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1 Introduction

Economic time series released by statistical offices and other providers of data are available
in mixed frequencies. As an example, one can simultaneously find intra-day stock prices and
quarterly national account aggregates. In econometrics, there are two main solutions to this
problem, first, temporally aggregating the higher-frequency variables into low-frequency ones
(averaging for flow and skip-sampling for stock data) and, second, considering a mixed-frequency
model. The former approach, however, might lead to a loss of information due to the deletion
of high-frequency observations. Hence, it is reasonable to believe that the forecasting perfor-
mance of a low-frequency series might be improved by making use of the additional information
contained in the higher frequency variables by considering the latter solution. Among the dif-
ferent approaches that have been developed, we consider the MIDAS framework (see Ghysels,
Santa-Clara and Valkanov 2004) in this paper, a method that allows to integrate series sampled
at different frequencies in a parsimonious manner.

Stark and Croushore (2002) analyzed another issue researchers face in practice, i.e. the use
of real-time versus latest-available data. To be more precise, the authors argue that in the
literature a new model is often developed based on the results it achieves employing a data
set which is different from the one researchers could use in real time (Croushore and Stark
2001). Furthermore, Stark and Croushore (2002) investigate how model selection, i.e. the lag
order in autoregressive models, changes as different data releases, or vintages, are concerned.
Interestingly, measures of forecast accuracy may be deceptively lower when latest-available data
are dealt with than when real-time data are used (Stark and Croushore 2002). For an overview
of the existing literature on real-time data analysis we refer the reader to Croushore (2011).

In this paper we consider both issues introduced above. In particular, we apply and extend
the repeated observation forecasting (ROF) approach proposed by Stark and Croushore (2002)
and examined by Croushore (2006) by considering an autoregressive distributed lag (ADL)
setting in which the regressors may be sampled at higher frequencies than the regressand. As
such, a wider range of approaches may be considered than the ARIMA models of Stark and
Croushore (2002) giving rise to the question whether a certain model uniformly outperforms
other approaches across different vintages. Given a calendar date, the use of each vintage
leads to a different forecast of the variable of interest enabling us to produce a forecast density.
Comparisons of the forecast densities produced by the different forecasting methods is then
undertaking employing a Diebold-Mariano (1995)-type test for the equality of forecast densi-
ties. In particular, we extend this approach by applying it to density forecasts produced by
different vintages as opposed to being generated by ”time series models, for which parameters
are estimated with a moving window of [...] observations” (Diks, Panchenko, Sokolinskiy and
van Dijk 2011a).

As opposed to choosing a single model, a combination of the models we investigate is
considered. As discussed widely in the literature, combining the information present in all
models may lead to diversification gains (Bates and Granger 1969, Stock and Watson 2004
or Timmermann 2006). Just as this argument applies to point forecasting, it may do so for
the combination of forecast densities, see e.g. Aastveit, Gerdrup, Jore and Thorsud (2011).
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We will investigate whether such a combination improves the forecasting performance and if
so, how the composition (i.e. weights) of the forecast densities alters through time. Given
the change of the weights across different calendar dates, we propose time-varying ROF-based
weights which present an alternative to traditional weighting schemes such as the one of Bates
and Granger (1969). We illustrate our approach in an empirical analysis where we aim at fore-,
and later, nowcasting the US GDP quarterly growth rate. Aastveit et al. (2011) combine
density nowcasts for GDP growth from different model classes using real-time vintage data and
is therefore probably closest related to our study.

The rest of the paper is organized as follows. In Section 2 we give the notation for a mixed-
frequency real-time data analysis. Section 3 summarizes the repeated observation forecasting
and nowcasting approaches for our particular framework. Section 4 describes the methodology
to compare and combine density forecasts. In Section 5 the models we use for now- or forecasting
are presented. Section 6 describes the series and summarizes the outcomes of the empirical
analysis. Section 7 concludes.

2 Notations for mixed-frequency real-time data

We observe N regularly spaced vintages available for a maximum of T and T×mj (j = 1, . . . ,K)
observations for the low frequency variable y and the high-frequency variables x1, . . . , xK , re-
spectively. In order to avoid confusions in the terminology, in this article, a vintage is a moment
at which a series is published, for instance June 2011. The index t represents the low-frequency
series and runs from 1 to T . For a high-frequency regressor xj , the number of high-frequency ob-
servations per t-period equals mj . In a quarter/months example, mj = 3; in a month/(working)
days example mj = 20 or 22.

Assuming for instance a publication lag of one period, ytt−1 denotes the figure published at
time t of the value of y for time t − 1. The first difference operator ∆ = (1 − L) runs over
both indexes with ∆ytt−1 = (1 − L)ytt−1 = ytt−1 − y

t−1
t−2. This notational convention is used for

instance in Hecq and Jacobs (2009).
The notation becomes more evolved for the high-frequency variables, x1, . . . , xK . For now,

the j-index is suppressed for explanatory convenience. We use xt,m−gt−1,m−i with an additional
index m − i to refer to the high-frequency observation within each t-period, where for m − i,
i satisfies 0 ≤ i ≤ m − 1. If i = 0, the m-index is often suppressed such that xt,m−gt−1,m ≡ xt,m−gt−1
meaning it is the end-of-period observation such as the last day in a month. xt,m−gt−1,1 is the first
day of the month in a month/day analysis or the first month of the quarter in a quarter/month
setting. Finally, xt,m−gt−1,m−m ≡ x

t,m−g
t−2 . For each x the superscript refers to the vintage just as for

the low-frequency variable. In this paper, vintages for the regressors may appear at a higher
frequency than for the regressand such that, in a quarter/month example, x2012Q1,3

2012Q1,2 denotes the
figure published in March 2012 of the value of x for February 2012. So, the same rules as for i
apply to g, i.e. 0 ≤ g ≤ m− 1 and so on.

Table 1 illustrates this notation using a quarter/month example for a close-up corresponding
to the last three observed quarters. To simplify, we assume the low-frequency (quarterly)
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variable to be revised on a low-frequency basis noting, however, that an extension towards
high-frequency vintages (e.g. monthly) is easily applicable leading to a ”rectangular” shape of
the table as far as the regressand is concerned. Additionally, a publication lag of one period is
assumed for both, the regressor and the regressand, such that the table possesses a triangular
shape on a monthly basis for x and on a quarterly basis for y. Note also that a nowcast is
assumed to be computed in the last month of a quarter. However, a nowcast might as well be
obtained during the first or second month as explained in a later section.

