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Abstract

Social institutions undoubtedly affects a country’s economy. But how does this effect operate
and how much does it matter for economic development? Using network analysis tools, we
explore how different social structures might affect a country’s rate of technological progress.
The network model also explains why societies with a high prevalence of contagious disease might
adopt growth-inhibiting social institutions and how small differences in disease prevalence can
produce large differences in incomes. Empirical work uses differences in the prevalence of diseases
spread by human contact and the prevalence of other diseases as an instrument to identify an
effect of social structure on technology diffusion.

How people organize themselves as a society undoubtedly affects economic activity and a coun-

try’s income. But how does this effect operate and how much does it matter for development?

Macroeconomists typically overlook findings of sociologists and anthropologists because social char-

acteristics are difficult to observe, to describe formally and to quantify.1 This paper uses tools from

network analysis to explore how different social structures might affect a country’s rate of tech-

nological progress. The network model also explains why societies might adopt growth-inhibiting

institutions and how small differences in disease prevalence can produce large differences in incomes.

Motivated by these theoretical findings, we use differences in the prevalence of diseases spread by

human contact and the prevalence of other diseases as an instrument to identify an effect of social

structure on technology diffusion.

There is a long history of measuring the speed of information or technology diffusion within

various kinds of networks (Jackson (2008), Granovetter (2005)). Given these findings, a simple

way to explain the effect of social structure on GDP is to show that some types of social networks
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1Of course, there is a small economics literature and a much more extensive sociology literature on the effects of
social institutions on income. See e.g. Greif (1994) for economics and Granovetter (2005) for a review of the sociology
literature.

1



disseminate new technologies more efficiently than others and append a production economy where

the average technology level is related to output and income. There are two problems with this

explanation. First, social contacts are presumably something people can choose. If so, why would

societies choose a social structure that inhibits growth? Second, this explanation is difficult to

quantify or test. How might we determine if its effects are trivial or not? While researchers have

mapped social networks in schools or on-line communities (Jackson, 2008), mapping the exact social

network structure for an entire economy is not feasible.

Our theory for why some societies choose growth-inhibiting social structures revolves around

the idea that communicable diseases and technologies spread in similar ways - through human

contact. When choosing a social structure, people are balancing the advantages of rapid technology

diffusion against the risk of infection. In countries where communicable diseases are inherently more

prevalent, a social structure that inhibits the spread of disease and technology will be optimal. To

protect themselves from disease, people should form economic networks with the property that most

of one’s friends are friends with each other. When a social structure has many mutual friendships,

each group of friends has fewer links with the rest of the community. This limited connectivity

reduces the risk of an infection entering the group of friends, but it also restricts the group’s

exposure to new technologies. In contrast, having a dispersed social structure brings the benefit of

faster technology diffusion, at the cost of a higher rate of mortality.

The idea that disease prevalence and social structure are related can help to isolate and quantify

the effect of social structure on technology diffusion. This is a challenging task because technology

diffusion and social structure both affect each other: Technology diffusion is a key determinant

of income, which may well affect a country’s social structure. To circumvent this problem, we

instrument for social structure using disease prevalence data. By itself, disease prevalence would

be a poor instrument because it is not likely to be exogenous: higher income levels would likely

translate into better health and lower disease levels. Therefore, our instrument uses differences

in the prevalence of two types of disease. The first type is diseases that are spread directly from

person-to-person. These diseases might plausibly affect social structure because changing one’s

relationships with others can prevent transmission. The second type of disease are those transmitted

only by animals. Since direct human contact does not affect one’s probability of infection, the

prevalence of such diseases should not affect social structure.

The model compares an individualistic to a collectivist society modeled in the following way:

The collectivist society is populated by communities of people who mostly all know one another, and

know each other’s friends. In the individualistic society, agents interact, socially or economically,

with others who do not know each other. This would be the case if most transactions took place

in large, anonymous markets. Section 1 models the epidemiology of disease and technology in
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each society and show that when the initial prevalence of infectious disease is higher, people prefer

collectivist social networks, in order to reduce their chance of infection. This also reduces the

growth rate of productivity.

