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Abstract

We analyze a model economy with many agents, each with a different productiv-

ity level. Agents divide their time between two activities: producing goods with the

production-related knowledge they already have, and interacting with others in search of

new, productivity-increasing ideas. These choices jointly determine the economy’s cur-

rent production level and its rate of learning and real growth. We construct the balanced

growth path for this economy, thereby obtaining a theory of endogenous growth that cap-

tures in a tractable way the social nature of knowledge creation. We show, for example,

that a fatter right tail of the initial productivity distribution leads to higher individual

search effort and higher long-run growth. We also study the allocation chosen by an ide-

alized planner who takes into account and internalizes the external benefits of search, and

tax structures that implement an optimal solution. Finally, we provide three examples of

alternative learning technologies and show that the properties of equilibrium allocations

are quite sensitive to these variations. An increase in “limits to learning”, for example,

results in decreased individual search effort particularly for low productivity types, a lower

growth rate, higher inequality and decreased social mobility.
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1 Introduction

The rate of a person’s learning at any task depends on two distinct forces: the effort he applies

and the environment in which the learning takes place. In a general equilibrium analysis, both

these forces must be represented by agents in the same economy so a study of their effects

must be an analysis of the social interactions of a group of people whose individual knowledge

levels differ. Much of existing growth theory, whether “exogenous” or “endogenous,” ignores

this distinction between effort and environment and so closes the discussion of the sources

of knowledge growth before it has even begun. Existing growth theory is therefore silent on

questions such as: how do changes in the environment affect individuals’ effort, the economy’s

growth rate and the learning environment itself?

In this paper we analyze a new model of endogenous growth, driven by sustained improve-

ments in individual knowledge. Agents in this economy divide their time between two activities:

producing goods with the production-related knowledge they already have, and interacting with

others in search of new, productivity-increasing ideas. These choices jointly determine the econ-

omy’s current production level and its rate of learning and real growth. In order to focus on

what is new in our analysis, we keep the production technology in the economy very simple:

Each person produces at a rate that is the product of his personal productivity level and the

fraction of time that he chooses to spend producing goods. There are no factors of production

other than labor and there are no complementarities between workers. There are no markets,

no prices, and no public or private property other than individuals’ knowledge – their human

capital.

The learning technology involves random meetings: Each person meets others at a rate

that depends on the fraction of time he spends in search. For us, a meeting means simply

an observation of someone else’s productivity. If that productivity is higher than his own, he

adopts it in place of the productivity he came in with. Everyone’s productivity level is simply

the maximum of the productivities of all the people he has ever met. To ensure that the growth

generated by this process can be sustained, we add an assumption to the effect that the stock

of good ideas waiting to be discovered is inexhaustible.

The state of the economy is completely described by the distribution of productivity levels.

An individual’s time allocation decisions will depend on this distribution because the produc-

tivity levels of others determine his own chances of improving his productivity through search.

Individuals’ time allocation decisions in turn determine learning rates and thus the evolution

of the productivity distribution. One of the two equilibrium conditions of the model is the

Bellman equation for the time allocation problem of a single atomistic agent who takes the
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productivity distribution as given. The second condition is a law of motion for the productivity

distribution, given the policy functions of individual agents.

These two equations take the form of partial differential equations, with time and produc-

tivity levels as the two independent variables. We motivate these two equations in the next

section. Then we focus on a particular solution of these equations, a balanced growth path,

along which production grows at a constant rate and the distribution of relative productivities

remains constant. In Section 3 we discuss the properties of this balanced growth path and

develop an algorithm to calculate it, given parameters that describe the production and search

technologies. For a benchmark version of the model, we calculate the growth rate on a balanced

path and plot the density of the distribution of relative productivities, the policy function relat-

ing a person’s search effort to his current productivity level, and the Lorenz curves describing

the distribution of earnings flows and present values. We illustrate the effects of given changes

in parameters, for example that a fatter right tail of the initial productivity distribution leads

to higher individual search effort and higher long-run growth.

There is an evident external effect in this decentralized equilibrium. The private return

to knowledge acquisition motivates individual decisions that generate sustained productivity

growth but an individual agent does not take into account the fact that increases in his own

knowledge enrich the learning environment for the people around him. The social return to

search exceeds the private return, raising the possibility that taxes or subsidies can equate

private and social returns and improve both growth rates and welfare. In Section 4 we formulate

a planning problem, in which the planner directs the time allocations of each of the continuum

of individual agents in the economy. We show how this problem can be broken into individual

Bellman equations where the value function for each person is his marginal social value under

an optimal plan. We study the implied balanced growth path and compare the implied policy

function and distribution of relative productivities to those implied by the decentralized problem

studied in Section 3. In Section 5 we consider the implementation of the planning solution

through the use of a Pigovian system of taxes and subsidies.

All of the analysis in Sections 3-5 is based on a single, specific model of the search/learning

process. It turns out that the algorithm we develop for this model is quite easily adapted to

the analysis of a wide variety of other learning technologies. In Section 6, we make use of this

fact and explore three alternative learning technologies. The first variation we consider is one

in which agents learn from an outside idea source as well as from others in the economy. One

might describe this as a combination of “innovation” and “imitation” but we will show that in

our context the modified model is observationally equivalent to our simpler, benchmark model.

Next we consider a substantively more interesting model in which there are limits to learning in
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the sense that recipients of ideas can only learn from donors if their knowledge levels are not too

different. Finally, we explore an alternative assumption regarding the symmetry of meetings,

that is who can learn what from whom depending on who initiated a meeting. It turns out that

the properties of equilibrium allocations are quite sensitive to these last two variations, which

is to say that different assumptions on technology diffusion that cannot be tested by direct

observation may have very different implications for the behavior of observables.1 For example,

with limits to learning, unproductive individuals no longer exert more search effort than pro-

ductive ones and search effort is now a non-monotonic function of productivity. Furthermore,

an increase in limits to learning results in decreased individual search effort particularly for low

productivity types, a lower growth rate, higher inequality and decreased social mobility.

Relation to Literature The distinctive feature of this paper and the focus of our analy-

sis is the simultaneous determination of individual behavior and the evolution of the agents’

learning environment. We know of just two papers that share this feature. One is Perla and

Tonetti (2011), who analyze an endogenous growth model similar to ours. They assume Pareto-

distributed knowledge and compatible assumptions on technology and derive explicit formulae

describing growth behavior. We will return to their illuminating example below, when our

own model is on the table. The other is Jovanovic and MacDonald’s (1990, 1994) analysis of

technological change in a competitive industry, which involves the same kind of simultaneous

determination of behavior and the environment that ours uses. Theirs is not a growth model,

however, and its mathematical structure is very different from ours.2

More generally, our paper builds on a vast literature on endogenous growth. The early

models of Arrow (1962) and Shell (1966) emphasized external effects very similar to those

we analyze here. The learning-by-doing models of Arrow (1962) and Stokey (1988) describe

economies that move up a pre-existing list of possible goods, ordered by quality. The successful

production of each new good creates the knowledge that makes possible the production of the

next one on the “ladder.” Both teachers and learners are agents in the same economy, but the

knowledge they create is a pure public good, a non-rival good in the sense of Romer (1990).

No one has an incentive to invest in knowledge creation but no one needs to for creation to

1Age-earnings (or experience-earnings) profiles are one such observable. For instance, Lagakos, Moll and
Qian (2012) document that the wage increase associated with increasing worker experience is lower for poorer
countries, which is consistent with there being greater limits to learning in these countries. Similarly, Comin,
Dmitriev and Rossi-Hansberg (2011) argue that technologies diffuse slowly, not only across but also within

countries. And diffusion is particularly uneven in developing countries with rural areas experiencing the lowest
penetration (WorldBank, 2008).

2In their environment less productive agents always exert more search effort (see Proposition 5 in Jovanovic
and MacDonald, 1994). This is the case in our benchmark model but not for the alternative learning technologies
explored in section 6.
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take place. In Romer (1990) and related work by Grossman and Helpman (1991) and others,

people allocate time to innovation or imitation, viewed as activities that take time away from

production, but for this to occur they must be rewarded with a monopoly right to the use of

the knowledge they produce. The knowledge itself is immediately available to everyone.

All of these papers capture aspects of behavior that we think is important in economic

life, but the abstraction of “common knowledge” places a severe limitation on the kinds of

interactions that we can analyse. Intellectual property plays a role, but in most sectors a very

modest one. Yet people do allocate time specifically toward knowledge creation. Here we go

to the opposite pole from common to private knowledge, knowledge that is in the head of

some individual person, a part of his “human capital.” As in Jovanovic and Rob (1989), new

knowledge is “produced” from meetings of individuals whose knowledge differ. Our technical

starting point is taken from Kortum (1997) and Eaton and Kortum (1999), who treat the

distribution of individual knowledge holdings as a state variable and model meetings as Poisson

arrivals of new ideas from this distribution. The mathematics is closely related to papers by

Gabaix (1999), Rossi-Hansberg and Wright (2007), Luttmer (2007) and others that study the

evolution of distributions with Pareto tails.3

In Lucas (2009) these dynamics lead to a model of on-the-job learning that is capable of

generating sustained growth in a closed economy where younger workers benefit from and build

on the knowledge obtained from older workers. Koenig, Lorenz and Zilibotti (2012) add a

choice between “imitation” and “innovation” to a similar environment.4 But in these models

search and learning are simply by-products of producing. Agents do not have to choose between

producing and learning. In the present paper we add such a choice, following the classic papers

on on-the-job learning of Ben-Porath (1967), Heckman (1976), and Rosen (1976). The control

problem we introduce is modeled closely on this work (though we do not here introduce a cohort

structure) in the sense that agents must choose between these two activities. The mathematical

formulation we use is a Bellman equation that is familiar from the job search literature.

It is worth noting that with the decentralized vision of knowledge we have adopted, there

is always an incentive to seek more knowledge. In much existing endogenous growth theory,

in contrast, knowledge is “non-rival” in the sense that it is immediately made available to all

and can be used by any number of people simultaneously.5 As first noted by Romer (1990), an

3A different approach to a similar set of questions as in our paper is pursued by Fogli and Veldkamp (2011)
who model the diffusion of knowledge among individuals in a network. Finally, see also Bental and Peled (1996).

4In their framework, the stochastic process of learning depends on the choice between ”imitation” and
”innovation”. But both activities are costless and so this choice is a static maximization problem. It is therefore
very different from our time allocation problem, in particular because it does not give rise to a simultaneous
equations problem like the one studied here.

5See for example Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992). Also see
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immediate implication of non-rivalry is that under perfect competition no one would invest in

knowledge creation. In our setup, in contrast, knowledge is “rival” at least in the short-run,

and if people want to access better knowledge they have to exert effort and have the good luck

to run into the right people. Agents exert positive search effort even under perfect competition

because the search friction precludes the immediate diffusion of existing knowledge. This seems

to us a step toward descriptive realism. (Of course, to say that the private return to search is

positive is not to say that it equals the social return.)

