way. In our case a contract between the lending institution and a household is

incomplete. While contract terms can depend on such things as the household’s current total

debt, credit rating, and demographic characteristics that provide partial information on a

household’s earnings prospects (such as its zip code), it cannot depend on earnings. This
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assumption is motivated by the typical credit card arrangement.6 In this regard, our paper

is closer to the literature on default with incomplete markets as in Dubey, Geanokoplos, and

Shubik (2000) and Zame (1994). As in these papers, we simply take the incompleteness as

given and explore the consequences. Zame’s work is particularly relevant because he shows

that with incomplete markets, it may be efficient to allow a bankruptcy option to debtors.

There are several papers that study issues of default in a quantitative framework. In inno-

vative work, Athreya (1999) analyzes a model that includes a default option with stochastic

punishment spells. In his economy, competitive credit suppliers precommit to long-term

credit contracts. The credit limit is effectively exogenous. He also imposes that ex-ante ex-

pected profits have to be zero as an equilibrium condition. However, in his model economy

reducing the credit limit increases profits. Also, Lehnert and Maki (2000) have a model with

competitive credit suppliers and borrowers that can both precommit to long-term credit

contracts. In their model, ex–ante profits on contracts are zero, and there are numerous

periods where firms are committed to making negative profits. Livshits, MacGee, and Ter-

tilt (2001) follow our approach where the zero profit condition is applied to loans of varying

size. However, they assume that creditors can garnish wages of a bankrupt person in the

period in which that person files for bankruptcy and that a person has unrestricted access

to unsecured credit in the period immediately following default. 7

The paper is organized as follows. We start, in Section 2, by describing bankruptcy in

the U.S. in terms of the part of the Bankruptcy Code we are interested in and in terms of

the facts that surround default. In Section 3, we turn to a description of the model economy

and a characterization of the problem of the household and of the structure of the unsecured

credit industry. We prove existence of equilibrium in Section 4. We describe and discuss

our calibration targets in Section 5. We then describe the properties of the baseline model

economy in Section 6. In Section 7, we pose and answer two quantitative questions that

relate to the implications of changing certain features of the law surrounding bankruptcy in

the U.S. Section 8 concludes. The proofs and a description of the computational procedures

are in the Appendix.

6For more detail on the form of the standard credit card “contract” see Section III of Gross and Souleles
(2002).

7Zha (2001) models bankruptcy as a state where a borrower is unable, in a legal sense, to make contrac-
tually agreed payments. He also permits bankrupt individuals to borrow in periods immediately following
default.
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2 Bankruptcy in the U.S: Process and Consequences

In the United States, the right to petition for relief from burden of debt has existed since

colonial times. Article I, section 8, of the U.S. constitution authorizes Congress to “enact

uniform Laws on the subject of Bankruptcies.” Under this authority various bankuptcy

laws have been enacted over the years, and, at present, the Bankruptcy Act of 1978 provides

federal guidelines for debt relief. These guidelines are described in the various chapters of the

U.S. Bankruptcy Code of which Chapters 7 and 13 are the ones most relevant to individuals.

Most individuals who seek relief from debt do so under Chapter 7.

There has been a large and growing number of individuals who filed for bankruptcy each

year since 1978. In 1998 alone, more than 1 million individuals, or about one percent of U.S.

houesholds, filed for bankruptcy under Chapter 7, and an additional 379,000 filed under

other chapters. Since the late 1960s, Chapter 7 filings have annually averaged around 70

percent of all individual filings.

The procedure for completing a filing under Chapter 7 is as follows. An individual

debtor seeking relief fills out a set of standardized forms that collect information on his or

her existing debts, income, property, and monthly living expenses. The individual then files

for bankruptcy in a special bankruptcy court, and the court informs the creditors listed by

the individual in the filing of that fact. Once the creditors learn of the filing they are required

by law to cease all actions to collect their debts. In about a month’s time, the creditors meet

with the debtor to determine whether there are any non-exempt assets that can be liquidated

to pay off unsecured debts.8 Although the meeting also affords an occasion for creditors to

verify the income and expense information on the debtor’s filing forms, they rarely do so in

practice.

While some unsecured debts (such as student loans) are not dischargeable, unsecured

consumer loans such as credit card debt are dischargeable. A discharge releases the debtor

from personal liability for discharged debts and prevents the creditors owed those debts

from taking any future action against the debtor or his property to collect the debts. From

start to finish, the process takes, on average, about four months and costs filers about $200,

8Some assets are exempt from liquidation (allowable exemptions vary by state: in Texas and Florida an
individual’s home equity is exempt while in Iowa the total value of exemptions permitted is just $500).
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not including attorney’s fees. After filing, the individual loses the right to file for another

bankruptcy under Chapter 7 for six years.

In contrast to Chapter 7, filing under Chapter 13 leads to a rescheduling of debt rather

than immediate discharge. The rescheduling generally results in a situation where the debtor

promises to make additional payments on existing debts over a period of three to five years,

followed by a discharge of any remaining debt. By and large, a Chapter 13 filing is not as

beneficial to an individual as a Chapter 7 filing and hence is not the preferred Chapter for

most individuals seeking debt relief.9 In any case, for many Chapter 13 filings the resulting

rescheduling does not succeed and leads ultimately to a filing under Chapter 7.

This brief description of the bankruptcy procedure should make clear that defaulting

on unsecured consumer loans does not take much time or money. But while easy to do,

filing for bankruptcy does have some adverse consequences. These stem from the fact that

a bankruptcy filing remains on record on an individual’s credit history for a period of 10

years from the date of filing. After the 10-year period is over, federal law mandates that

the record of the filing be deleted from the household’s credit history. During those 10

years, the individual’s access to unsecured consumer loans is demonstrably impaired. As

documented carefully in Musto (1999), individuals who filed for bankruptcy enjoy better

access to unsecured consumer credit when the record of their filing disappears from the view

of potential creditors after 10 years. This is apparent in the improvement in their overall

credit score, in the number and borrowing capacity of their credit cards, and in their credit

relationships more generally. Provided their credit history is not poor for other reasons,

individuals with a record of bankruptcy typically see their total credit card balance rise from

well under $1000 in the first six post-filing years to well over $2000 in the 11th post-filing

year. In addition, credit-card credit granted during the early post-filing years may be secured

against a deposit.

The bankruptcy flag in an individual credit history has other consequences as well. These

arise because credit histories are also accessed by entities other than credit-granting agencies.

For instance, a landlord may request a credit report on a prospective renter, and a potential

employer may wish to see a job applicant’s credit history. In such cases, an adverse credit

9In some cases an individual may be denied a petition to file under Chapter 7 if the bankruptcy court
feels that use of Chapter 7 constitutes an abuse of the law. In such cases, the individual has the option to
file under Chapter 13.
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history is likely to impose costs.

To summarize, filing for a discharge of unsecured consumer debt under Chapter 7 is not

very costly in terms of time or money. Doing so discharges existing debts but makes it

difficult for the individual to get new unsecured loans for the next 10 years. In addition, the

individual suffers costs that result from having an impaired credit history. These are the key

institutional features we incoporate in the model presented in the next section.

3 The Model Economy

We begin by describing the default option and the market arrangement in our model econ-

omy. This is followed by a recursive formulation of the household’s decision problem and a

description of profit-maximing behavior of firms serving the unsecured credit industry.

3.1 The Default Option and Market Arrangement

We model the default option to resemble, in procedure and consequences, a Chapter 7

bankruptcy filing. Let h ∈ {0, 1} denote the “bankruptcy flag” for a household, where h = 1

indicates a record of a bankruptcy filing in the household’s credit history and h = 0 denotes

the absence of any such record. In what follows, we will refer to h as simply the household’s

credit rating, with the rating being either good (h = 0 ) or bad (h = 1).

Consider a household that starts the current period with a good credit rating and some

unsecured debt. If the household files for bankruptcy (and we permit a household to do so

irrespective of its current income or past consumption level), the following things happen:

1. The household’s beginnning of period liabilities are set to zero (i.e., its debts are

discharged), and the household is not permitted to save in the current period. The

latter assumption is a simple way to recognize that a household’s attempt to accumulate

assets during the filing period will result in those assets being seized by creditors.

2. The household begins next period with a bad credit rating (i.e., with a bankruptcy

flag in its credit history).

3. A household whose beginning-of-period credit rating is bad (i.e., h = 1) cannot get any

new loans, an assumption that is broadly consistent with the experience of bankrupt
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individuals in Musto (1999). Also, a household with a bad credit rating experiences a

loss equal to a fraction 0 < γ < 1 of income, a loss intended to capture the pecuniary

costs of a bad credit rating.10

4. There is an exogenous positive probability λ that a household with a bad credit rating

will have a good credit rating in the following period. This is a simple, albeit idealized,

way of modelling the fact that a bankruptcy flag remains on an individual’s credit

history for only a finite number of years.

The addition of the default option necessitates a departure from the conventional mod-

eling of borrowing and lending opportunities. In particular, we need to posit a market

arrangement where unsecured loans of different sizes for different types of agents are treated

as distinct financial assets. This expansion of the “asset space” is required in order to cor-

rectly handle the competitive pricing of default risk, a risk that will vary with the size of the

loan and type of the household. Thus, in our model, a household of type η ∈ S can borrow

or save by purchasing a single one-period pure discount bond with a face value in a finite

set L ⊂ IR. The set L contains 0 and positive and negative elements. We will denote the

largest and smallest elements of L by `max > 0 and `min < 0, respectively. A purchase of a

discount bond with a nonnegative face value ` means that the household has entered into a

contract where it will receive ` ≥ 0 units of the consumption good next period. A purchase

of a discount bond with a negative face value ` means that the household has entered into

a contract where it promises to deliver, conditional on not declaring bankruptcy, -` > 0

units of the consumption good next period; if it declares bankruptcy, the household delivers

nothing. Associated with each element of L is a nonnegative contract price denoted q`,η ≥ 0

available to households of type η. Thus, a purchase of a discount bond with a negative face

value ` “costs” a type η household q`,η · ` in period-t consumption goods (i.e., the household

receives q`,η · (−`) units of the period-t consumption good). The total number of financial

assets traded is NL×NS, where NL and NS are the cardinality of the sets N and S, respec-

tively. Define the entire set of prices q ∈ IRNL×NS as the price vector {q`,η, (`, η) ∈ L × S}.
The price vector is not indexed by t because the equilibrium price vector will, in fact, turn

out to be stationary.

10For instance, there are substantial annual fees associated with secured credit cards.
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3.2 Households

We next describe household preferences, earnings capabilities, and demographics. Demo-

graphic turnover will generate a relatively large number of households with wealth close to

zero, which makes them prone to indebtebtedness. We also include preference shocks (a

strong desire for current consumption). These features will allow us to account for the data,

since they both increase the default rate and the amount of indebtedness.11 Although we

don’t exploit it in our computational work, we also permit shocks to the stochastic process

for household income. Such shocks allow for persistent changes in household earnings.

Specifically, let the household’s type η ∈ S denote the realization of a finite-state Markov

chain. Realizations of this process affect the household’s current period utility function

and the probability distribution of the household’s next period earnings shock. We will

refer to realizations of η as a household’s type-shock and assume that this shock is publicly

observable. There is also the possibility that a household may die at the end of a period

with probability 1− δ.

The preferences of a household are given by the expected value of a discounted sum of

momentary utility functions:

E0

{ ∞∑
t=0

(βδ)t u (ct, ηt)

}
, (1)

where 0 < β < 1 is the discount factor, 0 < δ < 1 is the survival probability, ct is

consumption in period t, ηt is the realization of the type-shock in period t, u : IR+×S → IR

is a utility function that is continuous, strictly increasing, and strictly concave for each η ∈ S.

Let η and η be elements of S such that u(c, η) ≤ u(c, η) ≤ u(c, η).

A surviving household draws its period t earnings from an atomless probability space

(E,B(E), µηt−1), where e ∈ E = [e, e] ⊂ IR++ and draws its realization of the current-

period type-shock, ηt, according to the transition law Γη,η′ .
12 In addition to the surviving

households, a measure ρη ≥ 0 of type η households are born every period, where
∑

η ρη =

11In a pure infinite-horizon model without preference shocks, it’s hard to simultaneously obtain a sizable
debt and a large number of bankruptcies; households avoid default by saving a large amount of wealth.

12Specifically, B(E) is the Borel σ–algebra generated by E and the assumption that the probability measure
µη is atomless is simply that µη(e) = 0 for all e ∈ E.
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(1 − δ). Newborns of type η are identical to survivors of type η with good credit ratings

(h = 0) and zero assets (` = 0 ). We assume that both losses and gains resulting from death

are absorbed by firms (or perfect annuity markets). That is, a household that purchases

a negative face value bond honors its obligation only if it survives and does not declare

bankruptcy, and, symmetrically, a firm that sells a positive face value discount bond is

released from its obligation if the household to which the contract was sold is not around to

collect.

We now turn to a recursive formulation of the household decision problem. The nature of

a household’s current period budget correspondence depends on the household’s exogenous

type, which is the pair {η, e}, its beginning of period asset position `, its credit rating h, and

whether or not the household exercises its default option d. Denote a household’s current

period budget correspondence by B`,h,η,d(e, q), where d = 1 indicates that the household is

exercising its default option and d = 0 indicates that it’s not. In what follows, dependence

on discrete variables is indicated by placing those variables as subscripts while dependence

on continuous variables is indicated by putting those variables within parentheses. This

notation, while slightly nonstandard, is very natural from a computational point of view.

Then B`,h,η,d(e, q) has the following form:

1. If household type η has a good credit rating (h = 0), has no debt or has debt but chooses

not to default (d = 0), then

B`,0,η,0(e, q) = {c ∈ IR+, `′ ∈ L : c + q`′,η `′ ≤ e + `}, (2)

where c is current consumption and `′ is the household’s end-of-period (beginning of next

period) asset position. This is the standard case where the household chooses how much

to consume and how much to save, given that its resources are its inherited assets and

its current earnings. A nonstandard aspect is that we permit B`,0,η,0(e, q) to be empty; in

particular it could be empty if the household is deep in debt, earnings are low, and new loans

are expensive. Allowing B`,0,η,0(e, q) to be empty permits us to analyze both “voluntary”

and “involuntary” default (for the meaning of this distinction, see below).