Using historical pathogen prevalence data from Atlases of infectious disease and measures of a

society’s individualism from Hofstede (2001), section 3 tests the model’s predictions for the rela-

tionship between disease prevalence and social structure. This establishes that disease prevalence

is a powerful instrument for social structure. The section then goes on to estimate the effect of so-

cial structure on technology diffusion, using the difference in communicable and non-communicable

diseases as an instrument. Finally, section 4 quantifies how much of the cross-country difference in

technology diffusion this mechanism can explain.

Related literature The paper contributes to four growing literatures. A closely related lit-

erature is one that considers the effects of social structure on economic outcomes. Most of this

literature considers particular firms, industries or innovations and how they were affected by the

social structure in place (e.g., see Granovetter (2005) or Rauch and Casella (2001)). In contrast,

this paper takes a more macro approach and studies the types of social networks that are adopted

throughout a country’s economy and how those affect technology diffusion economy-wide.

Thus in its scope, the paper is much more related to a second literature, that on technology

diffusion. But what sets this paper apart from that body of work is its insights about why societies

adopt networks that do not facilitate the exchange of ideas and its links to empirical measures of

social structure.

The third literature, on culture and its effects on national income is similarly macro in scope.

For example, work by Tabellini (2005) and Algan and Cahuc (2007) examine the relationship

between cultural characteristics and economic outcomes. Work by Bisin and Verdier (2001), Bisin

and Verdier (2000) and Fernández and Fogli (2005) examines the transmission of culture. Cole,

Mailath, and Postlewaite (1992) investigate how social norms affect savings choices, and in turn

growth. But this literature typically regards culture as an aspect of preferences. We look at social

structure, which characterizes the set of relationships people have. Greif (1994) argues that culture

is an important determinant of a society’s social structure. While this may be true, we examine a

different determinant of social structure that is easily measurable for an entire country, pathogen

prevalence. Our approach lends itself better to quantifying the aggregate effects of social structure

on economic outcomes.

Finally, the work on the importance of political institutions by Acemoglu, Johnson, and Robin-

son (2002) and Acemoglu and Johnson (2005) is similar in its objectives and the approach of using

pathogen prevalence to identify variation in endogenous institutions. But instead of examining po-
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litical institutions, we study an equally important but distinct type of institution, social structure.

1 A Network Diffusion Model

Our model serves two purposes. First, it is meant to fix ideas. The concept of social structure is a

fungible one. We want to pick a particular aspect of social structure, the degree of collectivism in

a social network, to anchor our analysis on. In doing this, we do not exclude the possibility that

other aspects of social or cultural institutions are important for technology diffusion and income.

The second role of the model is that it helps us answer the following question: The richest

countries have income and productivity levels that are 100 times higher than the poorest countries.

Can differences in social structure plausibly explain such large income disparities? To answer this

kind of question requires a model and some reasonably calibrated parameter values. The next

section takes up this quantitative exercise.

A key feature of our model linking social structure to technological progress is that technologies

spread by human contact. This is not obvious since one might think new ideas could be just as

easily spread by print or electronic media. However, economists and sociologists have long noted the

importance of human contact. In his 1969 presidential address, Kenneth Arrow remarks, “While

mass media play a major role in alerting individuals to the possibility of an innovation, it seems

to be personal contact that is most relevant in leading to its adoption. Thus, the diffusion of

an innovation becomes a process formally akin to the spread of an infectious disease.” With this

description of the process of technological diffusion in mind, we propose the following model.

1.1 Economic Environment

Time, denoted by t = {1, . . . , T}, is discrete and finite. At any given time t, there are n agents,

indexed by their location jε{1, 2, . . . , n} on a circle. Each agent produces consumption goods with

a technology Aj(t) and labor input lj(t):

yj(t) = Aj(t)lj(t)
α

Each healthy agent is endowed with 1 unit of labor, which they supply inelastically (lj(t) = 1).

Furthermore, there is no savings technology. Thus, consumption for healthy agents is cj(t) =

yj(t) = Aj(t).