3 Repeated observations forecasting approaches

A common practice in empirical work is to use the last available time series to evaluate forecasts.
This means that at period T , June 2011 say, one collects the historical time series for yTt−1 where
t = 2, . . . , T assuming a publication lag of one period. Subsequently, a one-step ahead point
forecast for ŷT might be obtained. Stark and Croushore (2002) have proposed an interesting
tool, which they call repeated observations forecasting (ROF hereafter), to evaluate whether the
forecast accuracy is sensitive to the vintage chosen. Roughly speaking, they take one particular
calendar date t∗ and look at the historical series yvt∗−1 for a set of vintages v = 1, . . . , V .
Finally, they have a sequence of V (in this case, one step-ahead) forecasts for the same point
ŷvt∗ , v = 1, . . . , V , which they report in a graph.

However, Stark and Croushore (2002) exclusively use ARIMA models for that exercise.
Matters become more complicated when we want to use explanatory variables which are possibly
available for different vintages and with a different frequency of observations. We study three
approaches whereby most attention is given to the first one. These are (1) the ROF à la Stark
and Croushore (2002) employing forecast densities, (2) a multivariate dimension ROF and (3)
nowcasting of the first diagonal release ytt, t = 1, . . . , T .

The ROF (1) is basically similar to the one in Stark and Croushore (2002) with the partic-
ularity that we consider mixed-frequency models employing exogenous variables x. Note that
an extension towards h-step-ahead (direct or indirect) forecasts is straightforwardly done such
that the methodology presented later applies in such a setting as well. Nevertheless, in order
to focus on the methodology of obtaining weights based on forecast densities constructed by
different models, we disregard any additional vintage-dimension that might arise due to the
use of high-frequency variables. This means that, for instance, in quarter t − 3 of Table 1, we
take the low- and high-frequency variables at the same time release, i.e. at the end-of-quarter
vintages,

t− 2 : yt−2t−3 = f(xt−2,mt−3,m−1, x
t−2,m
t−3,m−2, y

t−2
t−4, x

t−2,m
t−4,m, x

t−2,m
t−4,m−1, x

t−2,m
t−4,m−2, y

t−2
t−5, ..)

t− 1 : yt−1t−3 = f(xt−1,mt−3,m−1, x
t−1,m
t−3,m−2, y

t−1
t−4, x

t−1,m
t−4,m, x

t−1,m
t−4,m−1, x

t−1,m
t−4,m−2, y

t−1
t−5, ..)

t : ytt−3 = f(xt,mt−3,m−1, x
t,m
t−3,m−2, y

t
t−4, x

t,m
t−4,m, x

t,m
t−4,m−1, x

t,m
t−4,m−2, y

t
t−5, ..).

in order to obtain ŷt−2t−3, ŷ
t−1
t−3 and ŷtt−3 from which to compute a forecast density. How to precisely
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construct these forecast densities will be the subject of the next section. Alternatively, one can
compute forecast errors in order to compare the results with forecasts using data that are not
revised. Stark and Croushore (2002) discuss the issue of which observations to use as ”actuals”
in order to compare different methods graphically or to compute forecast errors. In particular,
they consider three possibilities namely (a) the respective observation four quarters later, (b)
the corresponding figure in the latest-available data set (last vintage) or (c) the first observation
after a comprehensive benchmark, as mentioned for instance in Jacobs, Sturm and van Norden
(2010), has occurred. The authors emphasize that as soon as real-time data are used, the choice
of ”actuals” may have important implications. To be more precise, if final-vintage values are
chosen, using latest-available instead of real-time data may lead to deceptively lower RMSEs.
Hence, when using latest available data for a model comparison or selection study, for example,
the researcher should use data which was available to the researchers at the respective moment
in time, i.e. real-time data, in order to conduct a ”fair” study. Although not displayed in this
paper for brevity, this result can be extended to an ADL setting.

As far as the classical ROF is concerned, we propose and employ a different observation to
be considered as the ”actual” value, i.e. the realization in the respective vintage itself. We refer
to these as the real-time realizations or real-time ”actuals” and the justification to employ this
choice of ”actuals” is given in the next section on the construction of the forecast densities.

For (2), it is seen in Table 1 that several vintages of x can be used for the same vintage of y.
This means that we have an additional dimension compared to the previous ROF study. Note
that for every high-frequency regressor, the researcher is able to choose from a different set of
vintages such that every combination of low-and higher-frequency vintages may be considered.
Take a quarterly dependent and monthly independent variable as an example and assume
both variables are revised on a quarterly and monthly basis, respectively. Then, if we want to
forecast, say y2009Q1 using information up to March 2009 we need not only rely on the vintage of
December 2008 (remember the publication lag), but we may use the monthly vintages October
2008 until February 2009 for x as well.

As far as nowcasting (3) is concerned, we consider the diagonal sequence ŷtt, ŷ
t−3
t−3, ŷ

t−2
t−2 . . .

using a certain high-frequency vintage of the explanatory variable x (for instance, always using
the last monthly vintage of a quarter in a quarter/month example). Note, however, that
depending on which vintage we use, we also need to forecast x by a certain number of periods.
As an example, assume again a quarter/month example where we intend to nowcast the third
quarter of 2011 in September 2011 such that we employ the last monthly vintage per quarter
for the regressor. Keeping in mind the publication lag, we have quarterly observations until the
second quarter and monthly observations until August 2011. Note that if monthly vintages were
available for the quarterly variable, these vintages could be chosen as well for nowcasting in
order to employ most recently revised data. Hence, we need to forecast the observation for x in
September 2011. If the second (first) monthly vintage per quarter was chosen for the regressor,
we needed to forecast two (three) months ahead and so on. Forecasts are computed using an
ARMA(p, q) model where the autoregressive and moving average orders do not change across
vintages (an extension along these lines is straightforwardly done).
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As already explained before, we extend the analysis of Stark and Croushore (2002) by
considering an ADL setting where the regressors may be sampled at high-frequencies than
the regressand. As such, more models are available than the ones dealt with in Stark and
Croushore and it becomes interesting to investigate whether one of the models and, in particular,
the (ECM-)MIDAS model designed to cope with variables sampled at different frequencies,
dominates the others or whether a combination approach should be followed. The methodology
to compare and combine several models is described in the following section.

4 Comparing and Combining Forecast Densities

In order to compare the forecast accuracy of different models across a range of vintages, we
make use of a Diebold-Mariano (1995)-type test for the equality of two forecast densities which
result from two competing models. The test is described, among others, in Diks et al. (2011a).
Although they apply it to copula-based density forecasts, it is possible to employ the approach in
our case as well because ”the only requirement that [the authors] impose on the forecast methods
is that the density forecasts depend on a finite number [...] of most recent observations”.