2 A Model Economy

There is a constant population of infinitely-lived agents of measure one. We identify each person

at each date as a realization of a draw z̃ from a cost distribution, described by its cdf

F (z, t) = Pr{z̃ ≤ z at date t},

or equivalently by its density function f(z, t). This function f(·, t) fully describes the state of

the economy at t. A person with cost draw z̃ can produce ã = z̃−θ units of a single consumption

good, where θ ∈ (0, 1).6

We will formulate the equilibrium and planning problems of this economy in terms of this

cost distribution but of course we could instead do this in terms of the productivity distribution

G(a, t):

G(a, t) = Pr{z̃−θ ≤ a} = Pr{z̃ ≥ a−1/θ} = 1 − F (a−1/θ, t).

For some purposes the economic interpretations seem clearer in this form, but algorithmically

the cost formulation is more convenient. We will find it useful to use both of them on occasion.

Here we continue with the cost formulation.

Every person has one unit of labor per year. He allocates his time between a fraction

1− s(z, t) devoted to goods production and s(z, t) devoted to improving his production-related

knowledge. His goods production is

[1 − s(z, t)] z−θ. (1)

the survey by Jones (2005) and references therein.
6We will show in Lemma 1 below that under our assumptions the productivity distribution has a Pareto tail

with tail parameter 1/θ. The parameter restriction θ < 1 therefore ensures that the tail parameter 1/θ > 1
implying that the productivity distribution has a finite mean.
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Per-capita production in the economy is

Y (t) =

∫ ∞

0

[1 − s(z, t)] z−θf(z, t)dz.

Individual preferences are

V (z, t) = Et

{
∫ ∞

t

e−ρ(τ−t) [1 − s(z̃(τ), τ)] z̃(τ)−θdτ

∣

∣

∣

∣

z̃(t) = z

}

. (2)

We model the evolution of the distribution f(z, t) as a process of individuals meeting others

from the same economy, comparing ideas, improving their own productivity. The details of

this meeting and learning process are as follows.7 A person z allocating the fraction s(z, t) to

learning observes the cost z′ of one other person with probability α [s(z, t)] ∆ over an interval

(t, t+ ∆) , where α is a given function. He compares his own cost level z with the cost z′ of

the person he meets, and leaves the meeting with the best of the two costs, min(z, z′). (These

meetings are not assumed to be symmetric: z learns from and perhaps imitates z′ but z′ does

not learn from z and in fact he may not be searching himself at all.)

We assume that everyone in the economy behaves in this way, though the search effort

s(z, t) varies over time and across individuals at a point in time. Thinking of F (z, t) as the

fraction of people with cost below z at date t, this behavior results in a law of motion for F as

follows:

1 − F (z, t+ ∆) = Pr{cost above z at t and no lower cost found in [t, t+ ∆)}

=

∫ ∞

z

f(y, t) Pr{no lower cost found in [t, t+ ∆)}dy

=

∫ ∞

z

f(y, t) [1 − α(s(y, t))F (z, t)∆] dy

= 1 − F (z, t) − F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)∆dy.

Then
F (z, t+ ∆) − F (z, t)

∆
= F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy

and letting ∆ → 0 gives

∂F (z, t)

∂t
= F (z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy.

7The process assumed here is an adaptation of ideas in Kortum (1997), Eaton and Kortum (1999), Alvarez,
Buera and Lucas (2008), and Lucas (2009).
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Differentiating with respect to z we obtain

∂f(z, t)

∂t
= −α(s(z, t))f(z, t)

∫ z

0

f(y, t)dy + f(z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy. (3)

Equation (3) can also be motivated by considering the evolution of the density at z directly,

as follows. Some agents who have cost z will adopt a lower cost y ≤ z and so there will be an

outflow of these agents. Other agents who have cost y ≥ z will adopt cost z and there will be

an inflow of these agents. Hence we can write

∂f(z, t)

∂t
=
∂f(z, t)

∂t

∣

∣

∣

∣

out
+
∂f(z, t)

∂t

∣

∣

∣

∣

in
.

Consider first the outflow. The f(z, t) agents at z have meetings at the rate α(s(z, t))f(z, t).

A fraction F (z, t) =
∫ z

0
f(y, t)dy of these draws satisfy y < z and these agents leave z. Hence

∂f(z, t)

∂t

∣

∣

∣

∣

out
= −α(s(z, t))

∫ z

0

f(y, t)dyf(z, t).

Next, consider the inflow. Agents with cost y ≥ z have meetings at the rate α(s(y, t))f(y, t).

Each of these meetings yields a draw z with probability f(z, t). Hence

∂f(z, t)

∂t

∣

∣

∣

∣

in
= f(z, t)

∫ ∞

z

α(s(y, t))f(y, t)dy.

Combining, we obtain (3). This type of equation is known in physics as a Boltzmann equation.

Now consider the behavior of a single agent with current cost z, acting in an environment

characterized by a given density path f(z, t), all z, t ≥ 0. The agent wants to choose a policy

s(z, t) so as to maximize the discounted, expected value of his earnings stream, expression (2).

The Bellman equation for this problem is8

ρV (z, t) = max
s∈[0,1]

{

(1 − s)z−θ +
∂V (z, t)

∂t
+ α(s)

∫ z

0

[V (y, t) − V (z, t)]f(y, t)dy

}

. (4)

The system (3) and (4) is an instance of what Lasry and Lions (2007) have called a “mean-field

game.” We summarize our discussion of the economy in the

Definition: An equilibrium, given the initial distribution f(z, 0), is a triple (f, s, V ) of

functions on R2
+ such that (i) given s, f satisfies (3) for all (z, t), (ii) given f , V satisfies (4),

8See Appendix A for a derivation of this continuous time Bellman equation as a limit of the corresponding
discrete time version.
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and (iii) s(z, t) attains the maximum for all (z, t) .

As is well known, there do not exist anything like general existence and uniqueness theorems

for systems of PDE’s and we do not attempt to prove these properties here. Furthermore, a

complete analysis of this economy would require the ability to calculate solutions for all initial

distributions. This would be an economically useful project to carry out, but we limit ourselves

in this paper to the analysis of a set of particular solutions on which the growth rate and the

distribution of relative costs are both constant over time.

Definition: A balanced growth path (BGP) is a number γ and a triple of functions (φ, σ, v)

on R+ such that

f(z, t) = eγtφ(zeγt), (5)

V (z, t) = eθγtv(zeγt), (6)

and

s(z, t) = σ(zeγt) (7)

for all (z, t) , and (f, s, V ) is an equilibrium with the initial condition f(z, 0) = φ (z) .

Intuitively, a BGP is simply a path for the distribution function along which all cost quantiles

shrink at the same rate γ (and hence all quantiles of productivity, z−θ, grow at rate θγ). That

is, on a BGP the cost cdf satisfies F (z, t) = Φ(zeγt) and therefore the qth quantile, zq(t),

satisfies Φ(zq(t)e
γt) = q or

zq(t) = e−γtΦ−1(q).

That the value and policy functions take the forms in (6) and (7) is then immediately implied.

The analysis of balanced growth is facilitated by restating (3) and (4) in terms of relative

costs x = zeγt. From (5), we have

∂f(z, t)

∂t
= γeγtφ(zeγt) + eγtφ′(zeγt)γzeγt

which from (3) and (7) implies

φ(x)γ + φ′(x)γx = φ(x)

∫ ∞

x

α(σ(y))φ(y)dy− α(σ(x))φ(x)

∫ x

0

φ(y)dy. (8)

Evaluating at x = 0, we have

φ(0)γ = φ(0)

∫ ∞

0

α(σ(y))φ(y)dy. (9)
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The Bellman equation (4) becomes

(ρ− θγ) v(x) − v′(x)γx = max
σ∈[0,1]

{

(1 − σ)x−θ + α(σ)

∫ x

0

[v(y) − v(x)]φ (y) dy

}

. (10)

Total production on a balanced growth path is

Y (t) = eθγt

∫ ∞

0

[1 − σ(x)]x−θφ(x)dx, (11)

provided the integral converges. Hence total production grows at the rate θγ.

If all agents in this economy had the same cost level z̄, say, then no one would have any

motive to search and everyone would simply produce z̄−θ forever. Such a trivial equilibrium

could be called a BGP with γ = 0, but our interest is in BGPs with γ > 0. To ensure that this

is a possibility we will need to add more structure. For this purpose, we add the assumption

that f(0, 0) ≡ limz→0 f(z, 0) > 0, implying that on a BGP φ(0) > 0. This condition is sufficient

to ensure that sustained growth at some rate γ > 0 is possible. We discuss its interpretation

momentarily. The next result shows that this restriction is equivalent to the assumption that

the initial distribution of productivity has a Pareto tail with tail parameter 1/θ.

Lemma 1: The initial cdf of productivity, G(a, 0) say, has a Pareto tail,

lim
a→∞

1 −G(a, 0)

a−1/θ
= λ for some λ > 0,

if and only if z = a−1/θ satisfies f(0, 0) = λ > 0.

Proof : We have that G(a, 0) = 1 − F (a−1/θ, 0) and therefore

lim
a→∞

1 −G(a, 0)

a−1/θ
= lim

a→∞

F (a−1/θ, 0)

a−1/θ
= lim

z→0

F (z, 0)

z
= f(0, 0) = λ.�

Thus requiring that f(0, 0) > 0 is the same thing as assuming a fat tailed initial pro-

ductivity distribution and the parameter θ has the interpretation as the inverse of the tail

parameter.

The interpretation of the restriction f(0, 0) > 0 is that the stock of good ideas waiting to be

discovered is inexhaustible. Taken literally, it means that all knowledge already exists at time

zero. Because some readers may struggle with this literal interpretation, in section 6.1 we work

out an alternative interpretation that we argue is observationally equivalent: knowledge at time

zero is bounded but new knowledge arrives at arbitrarily low frequency. These “innovations”

ensure that growth remains positive.
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Under the restriction f(0, 0) > 0, φ(0) > 0 and (9) imply that γ will be an average of the

search intensities α at different cost levels x:

γ =

∫ ∞

0

α(σ(x))φ(x)dx. (12)

We also assume that the learning technology function α : [0, 1] → R+ satisfies

α(s) ≥ 0, α′(s) > 0, α′′(s) < 0, all s,

and

α(1) > 0, α′(1) > 0, lim
s→0

α′(s) = ∞. (13)

The discount rate ρ satisfies

ρ ≥ θα(1). (14)

This will ensure that the preferences in (2) are well-defined.

3 Calculation and Analysis of Balanced Growth Paths

In this section we describe the algorithm we use to calculate BGPs, given a specified function

α, values for the parameters ρ and θ, and a value λ = φ(0) for the density at x = 0.

We begin an iteration with initial guesses (φ0, γ0) for (φ, γ) . Then for n = 0, 1, 2, ... we

follow

Step 1. Given (φn, γn), use (10) to calculate vn and σn.