An agent who catches a disease at time t loses their endowment of labor for one period (nj(t) = 0

and thus cj(t) = 0). At the end of this period, they die and are replaced by a new person in the

following period. Let ψj(t) = 1 if the person in location j is sick in period t and = 0 otherwise and
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Ψj(t) = min{s : s ≥ t, ψj(s) = 1} be the period in which the person living in location j at time t

gets sick and dies.

Then, the objective function of person j is

Uj =

Ψj−1∑
τ=t

βτ−t (cj(τ))
1−γ

1− γ
(1)

where β is the time discount factor. Note that we need γ ≤ 1 for death to be a bad outcome.

Otherwise, utility when living is always negative and death is desirable.

Social networks Each person i knows φ other people. Let ηjk = 1 if person j and person k are

friends and = 0 otherwise. Let the network of all connections be denoted N . Agent i’s expected

utility can then be expressed indirectly as a function of N : EUi(N).

Spread of disease Each infected person in one’s social network transmits the disease to any

other network member with probability π. Thus, if m network members are diseased at time t− 1,

then the probability of being healthy at time t is (1 − π)m. If no one in the social network has a

disease at time t− 1, then the probability of contracting the disease at time t is zero.

Agents have rational expectations about the aggregate disease rate. In other words, they cor-

rectly anticipate the prevalence of disease country-wide. But they do not know who is sick.

Spread of technology Technological progress occurs when someone improves on an existing

technology. To make this improvement, they need to know about the existing technology. Thus, if

a person is producing with technology Aj(t), they will invent the next technology with a Poisson

probability λ each period. If they invent the new technology, ln(Aj(t+1)) = ln(Aj(t))+δ. In other

words, a new invention results in a (δ/100)% increase in productivity.

People can also learn from others in their network. If person j is friends with person k and

Ak(t) > Aj(t), then the next period, j can produce with k’s technology. If there are multiple

levels of technology used by j’s social contacts, j can produce with the best of these technologies:

Aj(t+ 1) = maxk ηjkAk(t).

As with disease, agents’ expectations about others’ technology are rational. In other words,

they correctly anticipate the fraction of people producing with each technology level. But they do

not know who has which technologies.

Definition of Equilibrium We focus on symmetric equilibria where all agents have the same

number of connections (ηi = η). An equilibrium is a network that is stable under pairwise devi-
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ations. In other words, there are no two people who both prefer to form a new connection with

each other, and there is no individual who would be better off from severing some existing network

connection.

1.2 Results: Speed of Diffusion in Collectivist and Individualistic Networks

Ideally, we would like to have a model where differences in initial disease prevalence cause agents

to choose different types of social networks from the set of all possible networks. The problem is

that such network choice models frequently have multiple equilibria. Furthermore, if one had such

a model, it would not be clear how the variety of possible networks should be mapped into data.

To clarify the mapping between the model and the data, we choose to analyze only two networks.

We choose networks that are extremes along a particular dimension, their degree of collectivism,

because that is an aspect of a social structure that has been carefully studied by sociologists.

Our collectivist network is one with many mutual friendships or many instances of interdepen-

dence that are the hallmark of collectivist societies. To measure this interdependence, we can ask:

If I is friends with J and with K, how often are J and K also friends? In the networks literature, a

structure where I, J and K are all connected to each other is called a triple. Therefore, a measure

of the extent of shared friendships, and thus the degree of collectivism, is the number of network

triples.

To count the number of triples, we look at all the instances in a given network where one node

i is connected to two other nodes j, k. Count that as a triple if j and k are connected. This triples

measure is related to a common measure of network clustering: Divide the number of triples by

the number of possible triples in the network to get the overall clustering measure (Jackson 2008).

To make our examples concrete, we will fix the number of connections φ to be 4. While it would

also be interesting to analyze the variation in the number of connections each individual has, we

restrict attention to the degree of network clustering because it corresponds most closely to our

empirical measures of collectivism.

Network 1 In the collectivist social network, each individual j is friends with the 4 people located

closest to them. In other words, ηjk = 1 for k = {j − 2, j − 1, j +1, j +2} and ηjk = 0 for all other

k.