The approach works as follows. Consider a particular calendar date, say t∗, and two com-
peting forecast methods, say A and B, each yielding, as discussed above, one one-step-ahead
(or h-step-ahead) forecast of yvt∗ for each vintage v considered, i.e. v = t∗ + 1, . . . , T . From the
resulting vectors of one-step-ahead forecasts, i.e. ŷA,t∗ and ŷB,t∗ , forecast densities are con-

structed, i.e. f̂A,t∗ and f̂B,t∗ . In this paper, we construct forecast densities by applying kernel
density estimation techniques. To be more precise, let us assume that the T −t∗ one-step-ahead
forecasts have some underlying unknown distribution f . Then, the kernel density estimator is

f̂·,t∗(y) =
1

(T − t∗)h

T−t∗∑
i=1

K(
y − ŷi,·,t∗

h
),

where K(·) is the kernel function and h is the bandwidth parameter. In this paper, the Gaussian
kernel, i.e.

K(x) =
1√
2π
exp(

1

2
x2)

is considered where the bandwidth is chosen of the order σ̂(T − t∗)−1/5, where σ̂ is an estimator
of the standard deviation. The results are robust to the use of other kernels, e.g. the Parzen
or Triangle kernel (see, for example, Greene 2008).

We follow scoring rules in order to evaluate density forecast, an avenue often followed in
this field of literature (see Diebold and Lopez 1996). A scoring rule is a loss function whose
value depends on the density forecast, f̂·,t∗ , and the vector of ”actual” values, yt∗ . Hence, it

may be denoted as S(f̂t∗ ,yt∗) and is constructed in such a way that a ’better’ density forecast
gets a higher score. In this paper we will make use of the logarithmic scoring rule
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S(f̂·,t∗ ,yt∗) = log[f̂·,t∗(yt∗)],

which is shown to be a proper scoring by Diks, Panchenko and van Dijk (2011b) meaning that,
under this scoring rule, ”an incorrect density forecast does not receive a higher average score
than the true conditional density”.

At this stage, it should become clear why we choose real-time realizations over final-vintage
data as ”actuals”. If we used latest-available data as ”actuals”, the scoring vector would consist
of merely one element making it rather uninteresting to base forecast density comparisons
on. Employing real-time realizations allows us to investigate whether one model outperforms
another one in terms of real-time forecasting, which is precisely what we aim for.

Similarly to the Diebold-Mariano (1995) test for equal forecast accuracy, we can compare
two forecast methods by defining the score difference as

dt∗ = S(f̂A,t∗ ,yt∗)− S(f̂B,t∗ ,yt∗)

and formulating the null hypothesis of equal scores as H0 : E(dt∗) = 0. Letting dt∗ denote the
sample mean of the score differences, we may use the following Diebold-Mariano (1995)-type
t-test to investigate the null hypothesis

tA,B =
dt∗√

σ̂2dt∗/(T − t
∗)
,

where σ̂2dt∗ is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of

σ2dt∗ = V ar(
√
T − t∗ ∗ dt∗). Diks et al. (2011a) show, by referring to the proof in Giacomini

and White (2006), that the t-test is standard normally distributed under a set of conditions
on the stochastic processes considered and on the (variance of the sample mean of the) score
differences. We will use this approach in order to compare all models under consideration with
each other to determine whether one of them dominates the others.

However, even if it turns out that one model does so, it is known in the literature for point
forecasting (see e.g. Timmermann 2006) that combinations of forecasts offer diversification gains
making it attractive to combine the information present in the different forecasting methods
under consideration. Likewise, being equipped with forecast densities produced by different
models, a density combination approach is a natural avenue to follow as in Aastveit et al.
(2011). Justifications for density combinations can be found in Mitchell and Hall (2005) or Hall
and Mitchell (2007).

Similar to other studies on forecast density combinations we consider a so-called linear
opinion pool, i.e. defining the combined forecast density as a linear combination of the individual
density forecasts:

f̂Combination,t∗(y) =
M∑
i=1

φif̂i,t∗(y),
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where M is the number of models to combine. We follow Jore, Mitchell and Vahey (2010) in
defining the recursive log score weights of model i = 1, . . . ,M as

φi =
exp(Si)∑M
i=1 exp(Si)

,

where now,

Si =
1

T − t∗
T∑

v=t∗+1

log[f̂i,t∗(ŷ
v
t∗)].

5 Models

In this section we describe several models whose real-time forecasting performances we compare
to the one of an autoregressive model employing the approach illustrated in the previous section.
Keeping in mind that we combine the issues of dealing with variables sampled at different fre-
quencies and the use of real-time data, we consider the previously mentioned MIDAS approach
as well as two classical models of temporal aggregation. We, however, abstract from other mod-
els such as factor models which present a popular choice when fore- or nowcasting GDP growth
rates (Giannone et al. 2008). Although the methodology described in this paper can just as
well be applied to any other model with a possibly large set of regressors such as Andreou,
Ghysels and Kourtellos (2010b), one has to obtain and clean, i.e. create missing data releases,
correcting for possible mismatches or dealing with multiple vintages for one time period, a
real-time data set for each regressor concerned, a task which may be very time-consuming or
even impossible (due to non-existent data) such that we present the methodology for a small
set of models and regressors.

Furthermore, we take into account the possibility of cointegration between the variables by
considering the models with and without a cointegrating relationship. Although we aim at fore-
or nowcasting GDP growth rates, it is well possible that GDP is cointegrated with one or more
regressors. As shown by e.g. Götz, Hecq and Urbain (2011), disregarding (including) a long-
run relationship in the presence (absence) of cointegration leads to a considerably worsened
forecasting performance. Hence, all models (except the autoregressive one) are in an error-
correction format in which a long-run term (zt−1 below) is either in- or excluded.

MIDAS regression models have been introduced by Ghysels et al. (2004) and aim at pre-
serving information present in the high-frequency variables while estimating parameters in a
parsimonious way. Estimating standard linear regression models unrestrictedly might be unap-
pealing due to parameter proliferation (Andreou et al. 2010b). If yt is a quarterly variable and
xt,m−i is daily, we might have to estimate over 50 parameters. In an (ECM-)MIDAS model we
hyper-parameterize the polynomial lag structure yielding

α∗(L)∆yt = c+ δzt−1 + β
∑m−1

i=0 wi+1(θ)∆mxt,m−i + ut, (1)
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where α∗(L) is a lag polynomial allowing for autoregressive terms, zt−1 denotes the disequilib-
rium error in the previous period and wi+1(θ) are weights that sum up to one in order to identify
the scale coefficient β. The weights are based on an underlying function for which different spec-
ifications are proposed in the literature (see, for instance, Ghysels, Sinko and Valkanov 2007).
Due to its dominance documented in Ghysels and Valkanov (2006) we employ the exponential
Almon lag polynomial which is shown to be low-dimensional and extremely flexible allowing
the weight-determination to be completely data-driven. Often, decaying weights are detected
due to more recent observations being more important.