2. If household type η has a good credit rating (h = 0), has debt and chooses to default
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(d = 1), then

B`,0,η,1(e, q) = {c ∈ IR+, `′ = 0 : c ≤ e}. (3)

In this case, inherited debts disappear from the budget constraint and no savings is possible

during the default period.

3. If household type η has a bad credit rating (h = 1), then

B`,1,η,0(e, q) = {c ∈ IR+, `′ ∈ L+ : c + q`′,η `′ ≤ e(1− γ) + `}, (4)

where L+ = L∩ IR+. With a bad credit rating, the household cannot borrow and is subject

to pecuniary costs of a bad credit rating.

To set up the household’s decision problem, define L to be the set L−−×{0}×S ∪L+×
{0, 1} × S where L−− = L∩ IR−−. The set L lists all (`, h, η) pairs possible, given that only

households with good credit rating can have debt. Let NL be the cardinality of L. We will

now restrict the vector q to lie in a compact set [0, q]NL×NS where 1 > q > 0. Later, we will

interpret q as the reciprocal of the (gross) risk-free savings rate available to households so

that Q restricts the implicit interest rates on loans to be at least as large as the risk-free

savings rate.

Let w`,h,η(q) : L × Q → IR be a function that assigns a value, for each q, to the triple

(`, h, η). For a given q, think of this value as a candidate for the expected life-time utility

of a household that starts the current period with (`, h) but does not yet know its current-

period earnings draw or its current-period type shock. It depends on the exogenous type η

because the realization of its current type is Markov. Typically we will use βδ w`′,h′,η(q) to

refer to the expected value today of tomorrow’s lifetime utility if tomorrow’s assets are `′,

tomorrow’s credit rating is h′ and today’s type is η. Let w(q) be the vector-valued function

{w`,h,η(q) : {`, h, η} ∈ L}. In what follows, w(q) will be the unknown in a functional equation.

To develop this functional equation we specify the space in which w(q)’s may lie. Let W
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be the set of all continuous (vector-valued) functions w : Q → IRNL such that:

w`,h,η(q) ∈
[
u[e(1− γ), η]

(1− βδ)
,
u(e + `max − `min, η)

(1− βδ)

]
, ∀(`, h, η) ∈ L, ∀q. (5)

`0 ≥ `1 ⇒ w`0,h,η(q) ≥ w`1,h,η(q), ∀(`0, h, η) and (`1, h, η) ∈ L, ∀q. (6)

w`,0,η(q) ≥ w`,1,η(q), ∀(`, 0, η) and (`, 1, η) ∈ L, ∀q. (7)

u(e(1− γ), η) + βδ w0,1,η(q) > u(0, η) + βδ w`max,0,η(q), ∀q. (8)

These restrictions on the expected value function are, for the most part, quite intuitive.

The first restriction is essentially a boundedness condition. The particular bounds anticipate

the fact that household consumption in our model will never fall below e(1 − γ) or exceed

e + `max − `min in any period. The next two restrictions impose monotonicity requirements

on w(q). The first of these requirements is that, holding fixed a household’s credit rating,

life-time expected utility should be increasing in `. The requirement recognizes the fact that

a household’s budget set increases with `. The second monotonicity requirement is that,

holding fixed the household’s asset position, life-time expected utility should be decreasing

in h. This requirement recognizes the fact that a household with a good credit rating does

not suffer any income loss and has the option to borrow. The final restriction is an implicit

restriction on the utility function that guarantees that if faced with a level of debt so high

that not defaulting on the debt will lead to zero current period consumption, the household

will prefer to default. In effect, this is a restriction on how large u(0, η) can be. Later we’ll

supply an explicit upper bound on u(0, η) that will justify this restriction.

Next we verify that any constant vector-valued function that satisfies the first bound

restriction will satisfy all the others and so,

Lemma 1. W is non-empty.

We now define an operator that yields the maximum life-time utility achievable when the

household’s current earnings draw is e, its current type-draw is η, and its future life-time
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utility is assessed according to a given function w(q). Specifically, for w ∈ W and q ∈ Q,

define T1(w)(`, h, η, e, q) as follows:

1. For ` < 0, h = 0, and B`,0,η,0(e, q) = ∅:

T1(w) (`, 0, η, e, q) =

max
c,∈B`,0,η,1(e,q)

u(c, η) + βδw`′,1,η(q) = u(e, η) + βδw0,1,η(q). (9)

2. For ` < 0, h = 0, and B`,0,η,0(e, q) 6= ∅:

T1(w) (`, 0, η, e, q) =

max

{
max

c,`′∈B`,0,η,0(e,q)
u(c, η) + βδw`′,0,η(q), u(e, η) + βδw0,1,η(q)

}
. (10)

3. For ` ≥ 0, h = 0:

T1(w) (`, 0, η, e, q) = max
c,`′∈B`,0,η,0(e,q)

u(c, η) + βδw`′,0,η(q). (11)

4. For ` ≥ 0, h = 1:

T1(w) (`, 1, η, e, q) = max
c,`′∈B`,1,η,0(e,q)

u(c, η) + βδ [λ w`′,1,η(q) + (1− λ) w`′,0,η(q)] . (12)

The first part of this definition says that if the household has debt and the budget set

conditional on not defaulting is empty, the household must default. In this case, the expected

life-time utility of the household is simply the sum of the utility from consuming the current

endowment and the discounted expected utility of starting next period with no assets and

a bad credit rating. The second part says that if the household has debt and the budget set

conditional on not defaulting is not empty, the household chooses whichever default option

yields higher life-time utility. In the case where both options yield the same utility the

household may choose either. The difference between default under part 1 and default under

part 2 is the distinction between “involuntary” and “voluntary” default. In the first case,

default is the only option while in the second case it’s the best option. The final two parts

apply when the household has no debt (so default is not an option) but distinguish between
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a good and bad credit rating. Recall that when the household’s credit rating is bad, there

is some probability that it will continue in that state in the following period.

Denote the image of w under T1 by v`,h,η(e, q; w) = T1(w)(`, h, η, e, q) and by v(e, q; w)

the vector-valued function whose component functions are {v
`,h,η

(e, q; w), (`, h, η) ∈ L}. Some

important properties of these functions are noted in the following Lemma.13

Lemma 2. For any w ∈ W and (`, h, η) ∈ L, v`,h,η(e, q; w) is (i) continuous in e and q, (ii)

increasing in e and `, and (iii) is integrable with respect to probability measures µη, η ∈ S.

Next, let V be the set of all vector-valued functions v : E × Q → IRNL such that each

coordinate function is continuous in e and q and integrable with respect to the probability

measure that corresponds to the η appearing in that coordinate. For v ∈ V and q ∈ Q,

define the operator T2(v)(`′, h′, η, q) as:

T2(v)(`′, h′, η, q) =
∑

η′

[∫

E

v`′,h′,η′(e
′, q) dµη(e

′)
]

Γη,η′ , (13)

For the recursive formulation of the household’s decision problem to be well-posed, there

must be a unique w(q) in W such that

T2(T1(w))(`′, h′, η, q) = w`′,h′,η(q) ∀`′, h′, η ∈ L. (14)

If we define T (w)(q) = {T2(T1(w))(`′, h′, η, q), ∀`′, h′, η ∈ L}, all q, then the requirement

in equation (14) can be compactly expressed as T (w)(q) = w. The following assumption

provides a sufficient condition under which this is true (it is used to guarantee that if faced

with a level of debt so high that not defaulting will lead to zero consumption, the household

chooses to default).

Assumption 1. For every η ∈ S

u[e(1− γ), η]− u(0, η) >

(
βδ

1− βδ

) [
u (e + `max − `min, η)− u

(
e (1− γ) , η

)]
.

13Since L contains only a finite number of elements, there always exists a solution to these maximization
problems.
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Lemma 3. Let ‖w‖ = max`,h,η{supq∈Q | w`,h,η(q) |} be the norm on W . Then (i) (W , ‖ · ‖)
is a complete metric space, (ii) given Assumption 1, T (W) ⊂ W , and (iii) T is a contraction

mapping with modulus βδ.

Summarizing, we then have,

Theorem 1. (The Recursive Formulation Is Well-Defined) There exists a unique

w∗ ∈ W such that w∗ = T (w∗).

3.2.1 Characterization of the Default Decision

Since the option to default is the novel feature of this paper, it’s useful to establish some

results on the manner in which the decision to default varies with a household’s level of

earnings and with its level of debt. Here w is always the unique fixed point w∗ and objects

with asterisks indicate that they are conditioned on w∗. For ` < 0, let D
∗
`,η(q) = {e :

v∗`,h,η(e, q) = u(e, η)+βδw∗
0,1,η(q)}. This is the set of e’s for which either B`,0,η,0(e, q) is empty

or B`,0,η,0(e, q) is not empty but the value from not defaulting does not exceed the value from

defaulting. D
∗
`,η(q) ⊆ E can be interpreted as household type η’s maximal default set for

` if we assume that a household who is indifferent between defaulting and not defaulting

always defaults.

Theorem 2. (The Maximal Default Set is a Closed Interval) If D
∗
`,η(q) is non-

empty, then it’s a closed interval.

The intuition for this result can be seen in the following way. Suppose that there are

two earnings levels, say e1 and e2 with e1 < e2, for which it is optimal for the household to

default on its debt. Now consider an earnings level ê that’s intermediate between e1 and e2.

Suppose that the household prefers to maintain access to the credit market at ê, even though

it defaults at a higher earnings level e2. It seems intuitive that the reason for not defaulting

at the lower earnings level ê must be that the household finds it optimal to consume more

than its earnings and incur even more debt. On the other hand, the fact that the household

defaults at the earnings level e1 but maintains access to the credit market at the higher

earnings level ê suggests that the reason for not defaulting at ê must be that the household

16



finds it optimal to consume less than its earnings and reduce its level of indebtedness. Since

the household cannot simultaneously be consuming more and less than ê, this implies that if

the household defaults at e1 and e2 it must default at all intermediate earning levels as well.

Theorem 3. (The Maximal Default Set Increases with Indebtedness) If `0 > `1,

then D
∗
`0,η(q) ⊆ D

∗
`1,η(q).

The result follows from the property that v∗`,0,η(e, q) is increasing in ` and that utility

from default is independent of the level of debt. Figure 1 helps to visualize this.

Figure 1: Typical Default Sets Conditional on Household Type
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3.3 Unsecured Credit Industry

Firms serving the consumer credit industry have access to an international credit market in

which they can borrow or lend as much as needed at a constant risk-free rate r̂ > 0. For

`′ ∈ L−−, households of type η with a good credit rating can buy contracts in which a firm

provides q`′,η · (−`′) units of the consumption good today in exchange for the household’s

promise to deliver, conditional on not defaulting, (−`′) units of the consumption good next

period.14 For `′ ∈ L+, all households can buy (regardless of credit rating) contracts in which

a firm promises to provide, for sure, `′ units of the consumption good next period in exchange

for q`′,η · `′ units of the consumption good today.

The profit on a contract with `′ < 0 is the present discounted value of inflows less the

current value of outflows and the profit on a contract with `′ > 0 is the current value of

inflows less the present discounted value of outflows. Therefore, if a`′,η ≥ 0 is the measure

of size `′ contracts sold to households of type η, then the (percapita) expected profits of the

firm on (`′, η) contracts is

π[a`′,η; q] =

{
a`′,η (1 + r̂)−1δ[1− p`′,η](−`′)− a`′,η q`′,η (−`′) if `′ < 0

a`′,η q`′,η`
′ − a`′,η (1 + r̂)−1δ`′ if `′ ≥ 0

, (15)

where p`′,η is the fraction of households expected to default on a contract of type (`′, η). Note

that the implicit interest charged on loans takes into account that some borrowers will not

survive to repay their loans and the implicit interest rate on deposits is also higher to take

account of the fact that some depositors may not survive to collect on their deposits. The

full expected profits of a firm is then simply
∑

(`′,η)∈L×S π[a`′,η; q]. The decision problem of

each firm is to maximize
∑

(`′,η)∈L×S π[a`′,η; q] subject to a`′,η ≥ 0 for all (`′, η) ∈ L× S.15

14We interpret the assumption that firms do not lend to households with a record of a bankruptcy filing
in their credit history as a legal restraint on firm behavior. The central banking authority restricts the type
of assets that can be held by credit firms. In addition, note that this restriction has the full support of
the incumbent firms in the unsecured credit industry. Lifting this restriction will reduce the costs of filing
for bankruptcy for consumers, resulting in more defaults than expected and losses for the incumbent credit
firms.

15Here, and in the household’s decision problem, we assumed that a household enters into a single contract
with some firm. This simplifies the situation in that a household’s end-of-period asset holding is the same as
`′, the size of the single contract entered into by the household. However, this is without loss of generality
in the following sense. Let households write any collection of contracts {`′k ∈ L} as long as `′ =

∑
k `′k ∈ L.

Consistent with the procedures of a Chapter 7 bankruptcy filing, assume that a household has the option
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4 Equilibrium

In this section we define and establish the existence of an equilibrium price schedule and

characterize some of its properties. Our strategy is to develop a correspondence whose fixed

points satisfy all conditions of an equilibrium price schedule and then show, via the Kakutani

Fixed Point Theorem, that a fixed point of the correspondence exists.

There are two key requirements for the proof of existence to work. The first requirement

is that the earnings distribution have no mass points. Otherwise, small changes in the price

vector q may induce large changes in default behavior, and hence, in default probabilities,

and the “equilibrium correspondence” developed below may fail to be continuous. The sec-

ond requirement is that there not be any tie-breaking rule for households that are indifferent

between defaulting and not defaulting. If the set of indifferent households is of positive

measure (something that could happen), a tie-breaking rule could lead to a situation where

small changes in q induce large changes in default behavior. The first requirement is taken

care of by assumption; recall that the measure µη is assumed to be atomless. The second

requirement is met by letting the mapping between a household’s state and its default deci-

sion be a correspondence rather than a function and developing the fixed point argument in

terms of correspondences rather than functions.