The reason we propose to examine the properties of network 1 is that it is extreme in its degree

of collectivism. The next result shows that there are as many triples as there are members of the

network (n).

Result 1 In the collectivist network there are n unique triples.
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The proof of this and all subsequent results are in appendix A.

At the other end of the spectrum, we propose a second network that has a very low degree of

collectivism and call that the individualistic network.

Network 2 In the individualistic social network, each person is friends with the person next to

them and the person 4 positions away from them, on either side. In other words, ηjk = 1 for

k = {j − 4, j − 1, j + 1, j + 4} and ηjk = 0 for all other k.

Result 2 In the individualistic network, there are zero triples.

In fact, the proof shows that any network where where each person i is friends with i−ψ, i−1,

i+1, and i+ψ, where ψ ∈ {3, . . . , n− 3}, has zero triples. Network 2 is simply an example of such

a network.

We chose these two network structures because of their starkly different numbers of triples. This

stark difference facilitates matching social institution data with one or the other type of network. Of

course, networks with numbers of triples between 0 and n, are also possible. But knowledge of the

properties of these two extreme cases provides intuition about the properties of such intermediate

cases as well.

Diffusion speed in the Collectivist Network Disease spreads slowly in the collectivist net-

work. The reason is that each contiguous group of friends is connected to only 4 non-group members.

Those are the two people adjacent to the group, on either side. Since there are few links with out-

siders, the probability that a disease within the group is passed to someone outside the group is

small.

Likewise, ideas disseminate slowly. Something invented in one location takes a long time to travel

to a far-away location. In the meantime, someone else may have re-invented the same technology

level, rather than building on existing knowledge and advancing technology to the next level. Such

redundant innovations slow the rate of technological progress and lower average consumption.

The speed at which germs and ideas disseminate can be measured by the number of social

connections in the shortest path between any two people. Consider an agent in position 1 and the

agent farthest away from him on the circle, agent n/2. If each person has 2 friends on either side of

them, then agent 1 will be friends with agent 3, who will be friends with agent 5, and this person

will be friends with agent 7, ect., until we reach n/2. Thus, if the network size n is 6, n/2 is 3,

which could be reached in 1 step: Agent 1 and agent 3 are directly connected. If n/2 is 5 (n = 10),

if could be reached in 2 steps: from 1 to 3 and 3 to 5. In general, the number of steps in this chain

will be (n− 1)/4, if that is an integer, or otherwise the next highest integer. The distance to this

farthest person in the network is called the network diameter.
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Result 3 The diameter of network 1 (collectivist), with n nodes is (n− 1)/4, if that is an integer,

or otherwise the next highest integer.

Diameter is one measure of dispersion speed because it tells us how many periods a new idea

takes to travel to every last person in the network. If each person communicates the idea to each of

their friends each period, then in n/φ periods, the farthest person in the network will have learned

the idea, along with every other agent. Since disease is spread only probabilistically, from friend

to friend, the diameter gives us the smallest number of periods in which every person is infected,

with positive probability.

Another related measure of the speed of diffusion is the average path length. Instead of mea-

suring the number of nodes in the most direct path to the farthest person, this measure computes

the number of nodes in the shortest path to every person and averages those lengths. If φ is even

and n/(2φ) is an integer then n/(2φ) is the average path length in a collectivist network.

Result 4 If φ is even and n/(2φ) is an integer then 1/2 + n/(2φ) is the average path length in

network 1 (collectivist).

Diffusion speed in the Individualistic Network In this environment, dissemination of ideas

or disease is fast. Each group of friends is connected to many outsiders, making the probability

that a disease within the group is passed to someone outside the group is high. Likewise, ideas

disseminate quickly because they travel many positions around the circle each period.

To measure the speed of dissemination, we compute the diameter and average path length in

the network. First, we define the operator round(x) to be the integer y closest to x. In other words,

if y is an integer, then round(x) = y iff xε[y − 1/2, y + 1/2).

Result 5 The diameter of network 2 (individualistic), with n > 4 nodes where each node i is

connected to i− 4, i− 1, i+ 1, and i+ 4, is round(n/8) + 1.