Note that in the equation above one weight function is specified for the whole set of short-
run dynamics terms. There are two comments to be made here: First, the purely data-driven
determination of the weight function allows us to include more short-run variables than theo-
retically necessary since the redundant ones will be assigned a weight of zero. Second, it is also
possible to assign one weight function to every low-frequency period of the short-run variables
(see Ghysels et al. 2007). Nevertheless, given that in our case the high frequency is monthly
and the low frequency is quarterly (m = 3 hence), such an approach seems unappealing.

For the exact determination of the above ECM-MIDAS model, which is derived from a
mixed-frequency autoregressive distributed lag model, we refer the reader to Götz et al. (2011).
As far as the long-run term is concerned, we consider three possible cases:

(i) zt−1 = yt−1 − γxt−1: ’same-period’-case,

(ii) zt−1 = yt−1 − γxt,m−i with i < m: ’x-after-y’-case,

(iii) zt−1 = yt−1 − γxt−1,m−i with i < m: ’x-before-y’-case.

The first case corresponds to the standard framework in which the two series are sampled at the
same moment. As emphasized by Götz et al. (2011), in the mixed frequency modeling there are
alternative intuitive possibilities and for real-time data, keeping in mind the release of the data
by statistical offices, the ’x-after-y case’ is appealing. We illustrate in more detail how the timing
of the high-frequency observation appearing in the long-run relationship impacts the derivation
of the short-run dynamics. In any case, the short-run dynamics terms are high-frequency
differences which can be estimated by an ECM-MIDAS regression. Due to the stationarity of
these terms, independent from whether we assume x to be I(0) or I(1), the estimations do not
suffer from computational complications.

An alternative to ECM-MIDAS is the classical approach of temporally aggregating the high-
frequency series into a low-frequency one as discussed by Marcellino (1999) amongst others.
Averaging or Point-in-time sampling are the common principles here. The former approach
takes the average of the high-frequency observations in a certain t-period as the corresponding
low-frequency observation. The latter approach takes one specific observation in a period (often
the last one) to be the corresponding t-observation.

Both approaches are in fact special cases of the ECM-MIDAS model considered before. Note
that equation (1) actually summarizes all three models, ECM-MIDAS, Point-in-Time sampling
and Averaging, depending on the structure of the weights:

10



wi+1(θ) = wj(θ1, θ2) =
exp(θ1j + θ2j

2)∑k
j=1 exp(θ1j + θ2j2)

(Almon Lag Polynomial; MIDAS),

wi+1(θ) = wi+1 =

{
1 if i = 0
0 else

(Point-in-Time sampling),

wi+1(θ) = wi+1 =
1

m
∀i = 1, . . . ,m (Averaging).

As explained before, in order to flexibly deal with the presence or absence of cointegration
in the just described models, the analysis is conducted once with and once without the inclusion
of a long-run relationship. As in Götz et al. (2011) we base the choice of the timing in the
disequilibrium error on an approach similar to the two-step Engle-Granger approach (1987).
In particular, using the last vintage available, we screen through the possible cases described
above (’x-before-y’, ’same-period’ and ’x-after-y’) and pick the same-period case (for simplicity)
given that the variables cointegrate for all candidates of x. If they do so only for some specific
candidates, we choose one of these arbitrarily due to the invariance of temporal aggregation
to the property of cointegration (Marcellino 1999). The resulting long-run relationship will be
plugged into an error-correction model. Note that this timing will subsequently be employed
for all vintages under investigation. Furthermore, for each vintage the cointegrating coefficient
will be estimated by OLS.

Finally, in order to analyze whether an ADL setting improves real-time forecasts at all, we
consider an ARIMA(4, 1, 0) as is done almost throughout the whole investigation in Stark and
Croushore (2002).

Hence, we have the following seven cases:

1. Restricted short-run (ECM-MIDAS); long-run relationship included,

2. Restricted short-run (ECM-MIDAS); long-run relationship excluded,

3. Average sampling; long-run relationship included,

4. Average sampling; long-run relationship excluded,

5. Point-in-Time sampling; long-run relationship included,

6. Point-in-Time sampling; long-run relationship excluded,

7. ARIMA(4, 1, 0).
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6 Empirical analysis

6.1 Data

We extract real time data sets for the US from http://alfred.stlouisfed.org/. y is the quarterly
real gross national product (ref. GNPC96), seasonally adjusted. The series is observed from
1960Q1 until 2010Q3 (for this exercise we have extracted the series in February 2011). There are
monthly vintages from July 1986 to December 2010 where we, however, disregard the additional
monthly vintages (i.e. keep the end-of-quarter vintages as quarterly vintages) in order to focus
on the additional vintage-dimension originating from employing high-frequency regressors. For
x we consider, for the same time span, the monthly seasonally adjusted industrial production
index (ref. INDPRO) and the daily S&P 500 stock index (ref. SP500). Monthly vintages from
July 1986 to December 2010 are used for both regressors (mINDPRO = 3). This means that
there are 20 daily observations per vintage which, in turn, implies mSP500 = 60 (In order to
have the same number of working days per vintage, and thereby quarter, we took the maximum
number of working days which were available in each month over the time period considered.
This lead to 20 daily observations per month). Note that the S&P500 stock index is not revised
at all such that along different vintages new data becomes available, but existing ones do not
change. Note that one could easily generate daily vintages as well. We, however, facilitate the
analysis by only considering monthly vintages for both regressors.

Moreover, the vintages do not match exactly for the three series y, xINDPRO and xSP500.
The first mismatch comes from the fact that they are not published on the same day. We do
not do anything about that. When there are two vintages for the same month (this happens
for INDPRO), we take the vintage at the half of the month. The second problem is that there
are, at different releases, missing vintages for the two variables. To facilitate the computation
we create missing data releases such that v = v − 1, i.e. missing values will be assigned their
respective value in the previous vintage. The alternative would have been to delete uncommon
vintages.

A further remark concerns the fact that figures of both series are computed with reference
to a base year. Due to changes in the base years, the values jump at the respective dates. Note
that because we forecast growth rates of output, this is not an issue for our ROF analysis.