For ` < 0, let d∗`,η(e, q) be an indicator function that takes on the value 1 if either the

budget set B`′,0,η,0(e, q) is empty or if the utility from defaulting strictly exceeds the utility

from not defaulting, it takes on the value 1 or 0 if the utility from defaulting is exactly the

same as the utility from not defaulting, and it takes on the value 0 if utility from defaulting

is strictly less than the utility from not defaulting. We may interpret d∗`,η(e, q) as a default

decision function. If there are earnings levels at which the household is indifferent between

defaulting and not defaulting, there will be more than one default decision function with

to either (i) default on all negative face value subcontracts (i.e., loans) or (ii) not default on any of them.
In case of default, assume that creditor-firms can liquidate any positive face value subcontracts held by the
household and use the proceeds to recover their loans in proportion to the size of each loan. With these
bankruptcy rules in place, the price charged on any subcontract in the collection {`′k ∈ L} must be the price
that applies to the single contract of size `′. Consequently, as long as credit suppliers can condition their
loan price on total end-of-period debt position of a household, there is a market arrangement in which the
household is indifferent between writing a single contract or a collection of subcontracts with the same total
value. Parlour and Rajan (2001) analyze equilibrium in a two-period model of unsecured consumer debt
when such conditioning is not possible.
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the functions differing in value on at least one such point of indifference. Let M∗
`,η̃(q) be

a set of nonnegative numbers such that if m ∈ M∗
`,η̃(q) then there is a d∗`,η(e, q) such that∑

η Γη̃,η

∫
E

d∗`,η(e, q) dµη̃(e) = m. Then, M∗
`′,η(q) is the set of default probabilities consistent

with optimizing behavior for debt level `′ and type η, given the price schedule q.

It is clear from π[a`′,η; q] that profits on a contract of type (`′, η) depend linearly on a`′,η.

We are interested in analyzing a situation where the set of contracts actually sold by firms

is entirely demand determined. This requires that the profit from selling any contract in the

set L× S be exactly zero. In other words, it requires that

q`′,η =

{
(1 + r̂)−1δ(1− p`′,η) if `′ < 0

(1 + r̂)−1δ if `′ ≥ 0
. (16)

Since p`′,η ≥ 0, the zero-profit requirement implies that the q ∈ Q = [0, q]NL×NS is δ(1+ r̂)−1.

We can now put the restrictions imposed by zero profits and household optimization. Let

ϕ`,η(q) be a correspondence that takes points in Q to subsets of [0, q] given by

ϕ`′,η(q) =

{
{y : y = q(1−m) for some m ∈ M∗

`′,η(q)} if `′ < 0

q if `′ ≥ 0.

Then, ϕ`′,η(q) is the set of prices for a loan of type (`′, η) that are consistent with zero profits

given the price vector q. Then, we have:

Definition 1. A price vector q∗ is an equilibrium if, for all (`′, η) ∈ L× S, q∗`′,η ∈ ϕ`′,η(q
∗).

The equilibrium price vector has the property that positive face value discount bonds

bear the risk-free rate and negative face value discount bonds bear a rate that reflects the

risk-free rate and a premium for the objective default probability on the bond. There is

no mention of quantities in this definition for two reasons. First, the market arrangement

precludes any cross-subsidization across loans of different sizes; in particular, it’s not possible

for firms to charge more than the cost of funds on (small-sized) low-risk loans in order to

offset losses on (large-sized) higher-risk loans. For if there were positive profits in some

contracts that were offsetting the losses in others, firms could enter the market for those

particularly profitable sized loans. In contrast, in the environment of Athreya (1999) and
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Lehnert and Maki (2000) such cross-subsidization occurs and the calculation of firm profits

requires knowledge of the distribution of customers across various loan sizes. In our model,

the equilibrium price schedule is consistent with any distribution of households over the

(`, h, η) space. Second, the assumption that firms can borrow or lend as much as needed in

the international credit market means we can ignore any resource balance condition. If this

“open-economy” assumption is dropped and the risk-free rate is determined by the marginal

product of capital (as in Aiyagari (1994)) then the distribution of households over ` will

become relevant for equilibrium.

Theorem 4. A competitive equilibrium exists.

It is possible for q∗`′,η to be zero for some ` < 0. This will happen if the default set

corresponding to `′ is E for all η. Then, M∗
`′,η(q) = {1} (i.e., a household of type η with

a loan of size `′ will default for any realization of the earnings draw) and q∗`′,η = 0. Even

in this case, firms are indifferent as to how many loans of type (`′, η) they “sell”; “selling”

these loans doesn’t cost the firms anything (since the price is zero) and they (rationally)

expect the loans to generate no payoff in the following period. From the perspective of a

household, taking out one of these free loans gets nothing in the current period but saddles

the household with a liability. Since a household of type η can do better by choosing `′ = 0

in the current period, there is no demand for such loans either.

We now deal with the limits of the set L, for a given η. Models of precautionary savings

have the property that when βδ < q there is an upper bound on the amount of assets

a household will accumulate. This upper bound arises because as wealth gets larger and

larger, the coefficient of variation of income goes to zero, and hence the role of consumption

smoothing vanishes.16 Since ours is also a model of precautionary saving, the same argument

applies and `max exists. With respect to the debt limit, `min, it can be set to any value less

than or equal to −e/(1 − q). Note that −e/(1 − q) is the largest debt level that could be

paid back by the luckiest household facing the lowest possible interest rate and is the polar

opposite of the one in Huggett (1993), Aiyagari (1994) and Athreya (1999). As we show in

the next theorem, a loan of this size or larger would have a price of zero in any equilibrium.

Hence, as long as the lower limit is at least as low as −e/(1− q), it will not have any effect

on the equilibrium price schedule.

16See Huggett (1993) and Aiyagari (1994) for a detailed argument.

21



Finally, note that we have not said anything about the existence of a stationary distrib-

ution of agents over the state space. Again, we don’t really need to because such statements

are not necessary for the proof of existence of the equilibrium price schedule. In our compu-

tational experiments we have no difficulty in converging to a stationary distribution.17

We now turn to characterizing the equilibrium price schedule.

Theorem 5. (Characterization of Equilibrium Prices) In any competitive equilib-

rium: (i) q∗`′,η = q for `′ ≥ 0; (ii) if the grid for L is sufficiently fine, there exists `0 < 0 such

that q∗`0,η = q; (iii) q`1,η ≥ q`2,η for 0 > `1 > `2 ; and (iv) when `min ≤ −e/(1− q), q∗`min,η = 0.

The first property simply says that firms charge the risk-free rate on deposits. The second

property says that if the grid is taken to be fine enough, there is always a level of debt for

which it is never optimal for households to default. As a result, competition leads firms to

charge the risk free rate on these loans as well. The third property says that the price on

loans falls with the size of loans, i.e., the implied interest rate on loans rises with the size

of the loan. The final property says that the prices on loans eventually become zero; in

particular, the price on a loan of size −e/(1−q) or larger is always zero in every equilibrium.

In other words, the equilibrium delivers an endogenous credit limit for each household type.

5 Calibrating the Model to U.S. Data

We now turn to mapping the model to data. This means that we use the structure that we

have laid out to reproduce some properties of the U.S. data, and once the model is specified,

we use it to answer some quantitative questions. Calibrating the model amounts to choosing

parameters so that the statistics in the model economy are the same as those that we have

selected as most representative of the features of the U.S. that we are interested in. We start

by listing the parameters of our baseline model that need to be calibrated in Section 5.1. We

then set the calibration targets in Section 5.2. This requires some discussion of the properties

of the wealth (and debt) distribution in the U.S., of bankruptcy, and of how we think they

relate to our theory.

17We conjecture that the existence of a long-run stationary distribution in our model basically follow from
the arguments in Hopenhayn and Prescott (1992).
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5.1 Parameters to Set in the Calibration

The baseline model has 10 parameters that have to be set. They include parameters on

demographics, preferences, technology, the legal system, and the processes for earnings and

type shocks. These parameters are (where (#) denotes the number of parameters under each

category):

• (1) Demographic parameter. The parameter δ yields both the the mass of new entrants

(young people) and the probability of death.

• (2) Preference parameters. We assume standard time–separable constant relative risk

aversion preferences that are characterized by two parameters, the discount rate, β and

the risk aversion coefficient, σ.

• (2) Technology. There are two parameters that we place under this heading: the rate

of return of the storage technology (or world interest rate) r̂, and the fraction of lost

earnings while a household is bankrupt, γ.

• (1) The legal system is characterized by the average length of the exclusion from access

to credit, (λ).

• (2) The process for earnings. Despite the general setup of our model economy, here we

assume the type shock does not affect the earnings distribution, i.e., earnings are an

i.i.d process over time. We choose a rather flexible form for its distribution function.

Given the range of earnings [e, e] this functional form is characterized by one parameter.

Of the two parameters that define the bounds, only one is relevant as the other can be

used to define the units. The distribution function of earnings is given by

F (e∗) = P [e ≤ e∗] =

[
e∗ − e

e− e

]ε

. (17)

• (2) The process for the type shock. We assume that the type shock affects only utility.

That is, we posit a multiplicative preference shock to the utility function that essentially

increases today’s marginal utility of consumption inducing agents to consume a lot.

We assume that this increase cannot occur two periods in a row, which implies two

parameters: θ, the size of the shock, and pθ, the probability of it ocurring.
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5.2 Calibration Targets

Some of the calibration targets are quite uncontroversial and they uniquely determine one

parameter value. These include the population turnover rate, that we set at 2.5 percent,

which implies an average length of adult life of 40 years, and is a good compromise for an

economy without population growth. We also choose the degree of risk aversion and we

set it to a value of 1.6. As is standard in the macro literature, it is a little larger than

that of log preferences. We assume, consistent with the U.S. Bankruptcy Code, that filing

for bankruptcy implies a 10-year exclusion (on average). Finally, we set the rate of return

of storage at 0.5 percent. The reason for this low value is that we are interested in the

after-tax real rate of return of assets of people who are not very rich, and we think that

the rate of return of a checking account is a good guide for this purpose. The remaining

calibration targets concern statistics that involve the distribution of households over assets

and bankruptcy status and require some discussion.

In our model, the optimal response of individuals to uninsurable idiosyncratic risk gen-

erates an endogenous wealth distribution. Therefore, a natural set of statistics to use in the

calibration are those that pertain to the distribution of earnings and wealth. However, as is

well known,18 accounting simultaneously for the earnings and wealth distribution in the U.S.

economy is no easy task, given the extreme wealth concentration observed in the data. The

task requires modelling households with the motive and opportunity to save vast amounts

of resources. While this can be done following the method described in Castañeda, Dı́az-

Giménez, and Rı́os-Rull (2000), the associated computations are quite demanding. Given

the objective of our paper, we avoid this computational burden so as to effectively meet the

(computational) demands of modelling consumer loans and default.19 Furthermore, we are

more interested in the distribution of assets among households that face the possibility of

filing for bankruptcy; these are most households except the relatively old,20 and the richest

households.

18See for example Quadrini and Rı́os-Rull (1997), Krusell and Smith (1998), and Castañeda, Dı́az-Giménez,
and Rı́os-Rull (2000).

19See Appendix B for a description of the computational procedures that we have used.
20According to Sullivan and Westbrook (2000) the average age of filers is 38 years while the average age of

U.S. males over 20 is 45. For Canada, Ramsay (1999) reports an average age of filers of 38.5 and a median
age of filers of 37.

24



In addition, our theory concerns voluntary loans that households may or may not pay

back later. As we will see, the amounts lent to individual households on this basis are not

large, with the maximum debt associated with a positive mass of households being slightly

over one year’s average income. In the data, the negative asset position of many households

arises for reasons such as lawsuits, fines, hospital bills,and business losses21 and are not the

result of a loan made voluntarily by a credit-granting institution.

For these reasons, we match our model to a subset of the U.S. population: to those

households whose head is younger than 65 years of age; those who are not in the top quintile

of the wealth distribution; and those whose debt does not exceed 120 percent of average

earnings of households included in this subset. This reduces our sample of households by

about one-third.

Some of the main statistics of the distribution of the described subsample are in Table 1.

They describe the wealth to earnings ratio, the size of negative assets, the Gini indices, and

the mean-to-median ratio for both earnings and wealth.

Table 1: Main Characteristics of Household Assets and Earnings in our Sub-
Sample of the 1998 Survey of Consumer Finances

Statistic Value

Average Earnings 100.0
Total assets 153.0
Assets held by households with negative wealth 2.8
Percentage of households with negative assets 11.4
Earnings Gini 0.44

Mean to Median Earnings 1.19
Wealth Gini 0.63
Mean to Median Wealth 1.86

Turning next to the distribution of households over bankruptcy status, we note that the

percentage of households who file for bankruptcy has risen over the years. In 1990 there

were 506,940 filers under Chapter 7 (and 208,666 more under Chapter 13) and in 2000 there

21By business loans we mean negative asset positions resulting from contracts between business partners.
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were 838,576 filers under Chapter 7 (and 378,366 more under Chapter 13). In those years,

the number of people above 20 years of age was 178,059,000 and 196,879,000, respectively.

Focusing on the recent statistics, the ratio of filers to total population is 0.426 percent. Since

our sub-sample of the SCF consists of two-thirds of the U.S. population, the ratio of filers to

total population relevant for us is about 0.64 percent (strictly speaking, this number needs

to be adjusted down a bit because in the data there are a few filers over 65 years of age).

A key aspect of the calibration is to determine what fraction of the 0.64 percent figure

applies to our model. Recall that our model is about default associated with voluntary loans.

In particular, it does not relate to defaults that result from household liabilities incurred for

other reasons. To address this issue, we use self-reporting to sort filers into categories that

should be accounted for by our theory. Specifically, Chakravarty and Rhee (1999) report the

reasons stated by PSID survey participants that filed for bankruptcy between 1984 and 1995.

We reproduce their partition in Table 2. Of the reasons given, we identify the first three

– loss of job, marital distress, and credit mismanagement – as motives for defaulting that

should be accounted for by our model. Another 16 percent of filers claim health care reasons.

This item results from both high hospital bills and reduced earning capability. Our theory

covers this item in so far as it can capture health-related shocks to earnings but it is not

designed to cover high hospital bills. Households that point to lawsuits and harassment are

probably filing because of liabilities that weren’t approved by any credit-granting institution.