Result 6 In network 2 (individualistic), when n/8 is an integer, the average path length is 7/8 +

n/16.

These measures tell us why ideas and germs spread more quickly in the individualistic network

than in the collectivist network. Whereas, with a collectivist network, technology invented in

one location was transmitted only φ/2 people further each period, in this network, ideas advance 4

places at a time. Because redundant innovations are less frequent, the rate of technological progress

is faster.

8



Result 7 For a large network (n > 8) where n/8 is an integer, the individualistic network has a

smaller diameter and a shorter average path length than a collectivist network with equal size n and

equal degree φ = 4.

This model is meant to illustrate why the diffusion speed of germs and ideas is likely to be slower

in collectivist societies where people have friends in common (relationship triples are abundant).

It provides one possible reason why societies might choose to be collectivist: Although collectivism

inhibits economic growth, it also slows the spread of disease. In high-disease societies, the benefit

of disease protection might outweigh the cost of the foregone growth, making collectivism the more

beneficial social structure. Of course, the model could be made richer in many dimensions, it could

include network choice, random connections between people meant to represent anonymous market

transactions, strong and weak social ties between people, or more nuanced health states. But none

of these extensions is likely to change the basic prediction that the network with the most triples

diffuses germs and ideas more rapidly. It is this basic idea that forms the basis for the empirical

work that follows. The next step is to test the prediction that collectivist societies have slower

technology diffusion and therefore more primitive technology frontiers.

2 Data and Its Relationship to the Model

The model is about the relationship between three main variables: pathogen prevalence, social

structure, and the technological frontier. The section describes how these three variables are mea-

sured and how each measure corresponds to its theoretical counterpart.

2.1 Measuring Pathogen Prevalence

To measure the prevalence of disease, we use the historical prevalence of 9 pathogens: leishmanias,

leprosy, trypanosomes, malaria, schistosomes, filariae, dengue, typhus and tuberculosis. We choose

these diseases because we have good worldwide data on their incidence, and they are serious,

potentially life-threatening diseases that people would go to great length to avoid.

Our data comes from 1930-40 atlases of infectious diseases and the Gideon health statistics

database. For each disease, we have estimates coded on a 3 point scale (not endemic, sporadic,

endemic), standardized across countries. The mean of standardized scores across diseases captures

a country’s relative pathogen prevalence.

To identify the effect of disease on social structure, we follow Smith, Sax, Gaines, Guernier,

and Gugan (2007) and Thornhill, Fincher, Murray, and Schaller (2010) by distinguishing between

three types of diseases:
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Human specific Many infectious agents known to afflict mankind are currently entirely restricted

to human reservoir hosts (i.e., contagious only between persons), even though they historically

may have arisen in other species, such as measles which originated in cattle. Examples

of human-specific infectious diseases include leprosy, tuberculosis, measles, smallpox, and

syphilis.

Zoonotic Infectious agents that develop, mature, and reproduce entirely in non-human hosts, but

nonetheless have the potential to spill over and infect human populations, are referred to

herein as zoonotic infectious agents. Humans are a dead-end host for infectious agents in this

group. Examples of zoonotic infectious diseases include rabies, plague, and hantavirus.

Multi-host Some infectious agents can use both human and non-human hosts to complete their

lifecycle. Oftentimes these infectious agents are lumped with zoonotics, but for the purposes of

this study we distinguish them with the term multi-host infectious agent (”multi” referring to

both human and non-human hosts). Examples of multi-host infectious agents in the GIDEON

database include forms of leishmaniasis that can use humans, wild, and/or domestic animals

as reservoir hosts.

2.2 A Sociological Measure of Clustering: Collectivism

Collectivism is defined as a social pattern of closely linked individuals; interdependent members of

a collective. Collectivistic societies are ones in which individuals are integrated into communities.

What distinguishes communities from sets of people with random ties to each other is that in

communities, people have mutual friendships. In other words, it is common that two friends have

a third friend in common. This is the sense in which they are interdependent.