Note that the empirical analysis deals with merely two regressors whereas some alterna-
tive studies on forecasting GDP growth employ hundreds of variables or bivariate regressions.
Furthermore, we consider only seven models as described in a previous section. We want to
stress again that, in this paper, emphasis is on the methodology and its implications, i.e. the
weights implied by the combinations of the various forecast densities constructed using ROF,
in contrast to presenting an alternative regressor set producing possibly superior forecasts of
GDP growth. The analysis presented in the next section is easily extended to include a larger
set of regressors and/or forecasting models such as e.g. factor models as explained before.
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6.2 Model Comparison and Combination: ROF

Before comparing (and combining) the forecast densities produced by the seven models intro-
duced above, we analyze whether cointegration between y and any of the two regressors is
present. As illustrated above, using the last vintage available, we screen through the candidate
timings and report the Engle-Granger (1987) ADF-t-test as well as the p-value associated with
Johansen’s trace test in Table 2 below. Note that GDP and S&P500 do not seem to be cointe-
grated such that only the results for a potential cointegrating relationship between GDP and
industrial production (x in the table) are presented.

Error-Correction term Timing tADF Johansen’s Trace Test
(p-value) for no CE(s)

p-value

yt−1 − βxt,2 ’x-2-after-y’ −3.257 0.0445
yt−1 − βxt,1 ’x-1-after-y’ −3.037 0.0925

yt−1 − βxt−1,3 ’Same Period’ −3.238 0.0898

yt−1 − βxt−1,2 ’x-1-before-y’ −3.131 0.1041
yt−1 − βxt−1,1 ’x-2-before-y’ −2.946 0.1444

Table 2: tADF and Johansen’s Trace test

Given the outcome of the tADF statistic and Johansen’s Trace test, there seems to be
merely a weak cointegrating relationship of the ’x-after-y’-kind at the second month between
the two variables. For the other candidate timings Johansen’s trace test does not reject the null
hypothesis of no cointegrating equations at the 5% significance level. Hence, the ECM-MIDAS
model including a long-run term employs the x-variable ’two months after’ the regressand where
the cointegrating vector will be re-estimated by OLS for every vintage as mentioned before. In
case of one of the classical aggregation models, the x-variable entering the long-run term will be
computed accordingly as the average or the end-of-quarter observation, respectively. Note that
due to the weakness of the cointegrating relationship, which might be even more pronounced
for earlier vintages, we may expect the models excluding a cointegrating relationship to perform
quite well.

In order to compare whether one of the seven models introduced above uniformaly dominates
the others, we conduct the ROF (repeated observation forecasting) and compare the approaches
at hang using the methodology presented in Section 4. As an illustrative example, three dates,
roughly equally distant from each other, are considered, 1986Q3, 1991Q4 and 1996Q1; the
results of the analysis for all calendar dates are presented subsequently. It emerged that even
after 20 quarters there are still a lot of revisions in the growth rates taking place. This is
emphasized in Figure 1 where even after a large amount of new data releases has occurred,
there are quite large movements for some dates, e.g. 1986Q3.

The growth rates of quarterly real gross national product for the respective periods are fore-
casted in each vintage and the resulting one-step-ahead forecasts are used to construct forecast
density functions. Note that for each date a different number of one-step ahead forecasts is
calculated due to a different number of vintages to choose from (97, 76 and 59, respectively).
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Figure 1: Revised GDP growth rate along monthly vintages

Point-in-time sampling is denoted by PIT, Average sampling by AV and the real-time real-
izations by D Q. Whenever a long-run relationship is included, COINT is appearing in the
label.

The forecast densities based on the one-step-ahead forecasts produced by the respective
seven models and a combination forecast density based on the scores of these seven model-
based forecast densities are plotted in Figures 2 to 4. Additionally, histograms of the real-time
realizations, which are used as ”actuals” in this analysis, are displayed in the top right corners.
Finally, the vertical bars represent the realizations of the final vintage, i.e. another value
commonly used as ”actual” in studies dealing with real-time data.

The first striking observation about these figures is that we are dealing with density functions
which are sometimes spread over a wide data range. This implies that the forecasts of the GDP
growth rates differ substantially as new data releases take place, just as the corresponding
realizations do (see Figure 1). Furthermore, it turns out that in all three figures each model
results in quite different forecast densities. In the case of 1986Q3 for example, MIDAS COINT
produces a rather flat forecast density whereas the one of PIT is more concentrated on a
smaller region. Also, the AR-model- and the AV- or the PIT COINT-based forecast densities
put positive probabilities on almost entirely disjoint data regions. Similar observations can be
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Figure 2: Forecast Densities and Real-time actuals 1986Q3

made for the other forecast densities in the case of 1991Q4 or 1996Q1.
In order to judge whether and in what sense one model outperforms another one, it becomes

crucial to choose which observations are taken as ”actuals”. When comparing two models we
take the real-time realizations as ”actuals” as discussed before. A histogram of these values is
given in top right corner of each figure. If a model was able to forecast the GDP growth rate in
real-time perfectly, i.e. produce the real-time realization for each vintage, the forecast density
would exactly reproduce the shape implied by the histogram. The less it mimics its shape, the
lower the score of the model concerned and the more likely it is going to be dominated by a
competing approach. Based on the plot of the forecast densities produced by each model we
can already form an expectation of which model is superior to another one.

Take, for example, the case of 1991Q4 and note that the real-time realizations range from
0.001 to 0.008, their histogram has a tri-modal shape with local maxima at 0.001 and 0.004 and
a global one at 0.006. The AR-model-implied forecast density ranges only from 0.005 to 0.008
(i.e. scoring zero on the smaller real-time realizations) with two modes at 0.006 and 0.0075.
All other approaches result in forecast densities ranging from roughly 0.003 to 0.0085 with a
bimodal (except for PIT COINT) shape where the first one is a local maximum at around 0.004
and the second is a global maximum at around 0.006 to 0.0075 depending on which approach is
concerned. Hence, none of the models seem to be able to forecast the mode at 0.001 (they seem
to have overestimated the growth rate for the respective vintages) although all models appear
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Figure 3: Forecast Densities and Real-time actuals 1991Q4

to reproduce the shape of the histogram quite well. Whether a model significantly outperforms
the others remains to be formally tested employing the Diebold-Mariano-type test.