Table 2: Reasons Cited for Filing Bankruptcy

Reason Percentage

Loss of job 12.2
Marital Distress 14.3
Credit Mismanagement 41.3
Health Care 16.4
Lawsuits and Harassment 15.9

These considerations suggest setting a target for the fraction of filers in the model econ-

omy that’s about 80 percent of 0.64, i.e., a target of 0.5 percent of defaulters. To be con-

sistent, we also adjust down by small amounts the targets for the fraction of population

with negative assets and the target for the average size of debt of households with negative
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assets. The calibration targets for the baseline model economy are, therefore, those reported

in Table 3.

In addition to the calibration targets, we also report three other statistics, namely, the

Gini index for wealth, the mean-to-median ratio of wealth, and the ratio between the lowest

possible earning and average earnings. These will serve as “over-identifying statistics” for

our model. Note also that we partition the target statistics into two groups. The first group

is easy to calibrate to since each of these statistics is determined by one, or at most two,

parameters (r̂, σ, λ, δ, ε, and e/e). The second group is used to set values for the remaining

parameters but this process is more complicated since it involves solving a nonlinear system

of four equations and four unknowns.

Table 3: Calibration Targets for the Baseline Model Economy

Statistic Value

Population Turnover in % per year 2.5
Earnings Gini 0.44
Mean to Median Earnings 1.19
Degree of Risk Aversion 1.6
Length of the Punishment period in years 10.
Rate of return of the storage technology (in %) 0.5

Wealth to earnings ratio in % 153.0
Assets held by households with negative wealth (in % of earnings) 2.5
Percentage of households with negative assets 10.0
Percentage of defaulters 0.50

6 The Baseline Model Economy

The calibration process was successful and we found parameter values that generate the

target statistics for the model economy.22 Table 4 reports the values of the target statistics

in the data and in the model economy as well as the list of the parameters and the values

22Note that nonlinear equation systems are not guaranteed to have solutions.
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that they take. As noted above, we place them in order so that those in the top panel

can be chosen by simple calculations (one or two equations) without having to compute the

whole equilibrium of the model. In fact, the average length of punishment, λ, the risk-free

rate of return facing firms, r̂, the population turnover rate, δ, and the coefficient of risk

aversion, σ are readily determined. The parameters ε and the ratio e/e are those that solve

the equations that obtain from setting two statistics generated by the distribution function

in (17) (the earnings Gini and the mean-to-median earnings ratio) to the desired targets.

The parameters in the middle panel are chosen by solving a system of equations that involves

computing the equilibrium of the economy.

Table 4: Statistics in the Baseline Model Economy and its Parameter Values

Statistic Target Model Parameter Value

Targets determined by one or two parameters

Average length of punishment 10 years 10 years λ 0.1
Risk Free Rate of Return 0.5% 0.5% r̂ 0.005
Population Turnover Rate 2.5% 2.5% δ 0.025
Coefficient of Risk Aversion 1.6 1.6 σ 1.6
Earnings Gini 0.44 0.44 ε 0.60422
Mean to Median Earnings 1.19 1.19 e/e 71.6

Targets determined jointly by various parameters
Assets to Earnings Ratio 153. 153. γ 0.004
Negative assets 2.50 2.53 θ 20.154
Percentage of Defaulters 0.50 0.54 pθ .07
Percentage of the Population with Debt 10.0 10.0 β 0.8192

Non-Targetted Statistics

Wealth Gini 0.63 0.48
Mean to Median Wealth 1.86 1.11
Lowest to Mean Earnings (in %) – 9.01

The statistics in the bottom panel of Table 4 have not been targeted. As we can see,

the model falls short of reproducing the concentration of wealth found in the data for our
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sub-sample. Still, while these statistics are quantitatively different they do have properties

that are the same as those in the data: i) wealth is more concentrated than earnings, ii) the

wealth distribution is skewed to the right, (the mean-to-median ratio is bigger than 1) and

iii) the implied ratio between the lowest and mean earnings imply lowest possible annual

earnings of about $3,500 which seems reasonable. Overall, the model economy is capable of

generating the amount of default observed in the data. We turn next to exploring some of

the properties of the baseline model.

6.1 Some Properties of the Baseline Model Economy

While our main interest is of course to understand default, it helps to begin by discussing

the endogenous distribution of wealth for our model economy. The histogram of the wealth

distribution is shown in Figure 2. The asset holdings of households with good and bad

credit histories are plotted separately. For households with good credit histories, the model

generates a pattern of the wealth distribution that is typical of overlapping generations

models. There is a relatively large mass of agents at zero wealth, mostly reflecting the

newborn. Because most households accumulate some savings, there is another peak of the

histogram at about mean wealth. The distribution has a long right tail reflecting households

that have had high earnings realizations and haven’t experienced the preference shock for

some time. Importantly, there is also a relatively large number of households with a small

amount of debt and there is another mass of households with debt in the neighborhood of

average annual earnings. Households with a bad credit history consist mostly of households

with very few assets. No one in this group has debt because these households are precluded

from borrowing. The right tail of this distribution is relatively long, indicating that some

households remain with a bad credit history for many periods, have high earnings realizations,

and have not experienced the preference shock for some time.

Figure 3 plots the price schedules faced by households with high or low marginal utility

of consumption in the current period (that is, q∗`′,η for both values of η). As predicted, the

function is increasing in the value of assets (decreasing in the value of debt). For small

values of debt (up to 40 percent of the value of average yearly earnings), households pay

low interest rates, since they will not default as our theory suggested. As the size of debt

increases so does the interest rate required for the loans, and hence the present value of

higher liabilities, what we denote q, is lower. Eventually there is a value of debt that is so
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high that households always refuse to pay the debt and the present value of such a liability

is zero. This occurs when debt is almost 2.5 times average yearly earnings. This value of

the endogenous debt limit is a lot lower in absolute value than the absolute value of the

exogenous debt limit given by e(1− q) (which takes the value of 524 times average earnings)

or even the debt limit that would exist in a world where there is no bankruptcy and all debt

has to be repaid with probability one that is given by e(1 − q) (which takes the value of

72 in this calibration). We also note that households that have a high marginal utility of

consumption in the current period face slightly larger prices (i.e., their borrowing rates are

somewhat lower) because according to our assumptions about the stochastic process Γ they

will not receive the shock next period and hence are less likely to default.

Figure 4 shows the probabilities of default on loans taken out in the current period condi-

tional on the value of the preference shock next period. For low levels of debt there is never

any default. However, starting at about the same level of debt (around 37 percent of average

earnings) both types of households (those that experience the preference shocks and those

who don’t) begin to display positive default probabilities. Households that experience the

preference shock (i.e., those with η′ high) default for a much larger set of earnings and this

set expands rapidly with a rise in debt. By around a debt level of 40 percent of average earn-

ings, a household experiencing the preference shock defaults for all realizations of earnings.

In contrast, for households that do not experience the preference shock, default probabilities

are considerably lower (i.e., default sets are much smaller) and these probabilities do not rise

as rapidly with an increase in debt. The relatively high default probabilities of (indebted)

households that’ll end up experiencing the preference shock next period account for a higher

loan price schedule (lower interest rates) for households that experience the preference shock

in the current period. Recall, again, that according to our assumptions about the stochastic

process Γ, a household that has η high in the current period has η′ low in the following

period for certain. Although default probabilities (for different debt levels) conditional on

experiencing the preference shock are quite high, the difference in the loan price schedules

is not very big because the probability of experiencing the preference shock next period,

conditional on not having experienced it in the current period, is only 7 percent.

Figure 4 would seem to suggest that most default occurs as a result of households’

experiencing the preference shock. In a sense this is true, but the connection is a bit subtle.

From Figure 2 of the wealth distribution, we see that a little over 16 percent of households
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have small amounts of savings or debt (i.e., are situated around zero wealth). A household in

this region of asset holdings, when hit by a preference shock in the current period, is induced

to borrow significantly both because of the high marginal utility of current consumption and

because it faces a slightly lower interest rate (higher q schedule in Figure 3). This shows up

in Figure 2 as the small spike in the measure of households (a little under 1.0 percent) at

asset holdings of -1. In the following period, these highly indebted households default with a

probability of around 60 percent (this can be read off the smooth curve in Figure 4), leading

to a steady-state default frequency in the vicinity of 0.5 percent.

As this description indicates, the channel through which the preference shock contributes

to default is by inducing households to load up on debt even though the interest rate on

unsecured loans is quite high. Once households have loaded up on debt, the event that

generally triggers default is a low earnings realization. Indeed, we find that in the steady-

state, 75 percent of all defaulters experienced the preference shock in the previous period

(despite being only 6 percent of the entire population). If we associate credit mismanagement

and some part of marital distress with the preference shock, the three-quarters figure we find

is fairly close to the fraction of those defaulting for those reasons cited by Chakravarty and

Rhee (1999) relative to the total amount of default that is consistent with our model.23 To

summarize, in our model most households that default are not experiencing a consumption

binge currently but did so in the recent past.

7 Changing the Bankruptcy Laws

Given that our model matches the relevant U.S. statistics on consumer debt and default,

it is possible for us to now examine the consequences of changes in regulation that affect

unsecured consumer credit. In the context of our formulation of the U.S. Bankruptcy Code,

we perform two policy experiments. These are: (1) a reduction from 10 to 5 years of the

(average) length of time that credit bureaus can retain record of a bankruptcy filing, and

(2) the imposition of an upper limit on the earnings of those who can file for bankruptcy.

23In particular, if credit mismanagement and half of those associated with marital distress are associated
with the preference shock, then we would find 72 percent.
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7.1 A Reduction of Record Keeping to 5 Years

Table 5 reports the long-run implications of reducing the length of the punishment period

from 10 to 5 years.

Table 5: Changing the Law: Shorter Punishment Period

Statistic Baseline Shorter Punishment
10 years 5 years

Prob(h′ = 0|h = 1) in % 10. 20.

Earnings 100.00 100.00
Total assets 153.204 153.830
Negative assets -2.528 -2.453
Total Defaulted amount 0.522 0.615
Percentage of Defaulters 0.541 0.655
Percentage with Bad Credit Rating 4.428 2.985

As we can see from Table 5 the implications of the change are qualitatively those that

were expected, given that a lower punishment period implies a lower degree of commitment.

1. There is less borrowing.

2. There are higher interest rates for all levels of debt (see Figure 5).

3. There is more default.

4. There are fewer households with bad credit ratings.

However, while these effects are consistent with what we would expect, they are quanti-

tatively quite small. This is probably due to the fact that our estimate of the discount factor

of households is low (0.82 versus the value of 0.95 that macroeconomists conventionally as-

sociate with this parameter) and that the policy change results in differences in punishment

that are relatively far into the future.
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Figure 5: Price of Loans for the Economy with Shorter Punishment.

7.2 Limit on the Earnings of Bankruptcy Filers

The second policy change we study is aimed at evaluating a proposal currently under consid-

eration in Congress to prevent “above-median-income” households from filing under Chapter

7.24 This policy change has a lot of bite as indicated by Figure 6. We see that equilibrium

interest rates fall quite a lot (the value of q is much higher), indicating that this policy change

imposes a strong form of commitment on households. The reason for this dramatic change is

that the policy is binding for many agents. In fact, of those that default in the baseline model

economy about 15 percent would not be able to do so under the new rules. As a result of

this enforced inability to declare bankruptcy, the statistics of the model economy also change

dramatically, as indicated by Table 6. This table also shows the results for a weaker policy

change, one that limits the right to file for bankruptcy to those with less than 1.68 times

24The actual proposal discussed in Congress is that a person cannot file under Chapter 7 (and effectively
would have to pursue Chapter 13) if all of the following three conditions are met: (1) Filer’s income is at
least 100 percent of the national median income for families of the same size up to four members; larger
families use median income for a family of four plus an extra $583 for each additional member over four.
(2) The minimum percentage of unsecured debt that could be repaid over 5 years is 25 percent or $5000,
whichever is less. (3) The minimum dollar amount of unsecured debt that could be repaid over 5 years is
$5000 or 25 percent, whichever is less. We summarize these criteria by restricting filing to those with lower
than median earnings.
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Figure 6: Price of Loans for the Baseline Economy and the Economy with Re-
striction on the Ability to Default

median earnings (or 1.5 times average earnings).25 The first thing to note is the dramatic

decrease of assets held, about 20 percent, under the policy proposal, indicating how impor-

tant loans are for agents to smooth consumption. Because of the added commitment and

the consequent decline in interest rates, the ability to borrow is greatly enhanced, inducing

an almost threefold increase in the level of debt. All of this is achieved without a significant

increase in the total amount defaulted. The reason is that the percentage of defaulters may

actually go down (we can see from the last column that the equilibrium relationship between

the percentage of defaulters and the earnings limit is not monotonic).

7.3 Welfare Analyses of the Policy Changes

Steady-state comparisons do not say anything about the benefits of a policy change because

such comparisons do not take differences in initial conditions into account. To be able to

assess whether a policy change is desirable, transition paths need to be computed as well.

Moreover, in environments with multiple agents there generally will be no agreement between

25This less extreme rule would have prevented about 2.5 percent of the defaults in the baseline model
economy.

36



Table 6: Changing the Law: Earnings Limits for Defaulters

Statistic Baseline Tight Earnings Limit Loose Earnings Limit
Maximum Earnings for Filing
(in % of Median Earnings) No Limit 100. 150.

Average Earnings 100.00 100.00 100.00
Total assets 153.204 124.603 138.778
Negative assets -2.528 -6.907 -4.765
Total Defaulted amount 0.522 0.842 0.997
Percentage of Defaulters 0.541 0.534 0.574
Percentage with Bad Credit Rating 4.428 4.356 4.585

the agents as to the desirability of policy change and some form of aggregation is necessary.

In Table 7 we report the desirability of the two policy changes for two different aggregation

criteria. The first criterion asks how many people will be better off from the policy change

and the second criterion reports the average amount that households will be willing to

pay for the policy change. This amount is measured as a once-and-for-all transfer (not a

flow transfer). With different households facing different interest rates, the once-and-for-all

measure is more appropriate.