Step 2. Given σn, solve (8) and (12) jointly to generate a new guess (φn+1, γn+1).

When these steps are completed, (φn+1, γn+1) and (vn, σn) have been calculated. When

(φn+1, γn+1) is close enough to (φn, γn), we call (φn, γn, vn, σn) a BGP equilibrium. Steps 1 and

2 themselves involve iterative procedures which we describe in turn.

For step 1, consider the Bellman equation (10). Define the function

S(x) =

∫ x

0

[v(y) − v(x)]φ (y) dy.

Then the first order condition for σ is

S(x)α′(σ) ≥ x−θ with equality if σ < 1. (15)
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Under our assumptions on α, this condition can be solved for a unique σ(x) ∈ (0, 1], that

satisfies σ′(x) > 0 as long as σ(x) < 1. There will be a unique value x̂ that satisfies

α′(1) =
x̂−θ

S(x̂)
.

Agents with relative costs x below x̂ will divide their time between producing and searching;

agents at or above x̂ will be searching full time. For x ≥ x̂, v(x) is constant at v (x̂) and thus

S(x) is constant at S(x̂). The value function v will satisfy v(x) > 0, v′(x) ≤ 0, limx→0v(x) = ∞

and

lim
x→∞

v′(x) = 0. (16)

The last condition motivates a boundary condition for the integro-differential equation (10).

All these conclusions hold for any density φ and γ > 0.

The computation of (vn, σn) given (φn, γn), follows itself an iterative procedure. We begin

an iteration with an initial guess v0
n for vn.9 Then for j = 0, 1, 2, ... we follow

Step 1a. Given vj
n(x), compute Sj

n(x) from (3) and σj
n(x) from (15).

Step 1b. Given σj
n(x), solve (10) together with the boundary condition (16) for vj+1

n (x). To carry

out these calculations, we applied a finite difference method on a grid (x1, x2, ..., xI) of I

values. Details are provided in Appendix C.1.

When vj+1
n and vj

n are sufficiently close, we set (vn, σn) = (vj
n, σ

j
n). This completes step 1.

For step 2, we express (8) as

φ(x)γ + φ′(x)γx = φ(x)ψ(x) − α(σ(x))φ(x)Φ(x) (17)

where ψ and Φ are defined by

ψ(x) =

∫ ∞

x

α(σ(y))φ(y)dy and Φ(x) =

∫ x

0

φ(y)dy .

Then

ψ′(x) = −α(σ(x))φ(x) (18)

Φ′(x) = φ(x) (19)

9We use v0
n(x) = x−θ/(ρ− θγn).

12



We further have φ(0) = λ, Φ(0) = 0. Finally, equation (12) can be written as γ = ψ(0). The

computation of (φn+1, γn+1) given (vn, σn) again follows an iterative procedure. We begin an

iteration with an initial guess γ0
n+1 for γn+1. Then for j = 0, 1, 2, ... we follow

Step 2a. Given γj
n+1 and σn, solve for functions φj

n+1(x),Φ
j
n+1(x), ψ

j
n+1(x) by solving the

system of ODEs (17) to (19) with boundary conditions

φj
n+1(0) = λ, Φj

n+1(0) = 0, ψj
n+1(0) = γj

n+1.

We again use a finite difference method with details provided in Appendix C.3.

Step 2b. Given φj
n+1, γ

j
n+1 and σn, update

γj+1
n+1 = ξ

∫ ∞

0

α(σn(x))φj
n+1(x)dx+ (1 − ξ)γj

n+1

where ξ ∈ (0, 1] is a relaxation parameter.

When γj+1
n+1 and γj

n+1 are sufficiently close, we set (φn, γn) = (φj
n, γ

j
n). This completes step

2. For the initial guess we use an exponential with parameter λ, φ0(x) = λ exp(−λx), and a

growth rate γ0 = α(1). For the function α we used

α(s) = ksη, η ∈ (0, 1).

The computational procedure is outlined in more detail in the Appendix C.

The mathematics of each of the steps just described, the solution to a Bellman equation, the

solution to an ordinary differential equation with given boundary questions, and the solution

to a fixed point problem in the growth parameter γ, are all well understood. We have not

been able to establish the existence or uniqueness of a BGP with γ > 0, but the algorithm we

have described calculates solutions to a high degree of accuracy for the exponential initial cost

density that we use as an initial guess and a variety of reasonable parameter values.

Figures 1-4 report the results of one simulation of this model, and provide some information

on the sensitivity of the policy function to changes in parameters. Figure 5 provides some

typical sample paths, to illustrate the kind of changes over time an individual’s choices and

earnings will exhibit along the BGP we have computed. The figures are intended to illustrate

the qualitative properties of the model, and the calibration of parameters will depend on the

application and available data. But there is a good deal of closely related research that uses

time series on aggregate growth rates and cross-section data on individual agents to estimate

parameters related to our parameters θ and η and it will be useful to describe how the numbers

13



we use are related to this evidence.

The growth rate of per capita GDP in the United States and other OECD countries has

fluctuated around two percent at least since World War II. This fact supports the application

of models that have a BGP equilibrium and suggest the value .02 for the product θγ. The pa-

rameter θ has interpretations both as a log variance parameter or as a tail parameter. Thinking

of agents in the model as individual workers as we have done, suggests using the variance of log

earnings to estimate θ. Lucas (2009), using a model with constant search effort, finds θ = 0.5

to be consistent with U.S. census earnings data. Gabaix (2009), Luttmer (forthcoming), and

others who identify agents (in our sense) with firms estimate θ = 1 (Zipf’s Law) as a good tail

parameter based on the size distribution of firms. Eaton and Kortum (2002) associate costs of

any specific good with an entire country, and obtain estimates of θ less than one, using inter-

national relative prices. Here we use the value θ = 0.5; results for θ = 0.7 are also shown in

Figure 1. Then given a choice of θ and a value for the parameter η, we can choose the constant

k so that γ = (.02)/θ.

None of the studies cited above provides evidence on η, which measures the elasticity of

search intensity with respect to the time spent searching. To obtain information on η we need

evidence on the technology of on-the-job human capital accumulation, such as that used by

Ben-Porath (1967), Rosen (1976), Heckman (1976) and Hause (1980).10 Rosen (1976) used a

parameter similar to our η. He assigned the value η = 0.5, in part to get a functional form that

was easy to work with. We used η = 0.3. Perla and Tonetti (2011) use a model similar to ours

in which α(s) is linear in s, so that workers work full time above a productivity threshold and

search full time otherwise. Our model approaches this situation as η = 1, although the Perla

and Tonetti model is not a special case of ours. See Figure 4 for experiments at η values 0.3,

0.6, and 0.9.

Figure 1 plots the equilibrium time allocation function, σ(x), against relative productivity

levels, x−θ for the two θ values 0.5 and 0.7. The units on the productivity axis are arbitrary.

We normalized productivity by dividing by median productivity for each value of θ. A higher

θ value (higher variance, fatter tail) induces a higher return to search. At either θ value the

least productive people search full time; the most productive work almost full time.

Figure 2 plots the productivity density for θ = 0.5, superimposed on a plot of a Pareto

density with tail parameter 1/θ = 2. The two curves coincide for large productivity levels.

Again, units are relative to the median value under the equilibrium density.

10Ben-Porath and Rosen suggested that any particular human capital path could be interpreted as a property
of an occupation, in which case one could view a person’s time allocation choices as implied by an initial, one-
time occupational choice. This appealing interpretation is open to us as well, as long as the path is interpreted
as a productivity-contingent stochastic process.
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Figure 1: Optimal Time Allocation, σ(x), for θ = 0.5 and θ = 0.7
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Figure 4: Optimal Time Allocation, for various η values.
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Figure 3 plots two equilibrium Lorenz curves for the same case θ = 0.5. The curve furthest

from the diagonal (the one with the most inequality) plots the fraction of current production

(1 − σ(x))x−θ attributed to workers with productivity less than x−θ. This is the standard

income flow Lorenz curve. The other curve, the one with less inequality, plots the fraction

of total discounted expected earnings v(x) accounted for by people with current productivity

less than x−θ. Here v(x) is the value function calculated in our algorithm. This value Lorenz

curve takes into account the effects of mobility along with the effect of current productivity.

In dynamic problems such as the one we study, it will be more informative to examine present

value rather than flow Lorenz curves.

Figure 4 plots the time allocation functions for three η values with θ set at 0.5. The η = 0.3

curve coincides with the θ = 0.5 curve in Figure 1.

Figure 5 shows various aspects of two randomly generated sample paths. Agents in our

model are infinitely-lived. A particular productivity sample path will never decrease—knowledge

in our model is never lost—but on a BGP relative productivities x−θ will wander forever with

long run averages described by the cdf Φ(x). This means, for example, that every sample path

will be in the interval [x̂,∞) for a fraction of time 1 − Φ(x̂), where x̂−θ is the productivity

level (defined in Section 3) below which it is not worthwhile to work. He will return to [x̂,∞)

infinitely often. (We can make the same statement about any x value but x̂ is chosen here for

a reason.) We can get a good sense of an individual sample path by thinking of each return

to [x̂,∞) as a death or retirement, where the departing worker is replaced by a new potential

worker who begins with some productivity x−θ
0 ≤ x̂−θ. Like a school child, this entrant starts

with some work-relevant knowledge and can begin to acquire more right away, but it may be

some time before his knowledge level has a market value. In the same way, some older workers,

even very knowledgeable ones, will find that the market value of their accumulated knowledge

has fallen to zero, not because they forget what they once knew but because the number of

others who know more has grown.

4 An Optimally Planned Economy

Neither the equilibrium conditions (3) and (4) for the decentralized economy nor their BGP

counterparts describe an economically efficient allocation. Each agent allocates his time to

maximize his own present value, but assigns no value to the benefits that increasing his knowl-

edge will have for others. Yet we are studying an economy where learning from others is the

sole engine of technological change.

In this section, we ask how a hypothetical, benificent planner would allocate resources.
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In our model economy, such a planner’s instruments are the time allocations of agents at

different cost levels and his objective is to maximize the expected value, discounted at ρ, of

total production. The state variable for this problem is the density f(z, t): a point in an infinite

dimensional space. We denote the value function, which maps a space of densities into R+, by

W. The problem is then to choose a function s : R
2
+ → [0, 1] to solve

W [f(z, t)] = max
s(·,·)

∫ ∞

t

e−ρ(τ−t)

∫ ∞

0

[1 − s(z, τ)] z−θf(z, τ)dzdτ

subject to the law of motion for f :

∂f(z, τ)

∂τ
= −α(s(z, τ))f(z, τ)

∫ z

0

f(y, τ)dy + f(z, τ)

∫ ∞

z

α(s(y, τ))f(y, τ)dy. (20)

and with f(z, t) given.