Individualism is the opposite of collectivism. Individualistic societies are ones where the ties

between individuals are loose. Everyone is expected to look after him/herself and immediate fam-

ily members. In individualistic societies, people interact though market mechanisms. Through

markets, they interact with a variety of people who are unlikely to know each other. Thus, indi-

vidualistic societies are ones where social networks have fewer mutual friendships.

To measure where various societies fall on the individualism/collectivism spectrum, Hofstede

(2001) performed a survey of IBM employees worldwide. He used the 33 survey questions to con-

struct an index of individualism that ranges from between 0 (strongly collectivist) to 100 (strongly

individualist). Figure 1 summarizes the findings of his survey in a color-coded map.

Collectivism as strong social norms Another way to interpret collectivism and the notion

of interdependence that it entails is to relate it to the strength of social norms. Perhaps being
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Figure 1: Map of Hofstede’s individualism index.

members of an integrated collective means adopting similar behaviors and norms. In fact, Hofstede’s

individualism index is highly correlated with measures of social conformity in the GSS survey.

Social conformity is easier to sustain in collectivist networks. Coleman (1988) shows that the

presence of effective norms and thus the accumulation of social capital depend on network “closure.”

Closure is present when your friends are also your friends’ friends. In other words, it depends on

the presence of triples. Coleman explains that people enforce strong group norms through collective

punishments of deviators. If j observes i deviating from a social norm, then j can directly contact

other friends of i to enact some joint retribution for the misdeed. When collective punishments are

implementable, conforming behavior is easier to sustain than if punishments must be implemented

in an uncoordinated way. Thus, if we interpret collectivism as strong social conformity, such

collectivism is more likely to emerge in networks with many triples.
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2.3 Measuring the Technological Frontier

We use the cross-country historical adoption of technology (hereafter CHAT) data set developed

by Comin, Hobijn, and Rovito (2006). CHAT covers the diffusion of about 115 technologies in over

150 countries during the last 200 years. We use the number of adopted technologies per country to

measure how far up the technological ladder the country’s most advanced agents are. This measure

seems to reliably capture countries’ technological ranking because there are universal leaders and

universal followers. In other words, countries’ ranking in terms of their speed of adoption is stable

across technologies and over time.

3 Empirical Results

Our objective is to better understand how social structure affects technology diffusion and how

large that effect is on economic development. The difficulty is that economic development also

can potentially change the social structure. The challenge is to isolate each of these two effects.

Our approach to identification is three-pronged. The first two components use an instrumental

variables approach. By instrumenting for social structure in a regression on technology diffusion,

we can isolate the effect of social structure on technology and exclude any reverse effect. A valid

instrumental variable needs to be correlated with social structure, as measured by the Hofstede

index, and it needs to be exogenous with respect to technology diffusion and GDP.

Our first instrument for social structure is historical disease prevalence. We use a simple timing

argument to make the case for exogeneity. Our pathogen prevalence data is historical, from the

1930’s and 40’s, while our measure of social structure comes from the 70’s and 80’s and GDP is

from the last 10 years. Therefore, the timing makes it more likely that the pathogens affected

the social structure and economic development 30-70 years later, than the other way around. If

historical pathogen prevalence is exogenous with respect to current social structure and GDP, then

we can use it as a valid instrument for the Hofstede index. The weakness of this approach is that

social structure is very persistent. So, it is still possible that social structure prior to the 1930’s is

responsible for the historical pathogen prevalence.

The second approach uses differences in diseases and latitude as instruments for social structure.

Latitude is clearly an exogenous, immutable feature of a country. Latitude is also a good predictor

of pathogen prevalence. Countries with lower latitudes (nearer the equator) are warmer and more

conducive to the growth and spread of disease. The difference in disease approach uses the difference

between diseases that are spread from person-to-person and those that are not as an instrument.

The argument for why this should be correlated with social structure is that societies might change

their structure to avoid contracting diseases that are passed on by other people. But adjusting
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social structure in response to a disease that is flies, rodents or ingestion of contaminated water

would not serve any useful purpose. Since one set of diseases should predict social structure and the

other should not, the difference between prevalence of the two types of disease should predict social

structure. The argument for why this difference is exogenous is that technology and GDP may well

affect the prevalence of disease, but it should affect the prevalence of both types of diseases equally.