The situation may, however, not be as ”good” as it is for 1991Q4 in the sense that the
forecast densities reproduce the histogram of the real-time realizations quite well. In the case
of 1986Q3 none of the seven models’ forecast densities seem to display the global maximum in
the ”actuals” at 0.01. In fact, only the forecast density produced by MIDAS COINT places
positive probability on its value which is why it will probably outperform the other approaches
in terms of the Diebold-Mariano-type test (because the other models score zero on almost
half of the real-time realizations). Hence, if we test whether, for instance, AV displays an
equally well forecasting performance as PIT, it should be pointed out that we may consider
two ”bad” models. The test merely tells us whether or not one approach dominates another
one, not whether this approach has a good forecasting performance in terms of the ”actuals”
we consider. Wether or not some, or even all, models are entirely useless can be assessed
graphically.

Note that our conclusions might change entirely if we focus on another value as ”actual”.
Often the final-vintage (or latest-available) realization is taken to be the ”actual” value implying
that the forecasting model placing most weight on its value will be the preferred one. In
Figures 2 to 4 the final-vintage realization is represented by a vertical bar such that for 1986Q3
MIDAS COINT dominates the others, for 1991Q4 we would choose PIT COINT whereas for
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Figure 4: Forecast Densities and Real-time actuals 1996Q1

1996Q1 our choice would be either of the two. It may however occur that none of the models
place any positive probability on the latest-available realization (it almost happens for 1986Q3).
In such a situation the model being ”closest” to its value could be chosen (for 1986Q3 the AR-
model if MIDAS COINT is left out of consideration).

As explained above, we produce a combined density forecast based on the scores of the
seven model-based forecast densities. As argued extensively in the point forecast literature
such an approach may lead to improved results due to diversification arguments. Even though
MIDAS COINT might dominate the other models for 1986Q3, some of the other approaches
may carry useful information for real-time forecasting. The resulting combined density forecasts
are represented by solid black lines in Figures 2 to 4. It emerges that the shape of its forecast
density replicates the shape of the histogram very well. For example, in the case 1986Q3 the
combined density forecast mimics the tri-modality of the histograms and for 1991Q4 it detects
the minimum at 0.005 almost perfectly.

Table 3 summarizes the results for the three respective dates. In particular, the tA,B-tests
of Section 4 are displayed where A is the model mentioned in the respective row and B the
one in the respective column. As such, a positive (negative) value indicates that the row-model
achieves a larger (smaller) average score than the column-model, i.e. model A outperforms (is
dominated by) model B. Whether or not this difference is significantly different from zero needs
to be assessed by means of comparisons to respective critical values. The implied weights given
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to each model when combining forecast densities are given as well.

1986q3 PIT COINT PIT AV COINT AV MIDAS COINT MIDAS AR

PIT COINT 6.9002 -4.8966 6.6075 -1.4522 2.1985 5.6717
PIT -6.8153 -7.0083 -6.2709 -3.9448 -0.6280

AV COINT 6.3743 -0.5119 2.6541 5.8807
AV -4.6560 -0.3681 4.1459

MIDAS COINT 4.0086 6.7711
MIDAS 7.1393

Weights 0.11 0.00 0.34 0.00 0.55 0.00 0.00

1991q4 PIT COINT PIT AV COINT AV MIDAS COINT MIDAS AR

PIT COINT 2.9566 -2.4422 4.4038 2.9372 3.2949 3.5717
PIT -2.8053 -1.9089 -2.9647 3.7185 3.6557

AV COINT 4.8891 2.7374 3.1184 3.5029
AV 1.2742 2.6630 3.3982

MIDAS COINT 3.4732 3.6220
MIDAS 3.6398

Weights 0.23 0.05 0.46 0.15 0.10 0.01 0.00

1996q1 PIT COINT PIT AV COINT AV MIDAS COINT MIDAS AR

PIT COINT 1.0920 2.5243 2.2983 6.0188 6.2524 3.6826
PIT 2.4553 2.2216 6.2752 6.4841 3.3106

AV COINT -3.6960 -0.7280 -0.3271 -2.1340
AV -0.2828 0.1479 -1.7252

MIDAS COINT 6.8273 -1.6390
MIDAS -2.3112

Weights 0.33 0.32 0.03 0.05 0.07 0.04 0.15

Table 3: Density Comparisons for the three dates and the implied weights to get the combined
density forecasts

First of all, note that a model having only negative figures in its column and only posi-
tive ones in its row shows a better forecasting accuracy than all competing approaches and is
repeated in bold letters above for each date under consideration. Wether or not such a differ-
ence is significantly different form zero needs to be assessed by comparing the tA,B-statistics
to asymptotically standard normal (otherwise bootstrapped) critical values. With respect to
the discussion about Figures 2 to 4, it turns out that for 1986Q3 MIDAS COINT is indeed
(significantly) dominating the other models. For 1991Q4 AV COINT leads to the best fore-
casting performance and the AR-model is significantly outperformed by all approaches as was
expected due to its nonrecognition of the two local maxima smaller than 0.006. For 1996Q1
the model yielding the ”best” forecasting performance is PIT COINT. These observations are
confirmed by the implied weights given to each model when combining their forecast densities.
Note, however, that the dominating model does not get a weight of one, but that some, or even
all (1996Q1), other models are assigned positive weights as well.

Note that the AR-model is assigned a zero weight for two of the considered dates. It
turns out, when considering all calendar dates, that the autoregressive model is very often
outperformed by all competing approaches. In the case of 2001Q3 e.g. the growth rate rose for
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the past four quarters, but declined precisely in the third quarter of 2001. In such a situation
the autoregressive model is not able to predict this decline whereas the other models, taking
into account mid-quarter information, are better able to do so. Hence, adding explanatory
variables improves the forecasting performance across different vintages.

As became evident from the figures and the table above, none of the models seems to
dominate the other ones uniformly. In fact, for all three dates, a different model is assigned
the largest weight when combining forecast densities which, in turn, seems to improve on the
individual model-based forecast densities. So far, however, we have merely looked at three
dates. How does the weight distribution over the seven models under consideration evolve
over all calendar dates? If they turn out to be rather constant, we would have found a weight
distribution which could be employed for future calendar dates. The following figure graphs the
weights of each of the seven models for all calendar dates under consideration. If the weights
stay constant across calendar dates, we would expect rectangular areas (of possibly different
height) for each approach.

Figure 5: Weights given to the seven models over all calendar dates

Clearly, Figure 5 suggests that the weights do not stay constant along different calendar
dates. The weight distribution seems to alter immensely as we move from the left to the right
of the figure. Hence, instead of constant weights we should consider time-varying weights.

What does the whole previous analysis imply for a practitioner who is aiming at conducting
a forecasting study employing the latest-available data set? Assume that he or she has several

19



forecasting models to choose from and is also familiar with traditional forecast combination
approaches such as equally weighting the forecasts or applying a Bates and Granger (1969)
weighting scheme. Our time-varying weights obtained by considering the real-time forecast-
ing performance using a combination of forecast densities offer an alternative choice to the
researcher. Note that classical weighting schemes such as the two mentioned above assign a
constant weight to each forecast whereas our weights possibly change for every calendar date
under consideration.