Table 7: Welfare Comparisons of Alternative Policies Relative to Status Quo

Reduction of Punishment Limit Defaulter’s Income
Length to 5 Years to Median Earnings

Percentage of popular support 5.40 99.99
Average transfer required to be

indifferent as % of Mean Earnings -0.99 24.83

The policy that reduces the punishment to five years has little support, with only one in

20 households in favor of it. Essentially, those who support the policy change are households

with a bad credit history and those who would default under the new policy but not the
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old one. Next, we see that on average agents have to be compensated by about 1 percent

of average earnings to accept this policy change. In welfare terms, this is a sizable number

even if it’s not a flow measure.

The situation is quite different for the proposal to limit default to those with below-

median earnings. Only one in 10,000 households oppose this change and the group that

does is a small set of people with a large debt, above-median earnings, the high marginal

utility-of-consumption shock, and who would choose to default if they could. Even though

the measure of such households is small, they have a large influence on the equilibrium

lending patterns as we saw in Figure 6. The much lower equilibrium interest rates translate

into large welfare gains. Households are willing (on average) to pay up to a quarter of their

earnings to have access to the borrowing technology. Even though the flow value of this

amount is 0.125 percent of earnings, in welfare terms this is a huge amount.26

8 Conclusion

In this paper we have constructed an equilibrium model of credit and default that is con-

sistent with U.S. bankruptcy law and matches U.S. data on the volume of unsecured debt,

the fraction of households holding it, the percentage of households that default, and other

relevant statistics. In our model, suppliers of unsecured debt price loans of different sizes in a

competitive market, taking into account the objective probability of default consistent with

optimal household behavior. This leads naturally to an endogenous debt limit below which

no firm would offer loans. Thus our paper provides a rationale for borrowing constraints

that derives from the institutional and legal features of the U.S. unsecured consumer credit

market. Given that our model matches the relevant U.S. statistics on consumer debt and

default, we examine the consequences of changes in regulation of bankruptcy and find that

certain legal changes can have important effects on the level of unsecured debt and welfare.

There are many other interesting questions that can be answered by extensions of this

model. For example, one can measure the relative contributions of changes in information

technology and the elimination of usury laws in the late 1970s for the subsequent steep

increase in unsecured consumer credit and bankruptcies. We can also study, quantitatively,

26Note, however, that our calculation abstracts from any negative effects of a tougher bankrupcty law on
work incentives.
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phenomena such as “financial fragility” where waves of bankruptcies propagate through the

economy. Finally, models of this type are particularly well-suited to assess the implications

of interest-rate setting by monetary authorities.
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Castañeda, A., J. Dı́az-Giménez, and J. V. Rı́os-Rull (2000). Accounting for earnings and
wealth inequality. Mimeo, University of Pennsylvania.

Chakravarty, S. and E.-Y. Rhee (1999). Factors affecting an individual’s bankruptcy filing
decision. Mimeo, Purdue University, May.

Deaton, A. (1991). Saving and liquidity constraints. Econometrica 59, 1221–1248.

Dubey, P., J. Geanokoplos, and M. Shubik (2000). Default and efficiency in a general equi-
librium model with incomplete markets. Cowles Foundation discussion paper #1247,
Yale University.

Evans, D. and R. Schmalensee (2000). Paying wih Plastic. The Digital Revolution in
Buying and Borrowing. Cambridge, MA: MIT Press.

Flynn, E. (1999). Bankruptcy by the numbers. Bankruptcy Institute Journal 18 (4).

Gross, D. and N. Souleles (2002). Do liquidity constraints and interest rates matter for
consumer behavior? evidence from credit card data. Forthcoming Quarterly Journal
of Economics.

Hildenbrand, W. (1974). Core and Equilibria of a Large Economy. Princeton University
Press.

Hopenhayn, H. and E. C. Prescott (1992). Stochastic monotonicity and stationary distri-
butions for dynamic economies. Econometrica 60, 1387–1406.

Huggett, M. (1993). The risk free rate in heterogeneous-agents, incomplete insurance
economies. Journal of Economic Dynamics and Control 17 (5/6), 953–970.

Kehoe, T. J. and D. Levine (2001). Liquidity constrained vs. debt constrained markets.
Econometrica 69 (3), 749–65.

Kocherlakota, N. R. (1996). Implications of efficient risk sharing without commitment.
Review of Economic Studies 63 (4), 595–609.

Krusell, P. and A. Smith (1998). Income and wealth heterogeneity in the macroeconomy.
Journal of Political Economy 106, 867–896.

Lehnert, A. and D. M. Maki (2000). The great american debtor: A model of household
consumption, portfolio choice, and bankruptcy. Mimeo, Federal Reserve Board, Wash-
ington D.C.

40



Livshits, I., J. MacGee, and M. Tertilt (2001, December). Consumer bankruptcy: A fresh
start. Mimeo.

Musto, D. K. (1999). The reacquisition of credit following chapter 7 personal bankruptcy.
Wharton Financial Institutions Center Working Paper No. 99-22.

Parlour, C. and U. Rajan (2001). Price competition in loan markets. American Economic
Review 91 (5), 1311–28.

Quadrini, V. and J.-V. Rı́os-Rull (1997, Spring). Understanding the U.S. distribution of
wealth. Federal Reserve Bank of Minneapolis Quarterly Review 21, 22–36.

Ramsay, I. D. C. (1999). Individual bankruptcy: Preliminary findings of a socio-legal
analysis. OSGOODE HALL LAW JOURNAL 37, 15–78.

Rockafellar, R. T. (1970). Convex Analysis. Princeton, NJ: Princeton University Press.

Royden, H. (1988). Real Analysis. New York: Macmillan.

Sullivan, T. A., E. W. and J. L. Westbrook (2000). The fragile middle class. New Haven:
Yale University Press.

White, M. (1998, October). Why don’t more households file for bankruptcy? Journal of
Law, Economics, and Organization 14 (2), 20–31.

Zame, W. (1994). Efficiency and the role of default when security markets are incomplete.
American Economic Review 83 (5), 1142–64.

Zha, T. (2001). Bankruptcy law, capital allocation, and aggregate effects: A dynamic het-
erogeneous agent model with incomplete markets. Annals of Economic and Finance 2,
379–400.

41



Appendix

A Proofs of Lemmas 1–3 and Theorems 1–5

This appendix provides all the proofs for Lemmas 1 – 3 and Theorems 1–5.

A.1 The Household Problem

Lemma 1. W is non-empty.

Proof. Pick a constant vector-valued function whose value in
[

u(e(1−γ),η)

(1−βδ) , u(e+`max−`min,η)
(1−βδ)

]NL
. Such

a function is continuous and obviously satisfies (5), (6), and (7). Since the function is a constant
function, (8) is equivalent to u(e(1−γ), η)−u(0, η) > 0, which is satisfied by virtue of e(1−γ) > 0
and the strict monotonicity of u(·, η).

In what follows let {c`,h,η(e, q; w), `′`,h,η(e, q; w)} be a pair of optimal decision rules, given w ∈ W.
And, when h = 0, let h′`,0,η(e, q; w) be the household’s optimally chosen credit rating at the start
of next period (when ` < 0, this credit rating is optimally chosen). Before proving Lemma 2 we
need the following two results.

Lemma App. 1. For any w ∈ W, c`,h,η(e, q; w) > 0 for all (`, h, η) ∈ L and for all (e, q) ∈ E×Q.

Proof. (i) Suppose that h = 0 and ` < 0. Since u(e, η)+βδw0,1,η(q) > u[e(1−γ), η]+βδ w0,1,η (q) >
u(0, η) + βδ w`max,0,η (q), it follows that c = 0 cannot be an optimal choice for any associated
choice of `′. (ii) Suppose, h = 0 and ` ≥ 0. Then, c = e and `′ = 0 is a feasible choice. Since
u(e, η) + βδ w0,0,η (q) > u[e(1 − γ), η] + βδ w0,1,η (q), it follows from u[e(1 − γ), η] + βδ w0,1,η (q) >
u(0, η)+βδ w`max,0,η(q) that c = 0 cannot be an optimal choice for any associated choice of `′. (iii)
Suppose h = 1 and ` ≥ 0. Again, c = e and `′ = 0 is a feasible choice. Since u[e(1 − γ), η] +
βδ[λ w0,1,η(q)+(1−λ)w0,0,η(q)] ≥ u[e(1−γ), η]+βδ w0,1,η (q) and u(0, η)+βδ w`max,0,η(q) ≥ u(0, η)+
βδ[λw`max,1,η (q)+(1−λ)w`max,0,η (q)], it follows u[e(1−γ), η]+βδ[λw0,1,η(q)+(1−λ) w0,0,η (q)] strictly
exceeds u(0, η) + βδ[λw`max,1,η(q) + (1− λ) w`max,0,η (q)]. Hence, c = 0 cannot be an optimal choice
for any associated choice of `′. Combining (i)–(iii) we have c`,h,η(e, q;w) > 0 for all (`, h, η) ∈ L
and for all (e, q) ∈ E ×Q.

Lemma App. 2. Let {(en, qn) ⊂ E × Q be a sequence converging to (e, q) in E × Q. Then,
`′`,h,η(e, q; w) is also a feasible choice for endowment en and price vector qn, provided n ≥ N for
some N.

Proof. First consider the case where h = 0. Then, by Lemma App. 1,

c`,0,η(e, q; w) = e + ` · [1− h′`,0,η(e, q; w)
]− q`′`,0,η(e,q;w),η · `′`,0,η(e, q;w) > 0.

42



Define

cn = en + ` · [1− h′`,0,η(e, q; w)
]− qn

`′`,0,η(e,q;w),η · `′`,0,η(e, q; w).

Since limn→∞ cn = c`,0,η(e, q; w), it follows that there must exist N0 such that cn > 0 for n ≥ N0.
Hence, `′`,0,η(e, q; w) is a feasible choice when endowment is en and the price vector is qn for n ≥ N0.

Now consider the case where h = 1. Again, by Lemma App. 1

c`,1,η(e, q; w) = e(1− γ) + `− q`′`,1,η(e,q;w),η · `′`,1,η(e, q; w) > 0.

Define

cn = en(1− γ) + `− qn
`′`,1,η(e,q;w),η · `′`,1,η(e, q; w).

Since limn→∞ cn = c`,1,η(e, q; w), there exists N1 such that cn > 0 for all n ≥ N1. Hence,
`′`,1,η(e, q;w) is a feasible choice when the endowment is en and the price vector is qn for n ≥ N1.
Combination these two results means `′`,h,η(e, q; w) is a feasible choice when the endowment is en

and the price vector is qn for all n ≥ N for some N .

We now establish Lemma 2. We do it in parts.

Lemma 2 (i). For any w ∈ W and (`, h, η) ∈ L, v`,h,η(e, q; w) is continuous in e and q.

Proof. Step 1: Let {(en, qn) ⊂ E ×Q be a sequence converging to (e, q) ∈ E ×Q. We need to show
that limn→∞ v`,h,η(en, qn;w) = v`,h,η(e, q; w). Suppose, to get a contradiction, that there is an ε0 > 0
such that for any N there is a N(ε0, N) > N for which | v`,h,η(eN(ε0,N), qN(ε0,N);w)−v`,h,η(e, q; w) |≥
ε0 (N also depends on e, q, and η but we supress this dependence).

Step 2: Consider first the case where h = 0. By Lemma App. 2, there exists an N0
1 such that

for all n ≥ N0
1

v`,0,η(en, qn;w) ≥

u

[
en + `− qn

`
′
`,0,η(e,q;w),η

· `′`,0,η(e, q;w), η
]

+ βδ w`′`,0,η(e,q;w),h′`,0,η(e,q;w),η (qn). (18)

Furthermore, since limn→∞{en +`−qn
`
′
`,0,η(e,q;w),η

·`′`,0,η(e, q; w)} = c`,0,η(e, q; w) and u(·, η) and w(.)

are continuous, it follows that for any ε1 > 0 there is an N0
2 such that

∣∣∣u
[
en + `− qn

`′`,0,η(e,q;w),η · `′`,0,η(e, q; w), η
]
+

β δ w`′`,0,η(e,q;w),h′`,0,η(e,q;w),η(q
n)− v`,0,η(e, q; w)

∣∣∣ < ε1
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for all n ≥ N0
2 . Then, for all n ≥ N0 = max(N0

1 , N0
2 ),

v`,0,η(en, qn;w) ≥ v`,0,η(e, q;w)− ε1.

Step 3: Consider now the case where h = 1. Again, by Lemma App. 2, there exists an N1
1 such

that for all n ≥ N1
1

v`,1,η(en, qn;w) ≥ u
[
(1− γ)en + `− qn

`′`,1,η(e,q;w),η · `′`,1,η(e, q;w), η
]

+ βδ
[
λ w`′`,1,η(e,q;w),1,η(q

n) + (1− λ) w`′`,1,η(e,q;w),0,η(q
n)

]

Again, since limn→∞
{

(1− γ)en + `− qn
`′`,1,η(e,q;w),η · `′`,1,η(e, q;w)

}
= c`,1,η(e, q; w) and u(·, η) and

w(.) are continuous, it follows that for any ε1 > 0 there is an N1
2 such that for all n ≥ N1

2

∣∣∣u
[
(1− γ)en + `− qn

`′`,1,η(e,q;w),η · `′`,1,η(e, q; w), η
]
+

βδ
[
λ w`′`,1,η(e,q;w),1,η(q

n) + (1− λ) w`′`,1,η(e,q;w),0,η (qn)
]
− v`,1,η(e, q;w)

∣∣∣ < ε1.

Then, for all n ≥ N1 = max(N1
1 , N1

2 ),

v`,1,η(en, qn;w) ≥ v`,1,η(e, q;w)− ε1.

Step 4: Combining Steps 2 and 3, we have that for all (`, h, η) ∈ L and all n ≥ max(N0, N1),

v`,h,η(en, qn; w) ≥ v`,h,η(e, q;w)− ε1.

Step 5: From Step 1, we have either

v`,h,η(eN(ε0,N), qN(ε0,N); w) ≥ v`,h,η(e, q; w) + ε0,

or

v`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
≤ v`,h,η(e, q; w)− ε0.

Since the choice of N is arbitrary, take N to be greater than max(N1, N2). Now suppose ε1 < ε0.
Since v`,h,η(en, qn; w) ≥ v`,h,η(e, q; w) − ε1 for all n ≥ max(N1, N2) (by Step 4), it follows that

v`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
≤ v`,h,η(e, q;w)− ε0 is not possible. So, the only possibility is that

v`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
≥ v`,h,η(e, q; w) + ε0.