Instead of looking at the planner’s Bellman equation directly, it turns out to be more

convenient to work with the marginal value to the planner of one type z individual, which we

denote by w(z, t). This marginal value is more formally defined in Appendix B but the idea is

as follows. First, define by w̃(z, f) the marginal value of one type z individual if the distribution

is any function f :

w̃(z, f) ≡
δW (f)

δf(z)
.

Here δ/δf(z) is the “functional derivative” of the planner’s objective with respect to f at point

z, the analogue of the partial derivative ∂W (f)/∂fi for the case where z is discrete and hence

the distribution f takes values in R
n. See Appendix B.1 for a rigorous definition of such a

derivative. Note that the function w̃(z, f) is defined over the entire state space, the space of

all possible density functions f .

Now we define w(z, t) as the marginal value along the optimal trajectory of the distribution,

f(z, t):

w(z, t) ≡ w̃(z, f(z, t)),

thereby reducing the planner’s problem from an infinite-dimensional to a two dimensional prob-

lem. The logic is the familiar variational argument: If a plan is optimal, it cannot be improved

by telling any individual at any time to deviate from it.

Proposition 1 The marginal value to the planner of one type z individual, w(z, t), satisfies
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the Bellman equation

ρw(z, t) = max
s∈[0,1]

{

(1 − s)z−θ +
∂w(z, t)

∂t
+ α(s)

∫ z

0

[w(y, t) − w(z, t)]f(y, t)dy

}

−

∫ ∞

z

α(s(y, t)) [w(y, t) − w(z, t)] f(y, t)dy.

(21)

This result is intuitive. It states that the flow value ρw(z, t) contributed by one type z

individual is a sum of three terms. The first term is simply the output produced by this

individual. The second term is the expected value from improvements in type z’s future cost

to some y < z. We refer to this term as the “internal benefit from search”: It takes the same

form here as in the problem of an individual stated in (4), with private continuation values

replaced by the planner’s “social” values. Finally, the third term is the expected value from

improvements in the cost of other types y > z to z in case they should meet z. It is only in this

term, which we refer to as the “external benefit from search,” that the planning problem differs

from the individual optimization problem in the decentralized equilibrium. That is, individuals

internalize the benefit from search to themselves, but not the benefit to others.

The planner’s optimal choice of search intensity satisfies

z−θ = α′(s(z, t))

∫ z

0

[w(y, t) − w(z, t)]f(y, t)dy. (22)

The planner trades off costs and benefits from changing individual search intensities, s(z, t).

Increasing s(z, t) has three effects. First, production decreases by z−θ. Second, the outflow of

people at z increases by α′(s(z, t)), corresponding to a loss

−α′(s(z, t))w(z, t)

∫ z

0

f(y, t)dy.

Third, the inflow of people into y < z increases by α′(s(z, t)). This corresponds to a gain

α′(s(z, t))

∫ z

0

w(y, t)f(y, t)dy.

Note that the integral on the right hand-side of (22) is only taken over y ≤ z. This is because

from (20) changing s(z, t) has no direct effect on the distribution at y > z which only depends

on the search intensities, s(y, t), of those individuals with costs y > z.

As in the decentralized allocation, the Bellman equation here for the marginal value w(z, t)

(21) and the law of motion for the distribution (20) constitute a system of two partial differential
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equations that completely summarize the necessary conditions for a solution to the planning

problem.

A balanced growth path for the planning problem is defined in the same way as in the

decentralized equilibrium:

f(z, t) = eγtφ(zeγt), w(z, t) = eθγtω(zeγt).

Again, restating (20) and (21) in terms of relative productivities x = zeγt, we obtain a BGP

Bellman equation

(ρ− θγ)ω(x) − ω′(x)γx = max
σ∈[0,1]

{

(1 − σ)x−θ + α(σ)

∫ x

0

[ω(y) − ω(x)]φ(y)dy

}

−

∫ ∞

x

α[ς(y)][ω(y)− ω(x)]φ(y)dy

(23)

and an equation for the BGP distribution, (8). It is important to note that while the equation

for the distribution is the same as in the decentralized equilibrium, the planner will generally

choose a different time allocation, ς(x), and hence different arrival rates, α(ς(x)), implying a

different BGP distribution. Here and below we use the notation ς(x) for the planner’s policy

function, to distinguish it from the policy function σ(x) chosen by individual agents. Finally,

the parameter γ is given by (12) evaluated using the planner’s time allocation, ς(x).

Figure 6 compares the time allocation, ς(x), chosen by the planner with the outcome of the

decentralized equilibrium. Not surprisingly, the planner assigns a higher fraction of time spent

searching to all individuals so as to internalize the “external benefit from search” discussed

above. This implies a higher growth rate θγ in the planning problem vis-à-vis the decentralized

economy. The larger amount of time allocated towards search is also reflected in a lower initial

level of total production, Y (0).

Figures 7 and 8 compare the Lorenz curves for flow income and the present value of future

income in the decentralized equilibrium and planning problem. An immediate implication of

more time allocated towards search is a higher degree of income inequality in the planning

problem. This effect is, however, much more muted if we instead measure inequality by the

value Lorenz curve, which takes into account mobility in the productivity distribution.
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5 Tax Implementation of the Optimal Allocation

In this section we propose and illustrate a Pigovian tax structure that implements the optimal

allocation by aligning the private and social returns to search. In this model a flat tax on income

will be neutral: it will have identical effects on both sides of the first order condition (15). We

use such a tax to finance a productivity related subsidy τ(z, t) to offset the opportunity cost

z−θs of search time s. The flat tax τ0 satisfies the government budget constraint

∫ ∞

0

τ(z, t)s(z, t)z−θf(z, t)dz = τ0

∫ ∞

0

(1 − s(z, t))z−θf(z, t)dz.

Under this tax structure, the individual Bellman equation becomes

ρV (z, t) = max
s∈[0,1]

{

(1 − τ0)[(1 − s)z−θ + τ(z, t)z−θs] +
∂V (z, t)

∂t
+ α(s)

∫ z

0

[V (y, t) − V (z, t)]f(y, t)dy

}

.

The law of motion for the distribution (3) and the expression for aggregate output (11) are

unchanged.

Let vn(x) (n for “net”) be the present value of an individual’s earnings, net of subsidies and

23



taxes, and replace the equation defining the value function on a BGP (6) by

V (z, t) = (1 − τ0)e
θγtvn(zeγt).

In addition τ(z, t) = τ(zeγt). This function vn(x) satisfies

(ρ− θγ) vn(x) − v′n(x)γx = max
σ∈[0,1]

{

(1 − σ)x−θ + τ(x)x−θσ + α(σ)

∫ x

0

[vn(y) − vn(x)]φ (y)dy

}

,

where both the density φ and the growth rate γ are taken from the planning problem.

As before, we let

Sn(x) =

∫ x

0

[vn(y) − vn(x)]φ (y) dy.

The first order condition is

(1 − τ(x)) x−θ ≤ α′(σ)Sn(x) with equality if σ < 1.

The agent takes τ(x) as given and chooses σ(x).

The planner wants to choose the subsidy rate τ(x) so that individuals choose σ(x) = ς(x),

the time allocation that the planner has already decided on. This choice is then

(1 − τ(x))x−θ = α′(ς(x))Sn(x) (24)

provided that ς(x) < 1. At the smallest value x̄ at which ς(x) = 1, τ(x̄) is the rate at which

the agent is indifferent between working a small amount and not working at all. For x > x̄,

equality in (24) gives the subsidy rate that maintains indifference as cost increases from x̄. Of

course, any higher subsidy rate in this range would have the same effect.

The Bellman equation under the tax policy just described is

(ρ− θγ) vn(x) − v′n(x)γx = x−θ − ς(x)α′(ς(x))S(x) + α(ς(x))

∫ x

0

[vn(y) − vn(x)]φ (y) dy.

With the function α(σ) = kση that we use, α(σ)−σα′(σ) = kση −σηkση−1 = (1 − η)α(σ) and

so

(ρ− θγ) vn(x) − v′n(x)γx = x−θ + (1 − η)α(ς(x))

∫ x

0

[vn(y) − vn(x)]φ (y) dy (25)

on (0, x̄). On [x̄,∞), vn (x) = vn (x̄) .

Given ς(x) and γ from the planning problem, (25) can be solved for vn(x) and Sn(x),

applying the algorithm used earlier. The tax rate τ(x) can then be computed using (24). Figure
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9 plots the two policy functions σ(x) and ς(x) and the subsidy rate τ(x). On the interval A

on the figure, agents choose σ = 1 in both the decentralized and planned cases, so no tax is

needed to encourage more search. On the interval B, the planner wants everyone to search

full time so τ(x) is chosen to induce agents to prefer this to doing any production. The agents

with the lowest productivity on the interval B choose to work in the decentralized economy

but the planned allocation implemented by the tax improves their return from search enough

that no additional tax incentive is needed. On the interval C, the planner wants to increase

everyone’s search: compare σ(x) to ς(x). The opportunity cost of search increases without limit

as x−θ → ∞. This requires that τ(x) be an increasing function on C.
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Figure 9: Pigovian Implementation of the Optimal Allocation

In the example shown in Figure 9, the only agents with positive earnings are those on the

interval C. All of them pay the flat tax τ0 on earnings and receive offsetting subsidies designed

to encourage search. These subsidy rates increase faster than earnings, making the tax system

as a whole regressive. It is worth emphasizing that this is a feature of a tax system which has

the single purpose of encouraging productivity innovation. Considerations of distorting taxes

and distribution, central to much of tax analysis, have simply been set aside.

25



6 Alternative Learning Technologies

All of the analysis so far has been carried out under the learning technology described in

Section 2. Even under the limits of a one-dimensional model of knowledge, however, there are

many other models of learning that might be considered. It turns out that the algorithm we

describe in Section 3 is not difficult to adapt to some alternatives. Ultimately, which of these

and other alternatives are substantively interesting will depend on the evidence we are trying

to understand. In this section, we simply illustrate some theoretical possibilities with three

examples.

6.1 Exogenous Knowledge Shocks

In our analysis of the benchmark model, we postulated that all productivity levels that anyone

would ever attain were already represented by some individual alive at date t = 0. This we

expressed as the restriction that the initial cost density must satisfy f(0, 0) = λ > 0. By Lemma

1 in Section 2 this is equivalent to assuming that the distribution of initial productivities must

have a Pareto tail with parameter 1/θ. Although this assumption led us to asymptotic behavior

in good agreement with the sustained growth we observe, some feel this must be for the wrong

reasons, that we are denying the possibility of innovation or discovery. In this sub-section

we offer a seemingly different learning technology, one that admits ideas that are genuinely

“new,” and show that its implications are observationally equivalent to the benchmark model

we described in Section 2.

To present the argument at its simplest, we consider only the special case of a constant

arrival rate α and state the case in terms of the distribution of productivity a = z−θ instead

of cost z. Denote the cdf of productivity by G(a, t). In this case, the cdf in a closed economy

evolves according to
∂G(a, t)

∂t
= −α[1 −G(a, t)]G(a, t).