Do our time-varying real-time weights yield a better forecast accuracy than the individual
models or other combination schemes such as e.g. Bates and Granger (1969) weights? To
investigate this, we consider forecasting US GDP growth from 1995Q1 until 1999Q4 employing
the latest-available vintage. In particular, we conduct 20 one-step-ahead out-of-sample forecasts
using an estimation period from 1960Q2 to 1994Q4 and compute the RMSEs using each model
individually, combining them using equal weights for the forecasts, using Bates and Granger
(1969) weights and using our proposed time-varying ROF-based weights. The outcome of the
analysis is summarized in the first column of Table 4.

Model RMSE (1995Q1-1999Q4) RMSE (2005Q4-2010Q3)

PIT COINT 0.0205 0.0219
PIT 0.0206 0.0230

AV COINT 0.0233 0.0220
AV 0.0232 0.0229

MIDAS COINT 0.0182 0.0275
MIDAS 0.0185 0.0275

AR 0.0193 0.0377

Bates and Granger 0.0190 0.0221
Equal Weights 0.0194 0.0229

ROF-based 0.0160 0.0211

Table 4: RMSEs of the individual models and the competing combination methods

According to Table 4, employing ROF-based weights as described in this paper yields con-
siderably better forecasts. Hence, for this data set and the models employed here, it seems that
the use of a real-time data set to construct forecast densities from which to deduce time-varying
weights improves the forecasting performance.

The previous small exercise focused on a period in the past, but in how far do the results
change when we consider a more recent period to forecast? Note that our weights are determined
by combining the forecast densities of several models which were constructed employing the
forecasts based on different vintages for a particular calendar date. As there are fewer vintages
to choose from for more recent dates, it implies that the weights themselves are based on fewer
observations, i.e. forecasts which were used to construct forecast densities. To investigate
whether the ROF-based weights suffer from the problem of being based on too few vintages, we
consider forecasting the US GDP growth rate from 2005Q4 until 2010Q3, i.e. again producing

20



20 one-step-ahead out-of-sample forecasts. Again, we compare the forecasting performance of
our seven approaches and the three combination methods from before with each other where
we construct the ROF-weights exactly as before ignoring the fact that the forecast densities are
based on very few vintages. The results are displayed in the second column of Table 4.

It seems that the use of the ROF-based weights leads to a forecasting performance that is not
significantly different from the other combination approaches, analyzed using Diebold-Mariano
(1995) tests, although it yields the lowest RMSE. Hence, when more recent calendar dates are
dealt with, the superiority of forecast combinations employing our time-varying weights might
be lost, at least in this particular study. To circumvent this problem, one could follow two
approaches. First, the weights could be forecasted using a VAR model. For this particular
study a VAR(0) is chosen according to information criteria such that the simple averages of
the weights, displayed in Table 6, could be chosen as weights when forecasting the more recent
period. Second, one could forecast vintages as is done in Clements and Galvão (2011) or Une
(2011) in order to increase the number of data releases and thereby get a more reliable weight
construction.

Model PIT COINT PIT AV COINT AV MIDAS COINT MIDAS AR

Weights 0.1998
(0.0244)

0.1533
(0.0214)

0.1478
(0.0206)

0.1038
(0.0137)

0.1394
(0.0227)

0.1834
(0.0301)

0.0725
(0.025)

Table 5: Averages of the weights

The previous small forecasting exercises showed that the time-varying ROF-based weights
may lead to an improved forecasting performance for the empirical application at hand. In
general, however, for which type of data do we expect our approach to perform well? Given
the way the weights are determined, we expect that such situations occur in case of model
uncertainty or if the data exhibit some mixture distribution. In the latter case the combined
forecast density might correspond to an estimation of the mixture probability density function.
A closer investigation of this issue might be undertaken via a Monte Carlo study where it is,
however, far from obvious which data generating process to employ. Are the data generated
by a linear combination of different models? Which set of models should we choose? Does
one model dominate the others uniformly over all vintages and if not, which one dominates for
which vintages? Or should the weights be chosen randomly in each vintage? Even if we allow
for the latter, we believe that the true underlying mechanics in such a real-time setting are far
too complex to be accurately modeled such that we do not expect new insights from a Monte
Carlo study.

6.3 Multivariate Dimension ROF

As already explained before, extending the analysis of Stark and Croushore (2002) to an ADL
setting with possibly higher-frequency regressors, enables the researcher to make use of addi-
tional dimensions of vintages originating from the high-frequency variables. So far, we have
focused on the vintages corresponding to the last month of a quarter. It might, however, be
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the case, that using the vintages corresponding to the first or second month of a quarter yields
considerably better forecasting performances than using the end-of-quarter vintages. If so, this
might have an impact on which data releases to base our forecast density functions on and
how we should compute nowcasts of GDP (how many observations of the regressors we need to
forecast) as indicated in the introduction. Even if it turns out that employing different monthly
vintages does not lead to a significantly different forecasting performance, we would have gained
the insight that we can make use of the most recent observations without expecting a worse
forecasting performance than when we, for instance, waited another month for revised data.

In order to find out whether employing a certain vintage yields considerably better forecast-
ing performances, we consider five candidate vintages per quarterly vintage of y similarly to the
candidate timings in the MIDAS models before: The x-vintage two months before the one of
y, one month before that of y, the same vintage as y, the vintage of x one month after the one
of y and, finally, two months after the one of y. Similar to the previous section, one-step-ahead
forecasts are computed for each candidate vintage employing real-time data. The RMSEs are
calculated in a similar way as the scores earlier, i.e. employing the real-time realizations as
”actuals”. This results in five RMSEs which can be compared with the modified version of
the Diebold-Mariano test (Harvey, Leybourne and Newbold 1997). To focus on the question
whether the use of one particularly timed data release yields a significantly better forecast
accuracy than another one, we only consider the MIDAS model in this section.

The RMSEs for the cases ’x-2-vintages-before-y’, ’x-1-vintage-before-y’, ’same-vintage’, ’x-
1-vintage-after-y’ and ’x-2-vintages-after-y’ are 0.04113, 0.0415, 0.04111, 0.04164 and 0.04182,
respectively, and Table 6 summarizes the modified Diebold-Mariano test statistics.