Now define:

c`,h,η(N(ε0, N)) = e− γ · e · h + `− q
`′`,h,η(eN(ε0,N),qN(ε0,N);w),η

· `′`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
.
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By choosing N sufficiently large, c`,h,η(N(ε0, N)) can be made arbitrarily close to c`,h,η

[
eN(ε0,N) ,

qN(ε0,N);w
]

because {eN(ε0,N), qN(ε0,N)} becomes arbitrarily close to (e, q) . Since c`,h,η

[
eN(ε0,N) ,

qN(ε0,N);w
]

is strictly positive (Lemma App. 1), this implies that given `, h, e, η, and q the pair{
c`,h,η

[
N(ε0, N)

]
, `′`,h,η

[
eN(ε0,N), qN(ε0,N); w

]}
is feasible and, because u(·, η) and w(·) are con-

tinuous, delivers lifetime discounted utility arbitrarily close to v`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
. But

v`,h,η

[
eN(ε0,N), qN(ε0,N); w

]
exceeds v`,h,η(e, q; w) by at least ε0 > 0, so, for N sufficiently large,

the pair
{

c`,h,η

[
N(ε0, N)

]
, `′`,h,η

[
eN(ε0,N), qN(ε0,N); w

]}
delivers lifetime discounted utility strictly

greater than v`,h,η(e, q; w). This contradicts the definition of v`,h,η(e, q; w). Hence, we have that
limn→∞ v`,h,η(en, qn;w) = v`,h,η(e, q; w). Thus v`,h,η(e, q; w) is continuous in e and q.

Lemma 2 (ii). For any w ∈ W, v`,h,η(e, q; w) is increasing in e and `.

Proof. Given η, let e0 ≥ e1, both elements of E. It’s easy to verify that for ` < 0 and h = 0,
B`,0,η,d(e1, q) ⊆ B`,0,η,d(e0, q); for h = 0 and ` ≥ 0, B`,0,η,0(e1, q) ⊆ B`,0,η,0(e0, q); and for h = 1
and ` ≥ 0, B`,1,η,0(e1, q) ⊆ B`,1,η,0(e0, q). Hence, v`,h,η(e0, q; w) ≥ v`,h,η(e1, q;w).

Let `0 ≥ `1, both elements of L. If 0 > `0 ≥ `1, then B`1,0,η,d(e, q) ⊆ B`0,0,η,d(e, q); if `0 ≥ 0 > `1

then B`1,0,η,d(e, q) ⊆ B`0,0,η,0(e, q); and if `0 ≥ `1 ≥ 0 then B`1,h,η,0(e, q) ⊆ B`0,h,η,0(e, q). It follows
from the definition of the T1(w)(`, h, η, e, q) operator that T1(w) (`, h, η, e, q) is increasing in `.
Hence, v`,h,η(e, q; w) is increasing in `.

Lemma 2 (iii). For any w ∈ W, v`,h,η(e, q; w) is integrable with respect probability measures µη,
η ∈ S.

Proof. For any w ∈ W, (`, h, η) ∈ L, and q ∈ Q, v`,h,η(e, q; w) is a continuous and increasing
function of e defined over the compact set E. Hence, v`,h,η(e, q; w) as a function of e is measurable
with respect to B(E) and bounded. Therefore, it’s integrable with respect to any probability
measure defined over B(E). Hence, v`,h,η(e, q; w) is µη -integrable for all η ∈ S.

We now establish Lemma 3 in three parts where ‖w‖ = max`,h,η{supq∈Q | w`,h,η(q) |} be the
norm on W.

Lemma 3 (i). (W, ‖.‖) is a complete metric space.

Proof. Let C(Q) be the set of all bounded and continuous (vector-valued) functions from Q→ RNL .
Then, (C(Q), ‖.‖) is a complete metric space. Since any closed subset of a complete metric space is
also a complete metric space, it is sufficient to show that W ⊂ C(Q) is closed in the norm ‖.‖. Let
wn(q) be a sequence of functions in W converging to w∗ in norm, i.e., limn→∞ ‖wn(q) − w∗‖ = 0.
We need to show that w∗ ∈ W. If w∗ violates any of the range and monotonicity properties of W,
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there must be some wn(q), for n sufficiently large, that violates those properties. But that would
contradict the assertion that wn(q) belong to W for all n. Hence, w∗ must satisfy all the range and
monotonicity properties (5)-(7).

To prove that w∗(q) is continuous we proceed as follows. Let ε > 0 and let Or(x) denote an
open ball of radius r around x. Choose k such that ‖wk(q) − w∗(q)‖ < ε/3. Fix q at q̃. Choose
r > 0 such that for all q ∈ Or(q̃), wk(q) ∈ Oε/3(wk(q̃)). This is possible because wk(q) is continuous.
Now consider the Euclidean distance between w∗(q) and w∗(q̃), denoted ‖w∗(q)− w∗(q̃)‖E , for q
∈ Or(∈ q̃). We have:

‖w∗(q)− w∗(q̃)‖E ≤ ‖w∗(q)− wk(q)‖E + ‖wk(q)− wk(q̃)‖E + ‖wk(q̃)− w∗(q̃)‖E .

Since ‖wk(q) − w∗(q)‖ < ε/3, it follows that ‖w∗(q) − wk(q)‖E < ε/3 for all q. Hence, the first
and last terms on the r.h.s. of the above inequality are both less than ε/3. The middle term is less
than ε/3 for all q ∈ Or(q̃) by the choice of δ. Therefore, ‖w∗(q)− w∗(q̃)‖E < ε for all q ∈ Or(q̃).
Hence w∗(q) is continuous.

Lemma 3 (ii). T (W) ⊂ W.

Proof. Recall that T (w)(q) = {T2 [T1(w)] (`′, h′, η, q) for all {`′, h′, η} ∈ L}. By Lemma 2, T1(w) =
v`,h,η(e, q;w) is a continuous function of q. Since Q is compact, v`,h,η(e, q; w) is also bounded. Let
{qn} be a sequence in Q converging to q∗ ∈ Q. Then

limn→∞
∑

η′

[∫
v`′,h′,η′(e′, qn; w)dµη(e′)

]
Γη,η′ =

∑

η′

[
limn→∞

∫
v`′,h′η′(e′, qn; w)dµη(e′)

]
Γη,η′ .

By the Lebesgue Dominated Convergence Theorem and the continuity of v`,h,η(e, q;w),

limn→∞
∫

v`′,h′,η′(e′, qn; w) dµη(e′) =
∫

limn→∞ v`′,h′,η′(e′, qn;w) dµη(e′)

=
∫

v`′,h′,η′(e′, q∗; w) dµη(e′).

Hence,

limn→∞
∑

η

[∫
v`′,h′,η′(e′, qn; w) dµη(e′)

]
Γη,η′ =

∑

η′

[∫
v`′,h′,η′(e′, q∗; w) dµη(e′)

]
Γη,η′

In other words,

limn→∞ T2[T1(w)(`′, h′, η, qn)] = T2[T1(w)(`′, h′, η, q∗)]

Hence, T (w)(q) is also a continuous function of q.

We now need to verify that T (w)(q) satisfies the range and monotonicity properties of W. We
do this in steps. Pick w ∈ W.
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Step 1: For any (`, h, η) ∈ L, and (e, q) ∈ E ×Q,

v`,h,η(e, q; w) ≤ u(e + `max − `min, η) + β δ w`max,0,η

≤ u(e + `max − `min, η) + β δ

{
1

(1− βδ)
u(e + `max − `min, η)

}

=
1

(1− βδ)
u(e + `max − `min, η).

Hence,

∑

η′

[∫
v`′,h′,η′(e′, q;w) µη(e′)

]
Γη,η′ ≤ 1

(1− βδ)
u [e + `max − `min, η] .

Since c`,h,η(e, q; w) = (1−γ)e is a feasible choice for all `, h, e, η, and q, it follows that v`,h,η(e, q; w) ≥
1

(1−βδ) u[(1− γ)e, η]. Therefore,

∑

η′

[∫
v`′,h′,η′(e′, q;w) dµη(e′)

]
Γη,η′ ≥ 1

(1− βδ)
u[(1− γ)e, η].

Hence

T (w)(q) ∈
[

1
(1− βδ)

u[e(1− γ), η] ,
1

(1− βδ)
u[e + `max − `min, η]

]NL
.

Step 2: By Assumption 1,

u[e(1− γ), η]− u(0, η) > β δ

[
1

1− βδ
u (e + `max − `min, η)− 1

1− βδ
u

(
e (1− γ) , η

)]
.

From step 1 we have that T2(T1(w))(`′, h′, η, q) ≤ 1
1−βδu (e + `max − `min, η) and we also have that

T2(T1(w))(`′, h′, η, q) > 1
1−βδu

(
e (1− γ) , η

)
. Hence,

u[e(1− γ), η]− u(0, η) > β δ [T2(T1(w))(`max, 0, η, q)− T2(T1(w))(0, 1, η, q)] .

Re-arranging gives:

u[e(1− γ), η] + β δ T2(T1(w))(0, 1, η, q) > u(0, η) + β δ T2(T1(w))(`max, 0, η, q)

Step 3: By Lemma 2, v`,h,η(q;w) is increasing in `. Therefore,

∑

η′

[∫
v`′,h′,η′(e′, q;w) dµη(e′)

]
Γη,η′

is increasing in `. Hence, T2(T1(w))(`′, h′, η, q) is increasing in `.

Step 4: Given that w ∈ W, we can verify from the definition of the T1(w)(`, h, η, e, q) operator
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that for ` ≥ 0,

T1(w)(`, 0, η, e, q) ≥ T1(w)(`, 1, η, e, q).

In other words,

v`,0,η(e, q;w) ≥ v`,1,η(e, q;w).

Therefore,

∑

η′

[∫
v`′,0,η′(e′, q; w) dµη(e′)

]
Γη,η′ ≥

∑

η′

[∫
v`′,1,η′(e′, q;w) dµη(e′)

]
Γη,η′ .

Hence

T2(T1(w))(`′, 0, η, q) ≥ T2(T1(w))(`′, 1, η, q).

Lemma 3 (iii). T : W →W is a contraction mapping with modulus βδ.

Proof. The first step is to establish the analogue of the Blackwell monotonicity and discounting
properties. Monotonicity: Let w, w′ ∈ W and w(q) ≤ w′(q) for all q. From the definitions of
the T1 and T2 operators it’s clear that T (w) ≤ T (w′). Discounting: It is also clear that for any
c ∈ RNL

+ , T (w + c)(q) = T (w)(q) + β δ c. We can now show that T is a contraction mapping.
From the definition of ‖ · ‖, it follows that for any w,w′ ∈ W, w(q) ≤ w′(q) + ‖w − w′‖, where
‖w − w′‖ is a NL-element vector with ‖w − w′‖ as each component element. Hence, T (w) ≤
T

(
w′ + ‖w − w′‖

)
= T (w′) + βδ‖w − w′‖. Reversing the roles of w and w′ gives T (w′) ≤ T (w) +

βδ‖w − w′‖. Combining these two inequalities shows that T (w)−T (w′) ≤ βδ‖w − w′‖ for all q and
T (w′)−T (w) ≤ βδ‖w − w′‖ for all q . Hence, supq | T (w)(q)−T (w′)(q) |≤ β δ ‖w − w′‖. Therefore,
max`,h,η{supq | T (w)(q)−T (w′)(q) |} ≤ β δ ‖w−w′‖. Hence, ‖T (w)−T (w′)‖ ≤ β δ ‖w−w′‖. This
establishes that T is a contraction mapping with modulus βδ.

Theorem 1. (The Recursive Formulation Is Well-Defined) There exists a unique w∗ ∈ W
such that w∗ = T (w∗).

Proof. Follows directly from Lemma 1 and Lemma 3.

We turn now to the characterization of the default sets. Recall that D
∗
`,η(q) = {e : v∗`,h,η(e, q) =

u(e, η) + β δ w∗0,1,η(q)}. We first prove the following two Lemmas.

Lemma App. 3. Let ê ∈ (D∗
`(η, q))c and e > ê. If e ∈ D

∗
`,η(q) then c∗`,0,η(ê, q) > ê.
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Proof. Since ê ∈
[
D
∗
`,η(q)

]c
, we have

u
[
c∗`,0,η(ê, q), η

]
+ β δ w∗`′∗`,0,η(be,q),0,η(q) > u(ê, η) + β δ w∗0,1,η(q). (19)

Let ∆ = e− ê > 0. Clearly, the pair {c = c∗`,0,η(ê, q) + ∆, `′ = `′∗`,0,η(ê, q) belongs in B`,0,η,0(e, q). By
optimality, utility obtained by not defaulting when endowment is e must satisfy the inequality

u [c̃`,0,η,0(e, q)] + β δ w∗˜̀′
`,0,η,0(e,q),0,η

(q) ≥ u(c, η) + β δ w∗`′,0,η (q), (20)

where c̃`,0,η,0(e, q) and ˜̀′
`,0,η,0(e, q) are the optimal choices of c and `′ conditional on not defaulting.

Since e ∈ D
∗
`,η(q), then,

u [c̃`,0,η,0(e, q), η] + β δ w ˜̀′
`,0,η,0(e,q),0,η(q) ≤ u(e, η) + β δ w∗0,1,η(q). (21)

By (20) and the fact that ê + ∆ = e, (21) can be re-written

u(c, η) + βδw∗`′,0,η (q) ≤ u(ê + ∆, η) + β δ w∗0,1,η (q). (22)

Then (22) minus (19) implies

u(c, η) + β δ w∗`′,0,η(q)− u
[
c∗`,0,η(ê, q), η

]− β δ w∗`′∗`,0,η(be,q),0,η(q) <

u(ê + ∆, η) + β δ w∗0,1,η (q) − u(ê, η) − β δ w∗0,1,η (q). (23)

Or, by definition of (c, `′),

u
[
c∗`,0,η(ê, q) + ∆, η

]− u
[
c∗`,0,η(ê, q), η

]
< u(ê + ∆, η)− u(ê, η).

Since u(·, η) is strictly concave, the last inequality implies c∗`,0,η(ê, q) > ê.