Under the assumption maintained in our benchmark model that G(a, 0) has a Pareto tail with

tail parameter 1/θ, the growth rate on a BGP will be ν = αθ and the density function of

relative productivities will be

lim
t→∞

G(xeνt, t) =
1

1 + λx1/θ
.

This is the constant-α version of our benchmark model. (See Appendix D for this and other

essential details.)
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Now let us add a second source of ideas—we could call them undiscovered ideas—in the

form of a cdf H(a). Assume that people access this second idea source at a constant rate β.

The evolution of G is now described by11

∂G(a, t)

∂t
= −α[1 −G(a, t)]G(a, t) − β[1 −H(a)]G(a, t). (26)

As in the case where β = 0, the solution to (26) can be written out on sight and its asymptotic

behavior is straightforward to analyze (again see Appendix D).

This modification offers several possibilities. If neither G(a, 0) or H(a) has a Pareto tail,

there is no growth in the long-run and

lim
t→∞

G(xeνt, t) = 1

for all x > 0 and ν > 0. This is a possibility that we ruled out by assumption in Section 2.

A second possibility is that G(a, 0) has a fatter tail than H(a), in which case the process

converges to a balanced growth path with growth rate ν = αθ and the asymptotic distribution

satisfies

lim
t→∞

G(xeνt, t) =
1

1 + λx1/θ
.

where, as before, 1/θ is the tail parameter of G(a, 0) and λ is a positive constant. In this case

the external idea source becomes irrelevant as t → ∞ and asymptotic behavior is the same as

in the benchmark case where β = 0.

A third possibility arises in the reverse case where H(a) has a fatter tail than G(a, 0).

Denoting the tail parameter of H(a) by 1/ξ, the process converges to a balanced growth path

with growth rate ν = αξ and the asymptotic distribution satisfies

lim
t→∞

G(xeνt, t) =
1

1 + (β/α)µx1/ξ
,

where µ > 0. Note that this case also allows for the possibility that the initial distribution of

knowledge is bounded above by some finite number.

For completeness we add the case where H(a) and G(a, 0) have the common tail parameter

11Alvarez, Buera and Lucas (2007, last equation on p.9) derive the same law of motion for the same cost,
z = a−1/θ, formulation used in the main text: if the cost CDF is F (z, t) and the external source M(z), then

∂F (z, t)

∂t
= αF (z, t)[1 − F (z, t)] + βM(z)[1 − F (z, t)]

Using that F (z, t) = 1−G(z−θ, t),M(z) = 1−H(z−θ), we obtain (26). We here find the productivity formulation
more intuitive because it emphasizes the importance of the right tail of the productivity distribution.
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1/θ and the process converges to a balanced growth path with growth rate ν = αθ and the

asymptotic distribution satisfies

lim
t→∞

G(xeνt, t) =
1

1 + [λ+ (β/α)µ]x1/θ
.

The identity of asymptotic behavior in the last three cases is what we mean by observational

equivalence. Note too that in all three cases it is the matching parameter α that combines with

a tail parameter to determine the long run growth rate. If there were no diffusion, α = 0,

there would be no growth! Finally, note that there is no condition on the frequency at which

innovations arrive, β, except that it is positive. That is, “innovations” can be very rare without

impairing long term growth. This is true even if the initial knowledge distribution G(a, 0) is

bounded above. Furthermore, the frequency at which innovations arrive, β, does not affect the

growth rate, ν. In this sense, diffusion rather than innovation is the engine for growth in this

economy.

6.2 Limits to Learning

In the theory we have considered so far, a person’s current productivity level determines his

ability to produce goods but has no effect on his ability to acquire new knowledge. The

outcome of a search by agent z who meets an agent y < z is y, regardless of the value of his

own cost z. But it is easy to think of potential knowledge transfers that cannot be carried

out if the “recipient’s” knowledge level is too different from that of the “donor.” To explore

this possibility, we make use of an appropriate “kernel” to modify the law of motion for the

distribution (3). Assume for example that if an agent at z meets another agent at y, he can

adopt y with probability k(y, z, t); with probability 1 − k(y, z, t) he cannot do this and retains

his previous cost z. Then the law of motion for the distribution becomes

∂f(z, t)

∂t
= f(z, t)

∫ ∞

z

α(s(y, t))f(y, t)k(z, y, t)dy− α(s(z, t))f(z, t)

∫ z

0

f(y, t)k(y, z, t)dy.

A natural assumption on the kernel k is that the probability of z learning from y is unchanged

over time if z and y are at the same quantiles of the cost distribution

k(y, z, t) = k(y′, z′, t′), for F (y, t) = F (y′, t′) and F (z, t) = F (z′, t′). (27)

(Think of our cohort interpretation of the stochastic careers in Figure 5. A “newborn” beginning

at date t + τ immediately benefits from the fact that productivities in general are eθγτ larger

28



than they were for his “parent” who arrived at t.) Along a balanced growth path for the

distribution as defined in (5), all cost quantiles shrink at a common rate γ. Hence (27) can be

written as12

k(y, z, t) = k(yeγt, zeγt, 0).

We find it convenient to work with the functional form

k(y, z, 0) = e−κ|y−z|, (28)

where κ > 0 is the rate at which learning probabilities fall off as knowledge differences increase.

We can think of this kernel as reflecting an ordering in the learning process or some limits to

intellectual range.13 An equivalent interpretation of this kernel is that meeting probabilities

depend on the distance between different productivity types, so that each person has a higher

chance of meeting those with a knowledge level close to his own. In this interpretation, the

parameter κ captures the degree of socioeconomic segregation or stratification in a society.

With the functional form in (28), we can derive the following expressions for the law of

motion for the distribution along a BGP

φ(x)γ + φ′(x)γx = φ(x)

∫ ∞

x

α(σ(y))φ(y)e−κ(y−x)dy − α(σ(x))φ(x)

∫ x

0

φ(y)e−κ(x−y)dy

Evaluating at x = 0, the growth rate of the economy is

γ =

∫ ∞

0

α(σ(y))φ(y)e−κydy. (29)

Analogously, the corresponding Bellman equation is

(ρ− θγ) v(x) − v′(x)γx = max
σ∈[0,1]

{

(1 − σ)x−θ + α(σ)

∫ x

0

[v(y) − v(x)]φ(y)e−κ(x−y)dy

}

.

Figure 10 plots the optimal time allocation, σ(x), for various values of the parameter mea-

suring the limits to learning, κ. Going from κ = 0 to κ = 0.01 changes people’s search behavior

dramatically. High productivity types allocate a roughly equal amount of time towards knowl-

edge acquisition regardless of κ. But low productivity types are discouraged from search,

12To see this, use that along a BGP F (z, t) = Φ(zeγt) and let t′ = 0 in (27).
13Jovanovic and Nyarko (1996) suggested the following rationale for such limits to learning: different produc-

tivity types, z−θ, correspond to different activities and human capital is partially specific to a given activity.
When an agent switches to a new activity, he loses some of this human capital, and more so the more different
is the new activity.
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resulting in search intensity being a hump-shaped function of current productivity. The reason

for this is that the benefit from search

S(x) =

∫ x

0

[v(y) − v(x)]φ(y)e−κ(x−y)dy

is no longer very high for low productivity (high cost) types. Because low productivity types

also have a low probability of benefiting from a meeting with a high productivity type, their

expected payoff from search is low and their search effort is discouraged. Increases in κ have little

effect on income inequality, as Figure 11 shows, but a large effect on present value inequality,

especially for low productivity types, as Figure 12 shows. Another way of putting this is that

social mobility decreases dramatically as κ increases.
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Figure 10: Optimal Time Allocation, σ(x), for various κ values.

As can also be seen on these figures, the growth rate of the economy, θγ, declines as the

limits to learning, κ, increase. This is due to two effects. First and as just discussed, some low

productivity types allocate less time towards search. Because the growth rate of the economy

is an average of individual search intensities, this depresses growth. Second, there is a direct

negative effect of κ on the growth rate as can be seen in the formula (29). This direct effect

comes from the fact that the number of agents whose productivity exceeds any value 1/εθ at

any point in time (the inflow into the cost interval (0, ε)) is lower because low productivity

agents face a lower probability of meeting high productivity ones.
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Figure 11: Income Lorenz curves for various κ values.
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Figure 12: Present Value Lorenz curves for various κ values.
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Finally, Figure 13 also reports the time allocation chosen by an idealized social planner

who is constrained by the limits to learning that characterize the decentralized equilibrium.

Compared with the time allocation in the decentralized equilibrium reported in Figure 10, the

planner chooses a higher search intensity for each κ value. Note that even this planner gives up

on low productivity types because the social value of their attempts at knowledge acquisition

is diminished by the fact that they are unlikely to learn from those with high productivity.
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Figure 13: Planner’s Time Allocation, σ(x), for various κ values.

To obtain information on our parameter κ, our theory suggests studying the speed of on-the-

job human capital accumulation and the degree of social mobility in a society. With regard to

the former, Lagakos, Moll and Qian (2012) examine experience-earnings profiles across countries

and document that the wage increase associated with increasing worker experience is lower

for poorer countries. This is consistent with there being greater limits to learning in these

countries. Comparing income and present value Lorenz curves in Figures 11 and 12, social

mobility decreases sharply with κ. Both evidence on intra- and inter-generational mobility is

informative, even though our theory does not distinguish between the two. In section 3, we

have already cited some studies on on-the-job human capital accumulation and the slope of

earnings profiles. There are also many studies examining the correlation in lifetime income

between parents and children (e.g. Solon, 1992) or intergenerational transition probabilities

between different income quantiles (e.g. Zimmerman, 1992).14

14See Becker and Tomes (1979), Benabou (2002) and Benhabib, Bisin and Zhu (2011) for alternative theories
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6.3 Symmetric Meetings

Another feature of the learning technology applied in Sections 1-5 is the fact that meetings

between two agents z and y are completely asymmetric. Agents could only upgrade their

knowledge through active search while the other party to the meeting gains nothing and can

well be unaware that he is being met.

Depending on the specific application, this may not be the best assumption. For example,

Arrow (1969) argues that “the diffusion of an innovation [is] a process formally akin to the

spread of an infectious disease.” This description of meetings has a symmetric component: a

person can get “infected” even when he didn’t actively search for the “disease”. The model

can easily be extended to encompass the case where meetings are symmetric, as we now show.

To capture symmetric meetings, we assume that even if y initiated the meeting, z can learn

from y with probability β. Therefore, β parameterizes how strong passive spillovers are: β = 0

corresponds to our benchmark model; β = 1 is the case of perfectly symmetric meetings. Under

this assumption, we obtain the new law of motion

∂f(z, t)

∂t
= − f(z, t)

∫ z

0

[α(s(z, t)) + βα(s(y, t))]f(y, t)dy

+ f(z, t)

∫ ∞

z

[α(s(y, t)) + βα(s(z, t))]f(y, t)dy.