Modified DM statistic x-1-vint-before-y same-vint x-1-vint-after-y x-2-vint’s-after-y

x-2-vint’s-before-y -0.66411 -1.1938 -0.75762 -0.97631
x-1-vint-before-y -1.36613 -0.4092 -0.77747

same-vint 0.41172 -0.13662
x-1-vint-after-y -1.05856

Table 6: Diebold-Mariano test statistics for the different candidate vintages

With respect to the results in Table 6, we can conclude that none of the different high-
frequency vintages yields better forecasting performances than the others. Hence, we may freely
choose which x-vintage to employ for a real-time data analysis and nowcasting. It implies that
for either fore- or nowcasting we can make use of the most recent observations available to us.

Intuitively, one would expect the forecasting performance of later vintages to improve be-
cause new or revised information has been released. Note, however, that we are merely employ-
ing one high-frequency variable for which data are revised and that this variable appears only
three times as often as the dependent variable. According to Foroni, Marcellino and Schumacher
(2011), mixed-frequency models outperform models which disregard the higher frequency in the
regressors only for large enough frequency differences i.e. if the regressor(s) is (are) available at
much higher frequency than the regressand. A similar argument might hold for data releases
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taking place at a higher frequency for some variables. In fact, Aastveit et al. (2011) study
how the forecast of GDP becomes more concentrated as new data becomes available during a
quarter. However, they also consider a wide range of regressors with different frequencies such
that much more data releases occur between two GDP releases. We expect that adjustments in
both directions (more variables and/or sampling at a higher frequency) have a corresponding
effect on the outcome of this analysis.

6.4 Nowcasting

Given a certain model or combination approach, the mixed-frequency nature of the data enables
the researcher to choose from an enlarged set of vintages containing more (high-frequency)
information. Hence, it is of interest in how far the use of these extra information influences
the performance of using real-time data as opposed to latest-available data. More importantly,
employing real-time data in combination with mixed-frequency variables enables the user to
nowcast the dependent variable employing the most recent information available at that time.
The issue of nowcasting GDP in particular is dealt with extensively in the literature, e.g. Evans
(2005) and Giannone, Reichlin and Small (2008) who develop methods to estimate the current
state of the economy continually employing the flow of information of various data releases. For
an extensive survey we refer to Bańbura, Giannone and Reichlin (2011a).

Bańbura, Giannone and Reichlin (2011b) extend the framework of Giannone et al. (2008)
to accommodate a general mixed-frequency data set. Other studies employing mixed-frequency
data for nowcasting include Giannone, Reichlin and Simonelli (2009) who develop a mixed-
frequency VAR for nowcasting GDP in the euro area, Marcellino and Schumacher (2010) who
propose a so-called Factor-MIDAS model for (fore- and) nowcasting or Kuzin, Marcellino and
Schumacher (2009) who compare the two latter approaches.

Given the outcome of the previous analysis, we construct nowcasts using the end-of-quarter
vintages for the regressors due to simplicity. Of course, we could also employ any other (high-
frequency) vintage for the regressors since the forecasting performance does not alter signifi-
cantly. As an illustration, we plot the nowcasts of US GDP growth against the latest-available
and real-time (since GDP growth for the current vintage is not released yet, we consider the
corresponding value appearing the following vintage as real-time observation) observations in
Figure 6.

Note that, as already indicated before, nowcasts may also be done during the quarter by
employing additional monthly vintages for the quarterly variable GDP, for instance. Say we
want to nowcast the third quarter of 2011 in August. Assuming only quarterly vintages of
GDP, we only have information about the first quarter of GDP (since the last vintage for GDP
appeared in June giving a value for the first quarter of 2011 due to the publication lag). On the
contrary, employing higher-frequency vintages enables us to use a revised version of the second
quarter of 2011 in August. Hence, an extension along this line is worth undertaking since for
both, the regressand as well as the regressors, it is valuable to make use of high-frequency
information whenever possible in order to include the most recent observations into fore- or
nowcasts.
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Figure 6: Nowcasts (solid line), latest-available (dashed line) and real-time data (dotted line)
of US GDP growth

7 Conclusion

This paper combines the issues of dealing with variables that are sampled at mixed-frequencies
and working with real-time data sets. As such, the analysis of Stark and Croushore (2002) is
extended to an ADL setting where the regressors are possibly sampled at higher frequencies
than the regressand. Thereby, a wider range of models could be considered by the practitioner
and it is proposed to assess the superiority of one model over the other in terms of real-time
forecasting by means of the repeated observations forecasting (ROF) approach introduced in
Stark and Croushore (2002).

In particular, density forecasts are constructed for each model summarizing the extent to
which forecasts of a particular calendar date differ across vintages. A combination of the forecast
densities is constructed and the implied weights for each calendar date are investigated. These
ideas are illustrated by means of an empirical analysis where the US GDP quarterly growth
rate is fore- and nowcasted.

It is found that forecasts as well as the real-time realizations vary immensely across vintages.
Employing a Diebold-Mariano (1995)-type test to compare forecast densities it is seen that
no model outperforms all the others across all calendar dates. Nevertheless, a combination
approach leads to a combined forecast density being able to mimic the real-time realizations
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quite well for the dates concerned. The implied weights given to each model’s forecast density,
however, are not constant across time such that we propose a time-varying weight structure.
This weight assignment is an alternative option for practitioners aiming to conduct forecast
exercises using the latest-available data release and performs rather well in this particular
study.

Working with high-frequency regressors gives rise to the use of high-frequency vintages in
order to make use of the extra information inherent in the high-frequency variables. To this end,
the multivariate dimension ROF is introduced. It is found that no vintage yields considerably
better forecasting performance than the others. Allowing for more high-frequency regressors is,
however, likely to lead to the outcome that employing new information as it becomes available
will improve on forecasting performances.

This analysis should be extended along several lines. Most importantly, the set of regressors
and models should be increased. Including variables of different and higher frequencies might
lead to new insights into the multivariate dimension ROF and the question of which vintages
to employ. Additionally, it might lead to more real-time forecasts on which to base our weight
construction on. Furthermore, it will be interesting to see whether the ROF-based weights will
behave in a systematic manner if more models and/or high-frequency regressors are used. This
would give our time-varying ROF-based weights a more intuitive and founded background.

Our analysis shows that the time-varying ROF-based weights may present a competitive
alternative to existing combination schemes such as e.g. Bates and Granger (1969) weights.
Their construction, however, is dependent on the existence of a real-time data set. Hence, as
Fernandez and Swanson (2009), this work stresses the need to make real-time data sets available
to empirical researchers and appreciates recent developments in this matter (e.g. Statistics
Canada or Reserve Bank of New Zealand).
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