Lemma App. 4. Let ê ∈ (D∗
`,η(q))

c and e < ê . If e ∈ D
∗
`,η(q) then c∗`,h,η(ê, q) < ê.

Proof. Since ê ∈
[
D
∗
`,η(q)

]c
, we have

u
[
c∗`,0,η(ê, q), η

]
+ β δ w∗`′∗`,0,η(be,q),0,η(q) > u(ê, η) + β δ w∗0,1,η(q). (24)

Let ∆ = ê − e > 0. Consider the quantity c∗`,0,η(ê, q) −∆. If c∗`,0,η(ê, q) −∆ ≤ 0 then it must be
the case that c∗`,0,η(ê, q) < ê because ê −∆ = e > 0. So, we only need to consider the case where
c∗`,0,η(ê, q) −∆ > 0. Clearly the pair {c = c∗`,0,η(ê, q) −∆, `′ = `′∗`,0,η(ê, q)} belongs in B`,0,η,0(e, q).
By optimality, utility obtained by not defaulting when endowment is e must satisfy the inequality

u [c̃`,0,η,0(e, q), η] + β δ w∗˜̀′
`,0,η,0,0,η

(q) ≥ u(c, η) + β δ w∗`′,0,η(q), (25)
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where, once again, c̃`,0,η,0(e, q) and ˜̀′
`,0,η,0(e, q) are the optimal choices of c and `′ conditional on

not defaulting.

Since e ∈ D
∗
`,η(q), then

u [c̃`,0,η,0(e, q), η] + β δ w∗˜̀′
`,0,η,0(e,q),0,η

(q) ≤ u(e, η) + βδw∗0,1,η(q). (26)

By (25) and the fact that ê + ∆ = e , (26) can be re-written

u(c, η) + βδw∗`′,0,η (q) ≤ u(ê−∆, η) + βδw∗0,1,η (q). (27)

Then (27) minus (24) implies

u(c, η) + β δ w∗`′,0,η(q)− u
[
c∗`,0,η(ê, q), η

]− β δ w∗`′∗`,0,η(be,q),0,η(q) <

u(ê −∆, η) + βδw∗0,1,η (q) − u(ê, η) − β δ w∗0,1,η(q). (28)

Or, by definition of (c, `′),

u
[
c∗`,0,η(ê, q), η

]− u
[
c∗`,0,η(ê, q)−∆, η

]
> u(ê, η)− u(ê−∆, η). (29)

Since u(·, η) is strictly concave, the last inequality implies c∗`,0,η(ê, q)−∆ < ê−∆, or, c∗`,0,η(ê, q) <
ê.

Theorem 2. (A Non-empty Maximal Default Set is a Closed Interval) If D
∗
`,η(q) is

non-empty, then it’s a closed interval.

Proof. Let eL = inf D
∗
`,η(q)) and eU = supD

∗
`,η(q). Since D

∗
`,η(q) is nonempty and bounded (i.e.

D
∗
`,η(q) ⊂ E, which is bounded), the Completeness Property of Real Numbers assures us that both

eL and eU exist. If eL = eU , the default set contains only one element e = eL = eU and the result
is trivially true. Suppose, then, that eL < eU . Let ê ∈ (eL, eU ) and assume that ê /∈ D

∗
`,η(q). Then

there is a e ∈ D
∗
`,η(q) such that e > ê (if not, then eU = ê which contradicts the assertion that

ê ∈ (eL, eU )). Then, by Lemma App. 3, c∗`,0,η(ê, q) > ê. Similarly, there is an e ∈ D
∗
`,η(q) such that

e < ê. Then, by Lemma App. 4, c∗`,0,η(ê, q) < ê. But c∗`,0,η(ê, q) cannot be both greater and less
than ê. Hence, the assertion ê /∈ D

∗
`,η(q) must be false and (eL, eU ) ⊂ D

∗
`,η(q).

To show that eU ∈ D
∗
`,η(q), pick a sequence {en} ⊂ (eL, eU ) converging to eU . Then, v∗`,0,η(e

n, q)−
u(en, η) = β δ w∗0,1,η(q) for all n. Since eU is clearly in E, by the continuity of v∗`,0,η(e, q)
and u, it follows that limn→∞{v∗`,0,η(e

n, q) − u(en, η)} = v∗`,0,η(eU , q) − u(eU , η). Since every el-
ement of the sequence {v∗`,0,η(e

n, q) − u(en, η)} is equal to β δ w∗0,1,η(q), it must be the case
that v∗`,0,η(eU , q) − u(eU , η) = β δ w∗0,1,η(q). Hence, eU ∈ D

∗
`,η(q). By analogous reasoning, eL

∈ D
∗
`,η(q). Hence, [eL, eU ] ⊆ D

∗
`,η(q). But by the definition of eL and eU , D

∗
`,η(q) ⊂ [eL, eU ]. Hence

[eL, eU ] = D
∗
`,η(q).
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Theorem 3. (The Maximal Default Set Increases with Indebtedness) If `0 > `1, then
D
∗
`0,η(q) ⊆ D

∗
`1,η(q).

Proof. Since v∗`,0,η(e, q) is increasing in ` and that utility from default is independent of `, it follows
that if v∗`0,0,η(e, q) = u(e, η) + β δ w∗0,1,η(q), then it must be the case that v∗`1,0,η(e, q) = u(e, η) +

β δ w∗0,1,η(q). Hence any e that belongs in D
∗
`0,η(q) must also belong in D

∗
`1,η(q).

A.2 Equilibrium

We demonstrate the existence of at least one competitive equilibrium via Kakutani’s Fixed Point
Theorem (FPT). This is done in three parts. In the first part, we develop the correspondence whose
fixed points are competitive equilibria. In the second part, we establish that this correspondence is
convex-valued and closed. In the third part, we invoke the Kakutani FPT to establish the existence
of a competiive equilibrium and establish some properties of the equilibrium price vector.

A.2.1 The Equilibrium Correspondence

We start by defining the default correspondence, ∆∗
`,η(e, q), for ` < 0, as the following mapping

from E × S ×Q to (P({0, 1})), the power set of {0, 1}:

∆∗
`,η(e, q) =





{1} if B`,0,η,0(e, q) = ∅,
{1} if ṽ`,0,η,0(e, q) < u(e, η) + β δ w∗0,1,η(q)
{0, 1} if ṽ`,0,η,0(e, q) = u(e, η) + β δ w∗0,1,η(q)
{0} if ṽ`,0,η,0(e, q) > u(e, η) + β δ w∗0,1,η(q)

(30)

where we have defined

ṽ`,0,η,0(e, q) = max
(c,`′)∈B`,0,η,0(e,q) 6=∅

u(c, η) + β δ w∗`′,0,η(q).

Let I`,η̃,η(e, q) be the set of µη̃–integrable functions d∗`,η : E × Q → IR which have the property
that d∗`,η(e, q) ∈ ∆∗

`,η(e, q). Define the integral of I`,η̃,η(e, q) as the set M∗
`,η̃,η(q) where mη ∈

M∗
`,η̃,η(q) implies there is an d∗`,η(e, q) ∈ I`,η̃,η(e, q) such that

∫
E d∗`,η(e, q) dµη̃(e) = mη. Since µη̃

is atomless, it follows from Hildenbrand (1974) (Theorem 3, p. 62) that M∗
`,η̃,η(q) is a convex

set. In particular, define d
∗
`,η(e, q) ∈ ∆∗

`,η(e, q) as a function with the property that whenever
ṽ∗`,0,η,0(e, q) = u(e, η) + β δ w∗0,1,η(q), then d

∗
`,η(e, q) = 1 and define d∗`,η(e, q) ∈ ∆∗

`,η(e, q) as a
function with the property that whenever ṽ∗`,0,η,0(e, q) = u(e, η) + β δ w∗0,1,η(q), then d∗`,η(e, q) = 0.
Both functions are µη̃-integrable and so belong to I`,η̃,η(e, q). Let the integral of the first function
be m∗

`,η̃,η(q) and that of the second be m∗
`,η̃,η(q). Since every element of I`,η̃,η(e, q) is bounded above

and below by d
∗
`,η(e, q) and d∗`,η(e, q), respectively, it follows that M∗

`,η̃,η(q) = [m∗
`,η̃,η(q), m

∗
`,η̃,η(q)].

Now we integrate over the last component of M∗, m∗ and m∗ and we have (with a slight abuse
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of notation)

M∗
`,η̃(q) = {m : m =

∑
η

mη Γη̃,η for some mη ∈ M∗
`,η̃,η(q)},

m∗
`,η̃(q) =

∑
η

[
m∗

`,η̃,η(q)
]

Γη̃,η,

m∗
`,η̃(q) =

∑
η

[
m∗

`,η̃,η(q)
]

Γη̃,η.

Since each of the sets M∗
`,η̃,η(q) is convex, it follows that M∗

`,η̃(q) is also convex (see, for instance,
Rockafellar (1970) (p.17)), and, M∗

`,η̃(q) = [m∗
`,η̃(q),m

∗
`,η̃(q)]. The set M∗

`,η̃(q) is the set of de-
fault probabilities on a loan of size ` taken out by a household of type η̃ that is consistent with
optimization, given the price vector q.

Define the equilibrium correspondence as

ϕ`′,η(q) =
{ {y : y = q̄ (1−m) for some m ∈ M∗

`′,η(q)} if `′ < 0,

q̄ if `′ ≥ 0.

Then, q∗ is an equilibrium price vector if q∗`′,η ∈ ϕ`′,η(q∗) for all `′, η ∈ L× S.

A.2.2 Properties of the Equilibrium Correspondence

Lemma App. 5. For each q, ϕ`′,η(q) is a closed interval in IR.

Proof. For `′ ≥ 0, ϕ`′,η(q) = q̄ and for `′ < 0, ϕ`′,η(q) =
[
q̄
(
1−m∗

`′,η(q)
)

, q̄
(
1−m∗

`′,η(q)
)]

. In
either case, ϕ`′,η(q) is a closed interval in IR.

The second property we wish to establish is that the correspondence ϕ`,η(q) has a closed graph.
In order to do that, we need to following two prelimnary results.

Lemma App. 6. Let {qn} ⊂ Q converging to q ∈ Q. For a given η̃ and η, let {d∗`,η(e, qn)} be a

sequence such that d∗`,η(e, q
n) ∈ I`,η̃,η(e, qn) for all n and let D

[
d∗`,η(e, q

n)
]

= {e : d∗`,η(e, q
n) = 1}.

Define

En = ∪k≥n

[
D
∗
`,η(q)

]c
∩D

[
d∗`,η(e, q

k)
]
.

Then En+1 ⊆ En for all n ≥ 1 and ∩∞n=1En = ∅.

Proof. Given η, En is the set of all e which belong to the complement of the maximal default
set for q but for which there is default for some qk, k ≥ n. Clearly, if e ∈ En+1, then e ∈ En.
Hence En+1 ⊆ En for all n ≥ 1. Let ê ∈ [D∗

`,η(q)]
c. By definition of D

∗
`,η(q), it follows that

v∗`,0,η(ê, q) > u(ê, η) + β δ w∗0,1,η(q). By Lemma 2 and the continuity of u(·, η) and w∗, there must
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exist N(ê) such that for all n ≥ N(ê), v∗`,0,η(ê, q
n) > u(ê, η) + β δ w∗0,1,η(q

n). Hence ê /∈ En for
n ≥ N(ê). It follows that ∩∞n=1En = ∅.

Lemma App. 7. Let {qn} ⊂ Q converging to q ∈ Q. For a given η̃ and η, let {d∗`,η(e, qn)} be a

sequence such that d∗`,η(e, q
n) ∈ I`,η̃,η(e, qn) for all n and let D

[
d∗`,η(e, q

n)
]

= {e : d∗`,η(e, q
n) = 1}.

Let D∗
`,η(q) = D

[
d∗`,η(e, q)

]
, and define

Hn = ∪k≥n D∗
`,η(q) ∩ [D(d∗`,η(e, q

k))]c.

Then Hn+1 ⊆ Hn for all n ≥ 1 and ∩∞n=1Hn = ∅.

Proof. Given η, Hn is the set of all e which belong to the minimal default set for q, but for which
there is no default for some qk, k ≥ n. Clearly, if e ∈ Hn+1,then e ∈ Hn. Hence Hn+1 ⊆ Hn for all
n ≥ 1. Let ê ∈ D∗

`,η(q),. Then either B`,0,η,0(ê, q) is empty or ṽ∗`,0,η,0(ê, q) < u(ê, η) + β δ w∗0,1,η(q).
If B`,0,η,0(ê, q) is empty then there must be N ′(ê) such that for all n ≥ N ′(ê), B`,0,η,0(ê, qn) is also
empty. If ṽ`,0,η,0(ê, q) < u(ê, η)+β δ w∗`,0,η(q), then we claim that there exists N ′(ê) such that for all
n ≥ N ′(ê) either B`,0,η,0(ê, qn) is empty or ṽ`,0,η,0(ê, qn) < u(ê, η)+β δ w∗`,0,η(q

n). Suppose not, then
there exists a sequence qnk → q, such that ṽ`,0,η,0(ê, qnk) ≥ u(ê, η)+β δ w∗`,0,η(q

nk). Because having
zero consumption is strictly worse than default, it must be the case that c̃`,0,η,0(ê, qnk) > κ > 0
for all nk. Then for qnk sufficiently close to q, ˜̀′

`,0,η,0(ê, q
nk) is feasible for (ê, q) and the pair

{ê + ` − q˜̀′
`,0,η,0(be,qnk ),η · ˜̀′

`,0,η,0(ê, q
nk), ˜̀′

`,0,η,0(ê, q
nk)} delivers lifetime utility arbitrarily close to

u(ê, η) + β δ w∗0,1,η(q). But this contradicts the fact that ṽ`,0,η,0(ê, q) < u(ê, η) + β δ w∗0,1,η(q). In
either case, there is a N(ê) such that ê /∈ Hn for n ≥ N(ê). It follows that ∩∞n=1Hn = ∅.

We can now establish

Lemma App. 8. The correspondence ϕ`′,η(q) has a closed graph.