The main difference from the asymmetric law of motion (3) is that here the search intensities

s(z, t) and s(y, t) enter in a symmetric fashion. Agents at z now have opportunities to upgrade

their productivities even if another agent y initiated the meeting. These opportunities arrive

at rate α(s(z, t)) + βα(s(y, t)) rather than just α(s(z, t)). The Bellman equation now becomes

ρV (z, t) = max
s∈[0,1]

{

(1 − s)z−θ +
∂V (z, t)

∂t
+

∫ z

0

[α(s) + βα(s(y, t))][V (y, t) − V (z, t)]f(y, t)dy

}

.

The corresponding equations along a BGP are found as above. Figures 14 and 15 report the

optimal time allocation and productivity density for various values of the parameter measuring

the amount of passive spillovers, β. The more knowledge that can be acquired without actively

searching, the lower is agents’ incentive to search. Since the economy-wide growth rate is still

an average of individual search intensities, this “free-riding” implies that the growth rate is

actually lower the higher are spillovers, β. At the same time, a higher β implies that the

BGP distribution places more mass on high productivity types (Figure 15). Figures 16 to

18 compare the decentralized equilibrium just described to the allocation chosen by a social

of the relationship between inequality and the degree of intragenerational mobility.
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planner when meetings are symmetric. The time allocation chosen by the social planner now
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Figure 14: Optimal Time Allocation, σ(x), for various β values

differs dramatically from that in the decentralized equilibrium. The planner makes the most

productive agents search full time, the high opportunity cost notwithstanding. He views them

as even more valuable as “teachers,” reaching out to meet less productive agents, increasing

the probability that less productive agents will learn from them. After such an unproductive

agent becomes productive, he searches full time for a while, but as his relative productivity

declines (as in panel (b) of Figure 5) he resumes working. While period-by-period income is

more unequally distributed under the planner’s time (Figure 17), this is no longer true for the

present value of income. The Lorenz curves in Figure 18 cross, meaning that in parts of the

distribution the decentralized equilibrium features too little mobility relative to the planning

problem.

7 Conclusion

We have proposed and studied a new model of economic growth in which individuals differ only

in their current productivity, and the state of the economy is fully described by the probability

distribution of productivities. The necessary conditions for equilibrium in the model take

the form of a Bellman equation describing individual decisions on the way to allocate time
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Figure 16: Optimal Time Allocation with Symmetric Meetings
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Figure 17: Income Lorenz Curves, Symmetric Meetings
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Figure 18: Value Lorenz Curves, Symmetric Meetings
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between producing and searching for new ideas and a law-of-motion for the economy-wide

productivity distribution. With the right kind of initial conditions these forces can interact to

generate sustained growth. We show that among these possibilities is a balanced growth path,

characterized by a constant growth rate and a stable Lorenz curve describing relative incomes.

We provide an algorithm for calculating solutions along this path.

This solution is the outcome of a decentralized system in which each agent acts in his own

interest. But the new knowledge obtained by any one agent benefits others by enriching their

intellectual environment and raising the return to their own search activities. We then formulate

the problem of a hypothetical planner who can allocate people’s time so as to internalize this

external effect. We show how the decentralized algorithm can be adapted to compute the

planning solution as well, and compare it to the decentralized solution. We then consider

tax structures that implements an optimal solution. Finally we provide three examples of

alternative learning technologies show that the properties of equilibrium allocations are quite

sensitive to these variations.

All of this is carried out in a starkly simple context in order to reveal the economic forces

involved and the nature of their interactions, and to build up our experience with a novel and

potentially useful mathematical structure. But we also believe that the external effects we

study here are centrally important to the understanding of economic growth and would like

to view our analysis as a step toward a realistically quantitative picture of the dynamics of

production and distribution.15

Appendix

A Derivation of Bellman Equation

Let time be indexed by t, t+ ∆, .... Denote the discount factor between two periods by 1 − ∆ρ. The

Bellman equation is

V (z, t) = max
s∈[0,1]

∆(1 − s)z−θ + (1 − ∆ρ)

×

{

∆α(s)

∫ ∞

0
max{V (y, t+ ∆), V (z, t+ ∆)}f(y, t+ ∆)dy + (1 − ∆α(s))V (z, t+ ∆)

}

15In this regard, see also Choi (forthcoming).
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Rewrite as

V (z, t) = max
s∈[0,1]

∆(1 − s)z−θ + (1 − ∆ρ)

×

{

∆α(s)

∫ z

0
[V (y, t+ ∆) − V (z, t + ∆)]f(y, t+ ∆)dy + V (z, t+ ∆)

}

.

Subtract (1 − ∆ρ)V (z, t) from both sides

∆ρV (z, t) = max
s∈[0,1]

∆(1 − s)z−θ + (1 − ∆ρ)

×

{

∆α(s)

∫ z

0
[V (y, t+ ∆) − V (z, t+ ∆)]f(y, t+ ∆)dy + V (z, t+ ∆) − V (z, t)

}

.

Dividing by ∆ and taking the limit as ∆ → 0 yields equation (4).

B Proof of Proposition 1

B.1 Mathematical Preliminaries

The value function of the planner W [f(z, t)] is a functional, that is a map from a space of functions to

the real numbers, or informally a “function of a function”. The planner chooses a function f(z, t) to

maximize this functional, which is the prototypical problem in the calculus of variations. The concept

of a functional derivative is helpful in solving this problem.

Definition: The functional derivative of W with respect to f at point y is

δW [f(z)]

δf(y)
≡ lim

ε→0

W [f(z) + εδ(z − y)] −W [f(z)]

ε
=

d

dε
W [f(z) + εδ(z − y)]

∣

∣

∣

∣

ε=0

(30)

where δ(·) is the Dirac delta function.

The functional derivative is the natural generalization of the partial derivative. Thus, consider the

case where z is discrete and takes on n possible values, z ∈ {z1, ..., zn}. The corresponding distribution

function is then simply a vector f ∈ R
n and the planner’s value function is an ordinary function of n

variables, W : R
n → R. The partial derivative in this case is defined as

∂W (f)

∂fi
≡ lim

ε→0

W (f1, ..., fi + ε, ..., fn) −W (f1, ..., fi, ..., fn)

ε
(31)

If we denote by δ(i) ∈ R
n the vector that has elements δi(i) = 1 and δi(j) = 0 for all i 6= j, then (31)

cab be written as

∂W (f)

∂fi
≡ lim

ε→0

W (f + εδ(i)) −W (f)

ε
=

d

dε
W (f + εδ(i))

∣

∣

∣

∣

ε=0

38



It can be seen that the functional derivative in (30) is defined in the exact same way.

Another fact that will be useful below, is that the integral of the Dirac delta function can be

expressed as the Heaviside step function

∫ z

−∞
δ(ζ)dζ =







1, z ≥ 0

0, z < 0
≡ H(z)

Similarly, integrals of the Dirac delta function centered at y are

∫ z

−∞
δ(ζ − y)dζ = H(z − y),

∫ ∞

z
δ(ζ − y)dζ = H(y − z)

B.2 Bellman Equation

With this mathematical apparatus in hand, the planner’s problem can be written in recursive form as

ρW [f ] = max
s

∫ ∞

0
[1 − s(z)]z−θf(z)dz +

∫ ∞

0

δW [f ]

δf(z)
f̂(z; s, f)dz (32)

where

f̂(z; s, f) = −α(s(z))f(z)

∫ z

0
f(y)dy + f(z)

∫ ∞

z
α(s(y))f(y)dy. (33)

Lemma 2: A solution s(·) to the planning problem must satisfy

z−θ = α′(s(z))

∫ z

0

[

δW [f ]

δf(y)
−
δW [f ]

δf(z)

]

f(y)dy for all z. (34)

Proof: The planner’s first order condition is

0 =
δ

δs(z)

[
∫ ∞

0
[1 − s(y)]y−θf(y)dy +

∫ ∞

0

δW [f ]

δf(y)
f̂(y; s, f)dy

]

Using the definition of a functional derivative

δ

δs(z)

∫ ∞

0
[1 − s(y)]y−θf(y)dy =

d

dε

∫ ∞

0
[1 − (s(y) + εδ(y − z))]y−θf(y)dy

∣

∣

∣

∣

ε=0

= −
d

dε

∫ ∞

0
δ(y − z)y−θf(y)dy = −z−θf(z)

(35)
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Using similar manipulations for the second term:

z−θf(z) =

∫ ∞

0

δW [f ]

δf(y)

δf̂(y; s, f)

δs(z)
dy (36)

From (33), we have

δf̂(y; s, f)

δs(z)
= −α′(s(y))δ(y − z)f(y)

∫ y

0
f(ζ)dζ + f(y)

∫ ∞

y
α′(s(ζ))δ(ζ − z)f(ζ)dζ

= −α′(s(y))δ(y − z)f(y)

∫ y

0
f(ζ)dζ + f(y)α′(s(z))f(z)H(z − y)

where we use the relation between Dirac delta and Heaviside step function.

Therefore (36) can be written as

z−θf(z) =

∫ ∞

0

δW [f ]

δf(y)
f(y)α′(s(z))f(z)H(z − y)dy −

∫ ∞

0

δW [f ]

δf(y)
α(s(y))δ(y − z)f(y)

∫ y

0
f(ζ)dζdy

=

∫ z

0

δW [f ]

δf(y)
α′(s(z))f(z)f(y)dy −

δW [f ]

δf(z)
α′(s(z))f(z)

∫ z

0
f(ζ)dζ

Collecting terms yields (34).�

B.3 Proof of Proposition 1

Differentiating (32) with respect to f(z), we obtain

ρw̃(z, f) = (1 − s(z))z−θ +
δ

δf(z)

∫ ∞

0

δW (f)

δf(y)
f̂(y; s, f)dy (37)

We have

δ

δf(z)

∫ ∞

0

δW (f)

δf(y)
ḟ(y; s, f)dy =

∫ ∞

0

δw̃(y, f)

δf(y)
f̂(y; s, f)dy +

∫ ∞

0
w̃(y, f)

δf̂ (y; s, f)

δf(z)
dy (38)

From (33) and using the relation between Dirac delta and Heaviside step function,

δf̂(y; s, f)

δf(z)
= − α(s(y))δ(y − z)

∫ y

0
f(ζ)dζ − α(s(y))f(y)H(y − z)

+ δ(y − z)

∫ ∞

y
α(s(ζ))f(ζ)dζ + f(y)α(s(z))H(z − y)
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and similarly for the last term. Hence

∫ ∞

0
w̃(y, f)

δf̂(y; s, f)

δf(z)
dy = − w̃(z, f)α(s(z))

∫ z

0
f(ζ)dζ −

∫ ∞

z
w̃(y, f)α(s(y))f(y)dy

+ w̃(z, f)

∫ ∞

z
α(s(ζ))f(ζ)dζ +

∫ z

0
w̃(y, f)f(y)α(s(z))dy

=α(s(z))

∫ z

0
[w̃(y, f) − w̃(z, f)]f(y)dy

−

∫ ∞

z
α(s(y)) [w̃(y, f) − w̃(z, f)] f(y)dy

Combining with (37) and (38), we have

ρw̃(z, f) =(1 − s(z))z−θ +

∫ ∞

0

δw̃(y, f)

δf(y)
f̂(y; s, f)dy

+ α(s(z))

∫ z

0
[w̃(y, f) − w̃(z, f)]f(y)dy −

∫ ∞

z
α(s(y)) [w̃(y, f) − w̃(z, f)] f(y)dy

Define

w(z, t) ≡ w̃(z, f(z, t)) (39)

Then
∂w(z, t)

∂t
=

∫ ∞

0

δw̃(y, f(y, t))

δf(y, t)
f̂(y; s(y, t), f(y, t))dy

and hence

ρw(z, t) =(1 − s(z, t))z−θ +
∂w(z, t)

∂t
+ α(s(z, t))

∫ z

0
[w(y, t) − w(z, t)]f(y, t)dy

−

∫ ∞

z
α(s(y, t)) [w(y, t) − w(z, t)] f(y, t)dy

(40)

Further, using (39), the FOC (34) can be written as

z−θ = α′(s(z, t))

∫ z

0
[w(z, t) − w(y, t)] f(y)dy (41)

(40) and (41) can be summarized as (21).�

C Computation

C.1 Step 1: Solution to Bellman Equation – Decentralized Equilibrium

The BGP Bellman equation (10) can be rewritten as

(ρ− θγ)v(x) = x−θ[1 − σ(x)] + γxv′(x) + α[σ(x)]S(x)
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where S(x) is defined as

S(x) ≡

∫ x

0
[v(y) − v(x)]φ(y)dy =

∫ x

0
v(y)φ(y)y − v(x)Φ(x)

and Φ(x) =
∫ x
0 φ(y)dy, that is the cdf corresponding to φ. The optimal choice σ(x) is defined implicitly

by the first order condition (15). We further have a boundary condition (16).

We solve these equations using a finite difference method which approximates the function v(x)

on a finite grid, x ∈ {x1, ..., xI}. We use the notation vi = v(xi), i = 1, ..., I.16 We approximate the

derivative of v using a forward difference

v′(xi) ≈
vi+1 − vi

hi

where hi is the distance between grid points xi and xi+1. The boundary condition (16) then implies

0 ≈ v′(xI) =
vI+1 − vI

hI
⇒ vI+1 = vI . (42)

Similarly, we approximate S(x) by

Si = S(xi) ≈

i
∑

l=1

vlφlhl − viΦi (43)

Further, denote by σi = σ(xi) and αi = α[σ(xi)] the optimal time allocation and search intensity.

We proceed in an iterative fashion: we guess v0
i and then for j = 0, 1, 2... form vj+1

i as follows.

Form Sj
i as in (43), and obtain σj

i and αj
i from the first order condition (45). Write the Bellman

equation as

(ρ− θγ)vj+1
i = (1 − σj

i )x
−θ
i + γxi

vj+1
i+1 − vj+1

i

hi
+ αj

i

[

i
∑

l=1

vj+1
l φlhl − vj+1

i Φi

]

, i = 1, ..., I (44)

Given vj and hence σj and αj , and using the boundary condition vj+1
I+1 = vj+1

I , (44) is a system of

I equations in I unknowns, (vj+1
1 , ..., vj+1

I ), that can easily be solved for the updated value function,

vj+1. Using matrix notation

Ajvj+1 = bj, bji = (1 − σi)x
−θ
i , Aj = Bj − Cj

16A useful reference is Candler (1999).
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where17

Bj =















ρ− θγ + αj
1Φ1 + γx1

h1
−γx1

h1
0 . . . 0

0 ρ− θγ + αj
2Φ2 + γx2

h2
−γx2

h2
. . . 0

...
...

. . .
. . .

...

0 . . . . . . . . . ρ− θγ + αj
IΦI















Cj =





















α1φ1h1 0 . . . . . . 0

α2φ1h1 α2φ2h2 0 . . . 0

α3φ1h1 α3φ2h2
. . .

. . .
...

...
...

. . .
. . . 0

αIφ1h1 αIφ2h2 . . . αIφI−1hI−1 αIφIhI





















Solve the system of equations and iterate until vj+1 is close to vj .

C.2 Step 1: Solution to Bellman Equation – Planning Problem

The Bellman equation for the planning problem (23), can be written as

(ρ− θγ)ω(x) − ω′(x)γx = [1 − σ(x)]x−θ + α[σ(x)]S(x) +Q(x)

where

S(x) ≡

∫ x

0
[ω(y) − ω(x)]φ(y)dy =

∫ x

0
ω(y)φ(y)dy − ω(x)Φ(x)

Q(x) ≡ −

∫ ∞

x
α[σ(y)][ω(y) − ω(x)]φ(y)dy = −

∫ ∞

x
α[σ(y)]ω(y)φ(y)dy + ω(x)ψ(x)

ψ(x) ≡

∫ ∞

x
α(σ(y))φ(y)dy

and the optimal choice σ(x) is defined implicitly by the first-order condition

x−θ ≥ α′[σ(x)]S(x). (45)

We use the same finite difference approximation as above, that is approximate ω(x) on a finite grid

x ∈ {x1, ..., xI}. We again approximate the functions S(x), σ(x) and α(σ(x)) as in (43), and the

17This follows from rearranging the Bellman equation as

[

ρ− θγ + αj
iΦi +

γxi

hi

]

vj+1
i −

γxi

hi
vj+1
i+1 − αj

i

i
∑

l=1

hlφlv
j+1
l = (1 − σj

i )x
−θ
i

and then rewriting it in matrix notation.

43



functions Q(x) and ψ(x) as

Qi = Q(xi) ≈ −
N

∑

l=i

αlωlφlhl + ωiψi, ψi = ψ(xi) ≈
N

∑

l=i

αlφlhl (46)

We again impose the boundary condition

0 ≈ ω′(xI) =
ωI+1 − ωI

h
⇒ ωI+1 = ωI .

We again proceed in an iterative fashion: we guess ω0
i and then for j = 0, 1, 2... form ωj+1

i as follows.

Form Sj
i and Qj

i as in (43) and (46), and obtain sj
i and αj

i from the first order condition (45). Write

the Bellman equation as

(ρ− θγ)ωj+1
i = (1 − σj

i )x
−θ
i + γxi

ωj+1
i+1 − ωj+1

i

hi

+ αj
i

[

i
∑

l=1

ωj+1
l φlhl − ωj+1

i Φi

]

−

N
∑

l=i

αj
lω

j+1
l φlhl + ωj+1

i ψj
i

(47)

Given ωj and hence αj and σj, this is again a system of I equations in I unknowns (ωj+1
1 , ..., ωj+1

I )

that we can solve for the value function at the next iteration ωj+1. We again write (47) in matrix

notation as

Ajωj+1 = bj , bji = (1 − σi)x
−θ
i , Aj = Bj − Cj + Dj
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where18

Bj =















ρ− θγ + αj
1Φ1 − ψj

1 + γx1

h1
−γx1

h1
0 . . . 0

0 ρ− θγ + αj
2Φ2 − ψj

2 + γx2

h2
−γx2

h2
. . . 0

...
...

. . .
. . .

...

0 . . . . . . . . . ρ− θγ + αj
IΦI − ψj

I















Cj =





















α1φ1h1 0 . . . . . . 0

α2φ1h1 α2φ2h2 0 . . . 0

α3φ1h1 α3φ2h2
. . .

. . .
...

...
...

. . .
. . . 0

αIφ1h1 αIφ2h2 . . . αIφI−1hI−1 αIφIhI





















Dj =





















α1φ1h1 α2φ2h2 α3φ3h3 . . . αIφIhI

0 α2φ2h2 α3φ3h3 . . . αIφIhI

... 0
. . .

. . .
...

...
...

. . .
. . . αI−1φI−1hI−1

0 0 . . . 0 αIφIhI





















Solve the system of equations and iterate until ωj+1 is close to ωj.

C.3 Step 2: Distribution Function

This section briefly describes the finite difference method used to compute the functions φj
n+1(x),

Φj
n+1(x), ψ

j
n+1(x) in Step 2a of the algorithm described in section 3. For notational simplicity, we

suppress the dependence of these functions on n (the main iteration). We approximate these functions

on a finite grid (x1, ..., xI ) of I values. We approximate the derivatives in (17) to (19) by

(φj)′(xi) ≈
φj

i+1 − φj
i

hi
, (Φj)′(xi) ≈

Φj
i+1 − Φj

i

hi
, (ψj)′(xi) ≈

ψj
i+1 − ψj

i

hi

18This follows from rearranging the Bellman equation as

[

ρ− θγ + αj
iΦi − ψj

i +
γxi

hi

]

ωj+1
i −

γxi

hi
ωj+1

i+1 − αj
i

i
∑

l=1

φlω
j+1
l hl +

I
∑

l=i

αj
lω

j+1
l φlhl = (1 − σj

i )x
−θ
i

and then rewriting it in matrix notation.
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so the finite difference approximation to (17) to (18) is

φj
iγ + γ

φj
i+1 − φj

i

hi
, xi = φj

iψ
j
i − α(σi)φ

j
iΦ

j
i

ψj
i+1 − ψj

i

hi
= −α(σi)φ

j
i

Φj
i+1 − Φj

i

hi
= φj

i

with boundary conditions

φj
1 = λ, Φj

1 = 0, ψj
1 = γj

n.

This is a simple initial value problem which can simply be solved by running the system forward.

D Derivations for Section 6.1. “Exogenous Knowledge Shocks”

Lemma 1 The solution to (26) satisfies

1

G(a, t)
= e(α+β(1−H(a)))t

(

1

G(a, 0)
−

α

α + β(1 −H(a))

)

+
α

α + β(1 −H(a))
. (48)

Proof: Let w(t) = G(a, t) and u = 1 −H(a). Then (26) is

∂w(t)

∂t
= −αw(t)[1 − w(t)] − βuw(t)

Let v(t) = 1/w(t). Then

∂v(t)

∂t
= −

1

w2

∂w

∂t
=

1

w(t)2
(αw(t)[1 − w(t)] + βuw(t))

= v(t) (α[1 − w(t)] + βu) = α[v(t) − 1] + βuv(t) = [α + βu]v(t) − α

The solution is19

v(t) = e(α+βu)t

(

v0 −
α

α + βu

)

+
α

α + βu

Using the definitions of v(t), w(t) and u, we obtain (48).�

In section 6.1. we ask whether the distribution in (48) converge to a balanced growth path.