Proof. For `′ ≥ 0, the result is obvious. We need only consider the case that `′ < 0. Let {(xn, qn)}
be any sequence in Q × Q such that xn ∈ ϕ`′,η(qn) and {(xn, qn)} converges to (x, q), q ∈ Q. We
need to establish that x ∈ ϕ`′,η(q). Since xn ∈ ϕ`′,η(qn), there exists a yn ∈ M∗

`′,η(q
n) such that

xn = q̄(1−yn). Since {xn} converges to x, it is clear that yn converges to y satisfying x = q̄(1−y).
Hence, there is a sequence {(yn, qn)} such that yn ∈ M∗

`′,η(q
n) and {(yn, qn)} converges to (y, q),

q ∈ Q. Now, it is sufficient to show that y ∈ M∗
`′,η(q) for then we can conclude that x = q̄(1 − y)

belongs in ϕ`′,η(q).

Let d∗`′,η′(e
′, qn) be any sequence of functions in I`′,η,η′(e′, q) such that

∫
d∗`′,η′(e

′, qn) dµη(e′) =
yn.

Step 1: y ≤ m∗
`′,η(q).
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Since D
[
d∗`′,η′(e

′, qn)
]

= D
[
d∗`′,η′(e

′, qn)
]
∩

{
D
∗
`′,η′(q) ∪

[
D
∗
`′,η′(q)

]c}
, we have that

µη

[
D

(
d∗`′,η′(e

′, qn)
)]

= µη

[
D

(
d∗`′,η′(e

′, qn)
) ∩D

∗
`′,η′(q)

]
+ µη

[
D

(
d∗`′,η′(e

′, qn)
) ∩ [D∗

`′η′(q)]
c
]
.

Since µη

[
D

(
d∗`′,η′(e

′, qn)
)]

= yn, and since
[
D

(
d∗`′,η′(e

′, qn)
)
∩D

∗
`′,η′(q)

]
⊆ D

∗
`′,η′(q), and also[

D
(
d∗`′,η′(e

′, qn)
)
∩

[
D
∗
`′η′(q)

]c]
⊆ En it follows that

yn ≤ µη[D
∗
`′,η′(q)] + µη[En].

Since En is a decreasing sequence with µ[En] < +∞, limn→∞ µ[En] = µ[∩∞i=1En] (see, for in-
stance, Royden (1988) (Proposition 14, pp. 62). But by Lemma App. 6, ∩∞i=1En = ∅ and, so,
limn→∞ µ[En] = 0. Hence

limn yn ≤ m∗
`′,η,η′(q), or y ≤ m∗

`′,η,η′(q).

Hence

y ≤
∑

η′

[
m∗

`′,η,η′(q)
]
Γη,η′ = m∗

`′,η(q).

Step 2: y ≥ m∗
`(q).

Since
{

D
[
d∗`′,η′(e

′, qn)
]}c

=
{

D
[
d∗`′,η′(e

′, qn)
]}c

∩
{

D∗
`′,η′(q) ∪

[
D∗

`′,η′(q)
]c}

, we have that

µη

{
D

[
d∗`′,η′(e

′, qn)
]}c = µη

[{
D

[
d∗`′,η′(e

′, qn)
]}c ∩D∗

`′,η′(q)
]
+µη

[{
D

[
d∗`′,η′(e

′, qn)
]}c ∩ [D∗

`′η′(q)]
c
]
.

Since µη

[{
D

(
d∗`′,η′(e

′, qn)
)}c]

= 1 − yn, and since
[{

D
[
d∗`′,η′(e

′, qn)
]}c

∩D∗
`′,η′(q)

]
⊆ Hn,

and also
[{

D
[
d∗`′,η′(e

′, qn)
]}c

∩
[
D∗

`′η′(q)
]c]

⊆
[
D∗

`′,η′(q)
]c

it follows that

1− yn ≤ µη[Hn] +
[
1−m∗

`′,η,η′(q)
]
.

Since Hn is a decreasing sequence with µ[Hn] < +∞, limn→∞ µ[Hn] = µ[∩∞i=1Hn]. But by Lemma
App. 7, µ[∩∞i=1Hn] = 0. Hence

− limn yn ≤ −m∗
`′,η,η′(q), or y ≥ m∗

`′,η,η′(q).

Hence,

y ≥
∑

η′

[
m∗

`′,η,η′(q)
]

Γη,η′ = m∗
`′,η(q).

Step 3: Therefore y ∈ M∗
`′,η(q) and, hence, x ∈ ϕ`′,η(q).
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A.2.3 Existence of Equilibrium and Properties of the Equilibrium Price Vector

Theorem 4. A competitive equilibrium exists.

Proof. For any q ∈ Q, let ϕ(q) ⊂ Q be the product correspondence
∏

`′,η∈L×S ϕ`′,η(q). Since ϕ`′,η(q)
is convex-valued for each `′, η, (by Lemma App. 5), ϕ(q) is convex-valued as well. Furthermore,
since ϕ`′,η(q) has a closed graph for each `′, η, the product correspondence ϕ(q) has a closed graph
as well (see, for instance, Border (1985), (Proposition 11.25 (c), pp.60). Thus, ϕ(q) is a closed,
convex-valued correspondence that takes elements of the compact, convex set Q and returns sets
in Q. By Kakutani’s FPT there is q∗ ∈ Q such that q∗ ∈ ϕ(q∗). In other words, there exists q∗ such
that q∗`′,η ∈ ϕ`′,η(q∗) for all (`′, η) ∈ L× S. Hence a competitive equilibrium exists.

Theorem 5. In any competitive equilibrium: (i) q∗`′,η = q̄ for `′ ≥ 0; (ii) if the grid for L is
sufficiently fine, there exists `0 < 0 such that q∗`0,η = q̄; (iii) q`1,η ≥ q`2,η for 0 > `1 > `2 ; and (iv)
q∗`min,η = 0.

Proof. (i) Follows from the zero profit condition of firms and the definition of ϕ`′,η(q).

(ii) Let the grid be fine enough so that there is at least one `0 < 0 for which e + `0 > 0. For a
household with endowment e and type shock η, the utility from defaulting on a loan of size `0 can
be expressed as

u(e, η) + β δ
∑

η′
Γη,η′ ·

∫ {
u

[
c∗0,1,η′

(
e′, q∗

)
, η′

]
+ β δ

[
λw`′∗

0,1,η′ (e
′,q∗),1,η′(q

∗) + (1− λ) w∗`′0,1,η(e,q∗),0,η′(q
∗)

]}
dµη (e′).

Since e + `0 > 0, an alternative to not defaulting is to pay off the loan, consume the remaining
endowment, and in the following period set consumption equal to c∗0,1,η′(e

′, q∗) + γe′. The utility
from this choice

u(e + `0, η) + β δ
∑

η′
Γηη′

∫ {
u

[
c∗0,1,η′(e

′, q∗) + γe′, η′
]
+ β δ w∗`′∗

0,1,η′ (e
′,q∗),0,η′(q

∗)
}

dµη(e′).

In view of (7), the utility-gain from not defaulting must be at least as large as

u(e+`0, η)−u(e, η)+β δ
∑

η′
Γη,η′

∫ {
u

[
c∗0,1,η′

(
e′, q∗

)
+ γe′, η′

]− u[c∗0,1,η′
(
e′, q∗

)
, η′]

}
dµη(e′).

Since consumption is bounded above by e + `max − `min = c and the u(·, η) is strictly concave, for
each η the integral in the above expression is bounded below by

∫
[u(c + γe′, η′)− u(c, η′)]dµη(e′).
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Hence, the utility-gain from not defaulting must be also be at least as large as

u(e + `0, η)− u(e, η) + β δ
∑

η′
Γη,η′

[∫
[u(c + γe′, η′)− u(c, η′)] dµη(e′)

]
. (31)

Notice that the integral in the above expression is strictly positive and independent of the fineness
of the grid for L. Since u(·, η) is continuous, we can make expression (31) strictly positive. Hence,
for a sufficiently fine grid there exists an `0 < 0 for which defaulting is never optimal. Therefore,
q∗`0,η = q̄.

(iii) Let d∗`,η(e, q
∗) be the equilibrium default functions. It is sufficient to establish that if

d∗`1,η(e, q
∗) = 1 then d∗`2,η(e, q

∗) = 1. If B`2,0,η,0(e, q∗) is empty, then by the definition of a de-
fault function, d∗`2,η(e, q

∗) must equal 1. Suppose then that B`2,0,η,0(e, q∗) 6= ∅. Then, clearly
B`1,0,η,0(e, q∗) 6= ∅ and hence ṽ∗`1,0,η,0(e, q

∗) ≤ u(e, η) + β δ w∗0,1,η(q
∗). Since e + `1 − q∗`′,η · `′ <

e + `2− q∗`′,η · `′ for all `′ ∈ L, it follows (recalling that u is strictly increasing) that ṽ∗`2,0,η,0(e, q
∗) <

ṽ∗`1,0,η,0(e, q
∗). Hence, ṽ∗`2,0,η,0(e, q

∗) < u(e, η) + β δ w∗0,1,η(q). This implies that d∗`2,η(e, q
∗) = 1.

(iv) Take `min = −e/(1 − q). If a household enters any period with endowment e and `min,
its consumption conditional on not defaulting is bounded above by e + `min + max`′∈L{−q`′,η · `′}.
Since e is bounded above by e and max`′∈L{−q`′,η · `′} ≤ −q̄ · `min, it follows that consumption
conditional on not defaulting is bounded above by e + `min − q̄ · `min = 0. This means either that
the set B`min,0,η,0(e, q) is empty or that the only feasible consumption is zero consumption. In the
first case default is the only option and in the second case it’s the best option by (8). Therefore in
any competitive equilibrium q∗`min,η must be zero. By (iii) above,it follows that q∗`′,η must be zero
for any `′ less than −e/(1− q̄).

B Computational Procedure

This appendix outlines the procedure to compute the steady state equilibrium of the model economy.

First we set grids on the spaces of loan holdings and earnings. We denote the grid on the space
of loan holdings by L = {`min, ..., 0, ..., `max} and in the space of earnings by E = {e, ..., e}. We have
to ensure that the earnings grid is sufficiently fine so that the results from the computation do not
change if we add additional grid points. Even though, as we discussed in Section 4, there is a lower
bound on assets given by −e/(1− q̄) (because it is guaranteed that q`min,η = 0 for all η), this turns
out to be too big in absolute value. We can pick an `min which is much bigger than −e/(1− q̄), and
still have the equilibrium price of `min be zero for all η. The upper bound, `max, is chosen so that
the saving decision of households is not binding. As we discussed in the section on equilibrium,
concavity of the utility function guarantees the existence of such a nonbinding upperbound.

Since all state variables are discrete and we use a grid on earnings, we can store the earnings
process function Fη(e), the price schedule of the discounted loans ql,η, the expected value function
wl,h,η, and the measure of households x`,h,η, as finite-dimensional arrays.
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Then, we use the following procedure to compute an equilibrium. Functions defined on the
earning space are stored by the values on the grid points on the earning space and are interpolated
when needed.

1. Guess an initial price of discounted loans q0
`,η ∈ Q.

2. Given a price for loans, q0
`,η, we solve the household’s optimization problem. This procedure

includes finding the value function as well as the default interval D`,η(q0) for every (`, η) ∈
L× S. In particular, we follow the steps below:

(a) Guess an expected value function w0
`,h,η(q

0).

(b) Taking the price of the loans q0
`,η and the value functions w0

`,h,η(q
0) as given, solve the

household’s optimization problem and compute the value associated with each individ-
ual state v`,h,η(e, q0; w0). We use the grid search method in finding the optimal asset
possition. For the problem of a household with debt and a good credit rating, the
optimal default choice d`,η(e, q0;w0) requires comparison between the implications of
defaulting and not defaulting. This comparison also enables us to calculate the cor-
responding default interval D`,η(q0) as a part of the solution. Note also that we only
need to store at most two numbers, eL and eU for each (`, η) with ` < 0 in storing the
default interval. This is due to the fact that a non-empty maximal default interval is a
closed interval.

(c) Numerically integrate the value associated with each individual state v`,h,η′(e′, q0; w0)
over the probability measure of the earning process Fη(e) and the transition matrix
associated with type η, and derive a new expected value function w1

`,h,η(q
0). Notice

that the fact that the default set is an interval makes the integration relatively easy.

(d) If w1
`,h,η(q

0) is sufficiently close to w0
`,h,η(q

0), stop iterating on w and go to step 3.
Otherwise, update the guess for the value function w`,h,η(q0) and go back to the step 2b.
In the early stages of the iteration on q`,η, the guess for q`,η is not typicically close to
the equilibrium one which suggests that there is no need for a lot of accuracy on the
convergence criteria of w`,h,η(q0). Therefore, we use a dynamic accuracy adjustment,
i.e. the convergence criteria of the iteration of w`,h,η(q0) starts out being large but
shrinks as the price of loans q`,η gets close to an equilibrium.

3. Using the default interval D`,η(, q0) derived in step 2 and the zero profit condition for every
(`, η) ∈ L × S, we compute the new price of discounted loans q1

`,η. If q1
`,η is sufficiently

close to q0
`,η, stop iterating on q and go on to the step 4, else go back to step 2. Note that,

since the price of discounted loans does not depend on the measure of households for each
(`, η) ∈ L× S, we do not need to find a stationary distribution of households to update the
price.

4. Verify that the household’s optimization problem is not constrained by the upper bound of
loan holdings `max. If it is, increase `max and start from the step 1 again. Also, we have to
confirm that our choice of `min guarantees that q`min,η = 0 for all η.
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5. Using the optimal decision rules for loan holdings and default, and the exogenous transition
probabilities, we compute the associated stationary distribution x`,h,η. As we mentioned
earlier, we can compute the stationary measure after deriving the optimal decision rules and
prices. We also compute the relevant aggregate statistics as moments with respect to the
invariant measure.

In addition, we interpret the above steps as a function from a set of parameter values to a
measure of a loss. The loss is defined as a weighted sum of the differences between some aggregate
statistics and their target values. We use a numerical minimization routine to find a set of para-
meter values which minimizes the loss. In particular, we use four parameters (γ, θ, pθ, β) to match
four statistics (assets–to–earnings ratio, total assets of those households that have negative assets,
percentage of defaulters, and percentage of the population with debt). As we have shown in the
calibration section, the minimization works well for our case.
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