19Let us verify the solution:

∂v(t)

∂t
= (α+ βu)e(α+βu)t

(

v0 −
α

α+ βu

)

= (α + βu)

(

v(t) −
α

α+ βu

)

= [α+ βu]v(t) − α.
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The answer to this question depends on the properties of the initial productivity distribution,

G(a, 0), and the external source distribution, H(a). There are four cases:

(i) Neither G(a, 0) nor H(a) have a Pareto tail, that is for all ξ > 0

lim
a→∞

1 −G(a, 0)

a−1/ξ
= lim

a→∞

1 −H(a)

a−1/ξ
= 0

(ii) G(a, 0) has a fatter tail than H(a), that is there exist θ > 0, λ > 0 such that

lim
a→∞

1 −G(a, 0)

a−1/θ
= λ, but lim

a→∞

1 −H(a)

a−1/θ
= 0

(iii) H(a) has a fatter tail than G(a, 0), that is there exist ξ > 0, µ > 0 such that

lim
a→∞

1 −H(a)

a−1/ξ
= µ, but lim

a→∞

1 −G(a, 0)

a−1/ξ
= 0

(iv) Both G(a, 0) and H(a) have equally fat tails, that is there exists θ > 0, λ > 0, µ > 0 such

that

lim
a→∞

1 −H(a)

a−1/θ
= λ, and lim

a→∞

1 −G(a, 0)

a−1/θ
= µ

Proposition 2 The asymptotic behavior of the process described by (26) depends on the prop-

erties of the initial productivity distribution G(a, 0) and the external source of ideas, H(a). In

particular, in case

(i) there is no growth in the long-run and

lim
t→∞

G(xeνt, t) = 1 (49)

for all x > 0 and ν > 0. That is, the limiting distribution is degenerate, and concentrated

at x = 0.

(ii) the process converges to a balanced growth path with growth rate ν = αθ and the asymptotic

distribution satisfies

lim
t→∞

G(xeνt, t) =
1

1 + λx1/θ
. (50)

(iii) the process converges to a balanced growth path with growth rate ν = αξ and the asymptotic

distribution satisfies

lim
t→∞

G(xeνt, t) =
1

1 + (β/α)µx1/ξ
. (51)

47



(iv) the process converges to a balanced growth path with growth rate ν = αθ and the asymptotic

distribution satisfies

lim
t→∞

G(xeνt, t) =
1

1 + [λ+ (β/α)µ]x1/θ
. (52)

Proof: Consider the limit limt→∞G(xeνt, t) for some positive ν that is yet to be determined.

We have

lim
t→∞

1

G(xeνt, t)
= lim

t→∞
e(α+β[1−H(x exp(νt))])t

(

1

G(xeνt, 0)
−

α

α + β[1 −H(xeνt)]

)

+
α

α + β[1 −H(xeνt)]

Using that a = xeνt and hence t = log(a/x)/ν, we have that

e(α+β[1−H(x exp(νt))])t =
(a

x

)α/ν+(β/ν)[1−H(a)]

when a = xeνt.

Therefore

lim
t→∞

1

G(xeνt, t)
= lim

a→∞

(a

x

)α/ν+(β/ν)[1−H(a)]
(

1

G(a, 0)
−

α

α+ β[1 −H(a)]

)

+
α

α+ β[1 −H(a)]

= lim
a→∞

(a

x

)α/ν
(

1

G(a, 0)
−

α

α+ β[1 −H(a)]

)

+ 1

= lim
a→∞

(a

x

)α/ν α(1 −G(a, 0)) + β(1 −H(a))

G(a, 0)(α + β[1 −H(a)])
+ 1

= lim
a→∞

(a

x

)α/ν
(1 −G(a, 0) + (β/α)(1 −H(a))) + 1

= xα/ν lim
a→∞

1 −G(a, 0) + (β/α)(1 −H(a))

a−α/ν
+ 1

(53)

We can now go through cases (i)-(iv) to further characterize this limit:

(i) For any ν > 0,

lim
a→∞

1 −G(a, 0) + (β/α)(1 −H(a))

a−α/ν
= 0

Therefore, the growth rate is zero and from the last line in (53), we obtain (49).

(ii) Let ν = αθ. Then

lim
a→∞

1 −G(a, 0) + (β/α)(1 −H(a))

a−α/ν
= λ

Therefore, the growth rate is ν = αθ and from the last line in (53), we obtain (50).

(iii) Let ν = αξ. Then

lim
a→∞

1 −G(a, 0) + (β/α)(1 −H(a))

a−α/ν
= (β/α)µ
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Therefore, the growth rate is ν = αξ and from the last line in (53), we obtain (51).

(iv) Let ν = αθ. Then

lim
a→∞

1 −G(a, 0) + (β/α)(1−H(a))

a−α/ν
= λ+ (β/α)µ

Therefore, the growth rate is ν = αθ and from the last line in (53), we obtain (52).

References

Aghion, Philippe, and Peter Howitt. 1992. “A Model of Growth through Creative Destruction.”

Econometrica, 60(2): 323–51.

Alvarez, Fernando E., Francisco J. Buera, and Robert E. Jr. Lucas. 2008. “Models of Idea

Flows.” National Bureau of Economic Research, Inc NBER Working Papers 14135.

Arrow, Kenneth. 1962. “The Economic Implications of Learning by Doing.” Review of Economic

Studies, 29: 155–173.

Arrow, Kenneth J. 1969. “Classificatory Notes on the Production and Transmission of Technological

Knowledge.” American Economic Review, 59(2): 29–35.

Becker, Gary S, and Nigel Tomes. 1979. “An Equilibrium Theory of the Distribution of Income

and Intergenerational Mobility.” Journal of Political Economy, 87(6): 1153–89.

Benabou, Roland. 2002. “Tax and Education Policy in a Heterogenous Agent Economy: What

Levels of Redistribution Maximize Growth and Effiency?” Econometrica, 70(2): 481–517.

Benhabib, Jess, Alberto Bisin, and Shenghao Zhu. 2011. “The Distribution of Wealth and

Fiscal Policy in Economies With Finitely Lived Agents.” Econometrica, 79(1): 123–157.

Ben-Porath, Yoram. 1967. “The Production of Human Capital and the Life Cycle of Earnings.”

Journal of Political Economy, 75: 352.

Bental, Benjamin, and Dan Peled. 1996. “The Accumulation of Wealth and the Cyclical Gen-

eration of New Technologies: A Search Theoretic Approach.” International Economic Review,

37(3): 687–718.

Candler, Graham V. 1999. “Finite-Difference Methods for Dynamic Programming Problems.” In

Computational Methods for the Study of Dynamic Economies. , ed. Ramon Marimon and Andrew

Scott. Cambridge, England:Cambridge University Press.

49



Choi, Seung Mo. forthcoming. “How Large are Learning Externalities.” International Economic

Review.

Comin, Diego, Mikhail Dmitriev, and Esteban Rossi-Hansberg. 2011. “The Spatial Diffusion

of Technology.” Princeton mimeo.

Eaton, Jonathan, and Samuel Kortum. 1999. “International Technology Diffusion: Theory and

Measurement.” International Economic Review, 40(3): 537–70.

Eaton, Jonathan, and Samuel Kortum. 2002. “Technology, Geography, and Trade.” Economet-

rica, 70(5): 1741–1779.

Fogli, Alessandra, and Laura Veldkamp. 2011. “Germs, Social Networks and Growth.” NYU

mimeo.

Gabaix, Xavier. 1999. “Zipf’S Law For Cities: An Explanation.” The Quarterly Journal of Eco-

nomics, 114(3): 739–767.

Gabaix, Xavier. 2009. “Power Laws in Economics and Finance.” Annual Review of Economics,

1(1): 255–293.

Grossman, Gene M, and Elhanan Helpman. 1991. “Quality Ladders in the Theory of Growth.”

Review of Economic Studies, 58(1): 43–61.

Hause, John C. 1980. “The Fine Structure of Earnings and the On-the-Job Training Hypothesis.”

Econometrica, 48(4): 1013–29.

Heckman, James J. 1976. “A Life-Cycle Model of Earnings, Learning, and Consumption.” Journal

of Political Economy, 84(4): S11–44.

Jones, Charles I. 2005. “Growth and Ideas.” In Handbook of Economic Growth. Vol. 1 of Handbook

of Economic Growth, , ed. Philippe Aghion and Steven Durlauf, Chapter 16, 1063–1111. Elsevier.

Jovanovic, Boyan, and Glenn MacDonald. 1990. “Competitive Diffusion.” Rochester Center for

Economic Research Working Paper 4463.

Jovanovic, Boyan, and Glenn M MacDonald. 1994. “Competitive Diffusion.” Journal of Political

Economy, 102(1): 24–52.

Jovanovic, Boyan, and Rafael Rob. 1989. “The Growth and Diffusion of Knowledge.” Review of

Economic Studies, 56(4): 569–82.

Jovanovic, Boyan, and Yaw Nyarko. 1996. “Learning by Doing and the Choice of Technology.”

Econometrica, 64(6): 1299–1310.

50



Koenig, Michael D., Jan Lorenz, and Fabrizio Zilibotti. 2012. “Innovation vs. Imitation and

the Evolution of Productivity Distributions.” SIEPR Discussion Paper 11-008.

Kortum, Samuel S. 1997. “Research, Patenting, and Technological Change.” Econometrica,

65(6): 1389–1420.

Lagakos, David, Benjamin Moll, and Nancy Qian. 2012. “Experience Matters for Development

Accounting.” Princeton mimeo.

Lasry, Jean-Michel, and Pierre-Louis Lions. 2007. “Mean field games.” Japanese Journal of

Mathematics, 2: 229–260.

Lucas, Robert E. 2009. “Ideas and Growth.” Economica, 76(301): 1–19.

Luttmer, Erzo G. J. 2007. “Selection, Growth, and the Size Distribution of Firms.” The Quarterly

Journal of Economics, 122(3): 1103–1144.

Luttmer, Erzo G.J. forthcoming. “Technology Diffusion and Growth.” Journal of Economic Theory.

Perla, Jesse, and Christopher Tonetti. 2011. “Endogenous Risk and Growth.” NYU mimeo.

Romer, Paul M. 1990. “Endogenous Technological Change.” Journal of Political Economy,

98(5): S71–102.

Rosen, Sherwin. 1976. “A Theory of Life Earnings.” Journal of Political Economy, 84(4): S45–67.

Rossi-Hansberg, Esteban, and Mark L. J. Wright. 2007. “Establishment Size Dynamics in the

Aggregate Economy.” American Economic Review, 97(5): 1639–1666.

Shell, Karl. 1966. “Toward A Theory of Inventive Activity and Capital Accumulation.” The American

Economic Review, 56(1/2): 762–68.

Solon, Gary. 1992. “Intergenerational Income Mobility in the United States.” American Economic

Review, 82(3): 393–408.

Stokey, Nancy L. 1988. “Learning by Doing and the Introduction of New Goods.” Journal of Political

Economy, 96(4): 701–17.

WorldBank. 2008. “Technology Diffusion in the Developing World.”

Zimmerman, David J. 1992. “Regression toward Mediocrity in Economic Stature.” American Eco-

nomic Review, 82(3): 409–29.

51