The third approach, explored in the following section, uses a calibrated model to determine

how much of the relationship between social structure and GDP is due to the technology diffusion

effect.

Before we look at the effect of social structure on technology diffusion, we first establish an

empirical relationship between disease and social structure that justifies our use of disease prevalence

and differences in diseases as instrumental variables.

3.1 First-Stage Regressions: Disease and Social Institutions

To understand the empirical relevance of the theory, we first look at a scatter plot and do a simple

OLS regression of the Hofstede index of individualism on pathogen prevalence, to see if these

two variables are statistically related to each other. Figure 2 illustrates the positive statistical

correlation between individualism and the prevalence of pathogenic disease.

0
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−1.5 −1 −.5 0 .5 1
Path9

Hofstede index Fitted values

r = − 0.72,   p < 0.001,   n = 74

Figure 2: Hofstede’s individualism index plotted against pathogen prevalence.

Table 1 quantifies this relationship. Column 1 shows that pathogen prevalence and individu-

alism are related in a statistically significant way. The negative sign on the pathogen coefficient
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means that the increased presence of pathogens is associated with a less individualistic (more col-

lectivist) society. That is consistent with our theory because the more collectivist society, with

its greater propensity for network triples, would be a more effective structure for inhibiting the

spread of disease. The explanatory power of pathogens is large; the R2 of the regression is over

50%. The economic magnitudes are also large. A one-unit increase in our pathogen measure

corresponds to one disease being endemic (always widespread), instead of epidemic (occasionally

widespread). Having one more disease consistently prevalent corresponds to an individualism index

that is between 8 and 43 points lower, depending on the specification.

Dependent variable Individualism (Hofstede Index)
OLS OLS OLS OLS

Pathogens -25.10 -21.76 -8.35
(2.80) (3.98) (4.42)

Human - water-borne -4.07
Pathogens (1.38)
1970 GDP 3.80 3.31

(2.50) (2.17)
1970 population -0.003 -0.001
density (0.003) (0.003)
Latitude 0.71 0.88

(0.15) (0.10)
R2 0.52 0.55 0.65 0.59
Observations 78 73 73 75

Table 1: First-stage regressions of Pathogen Prevalence on Hofstede Individualism In-
dex

GDP is the PPP-adjusted GDP from the Penn World Tables.Each equation includes a constant as well.

Of course, it is possible that both disease and social structure are governed by GDP, or that

higher population density lends itself to a different social structure and more disease prevalence. To

determine whether pathogens might have an effect, beyond that governed by GDP and density, we

estimate a second regression (column 2) where we control for GDP and population density. We use

the figures from 1970, the same time as the Hofstede survey was being collected. Controlling for

GDP and population density only slightly lessens the significance of the relationship between disease

and social structure. Surprisingly, when we include both pathogens and GDP in the regression, the

effect of GDP on social structure gets crowded out. This suggests that GDP might affect social

structure through the prevalence of pathogens, rather than the other way around.

Differences in diseases Another identifying assumption is that while social structure and GDP

may affect disease prevalence, even 40 years prior, it affects many diseases similarly. Thus, the

difference in the prevalence of one type of disease or another is exogenous with respect to GDP.
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We use this instrument, along with latitude. Using two instruments allows us to use tests of

over-identifying restrictions to see whether the instruments are valid.

To explain why the differences in diseases are likely to be good predictors of social structure,

table 2 shows that the human to human pathogens have a stronger effect on the Hofstede index than

do zoonotic pathogens. The economic effect of human-to-human pathogens is nearly twice as large

as the other two categories of pathogens. Furthermore, the effect on individualism is statistically

significant at the 95% confidence level for human and multi-host pathogens, but not for the zoonotic

pathogens.

Dependent variable Individualism (Hofstede Index)
OLS OLS OLS

Human -6.19
(2.35)

Multi-host -3.50
(0.66)

Zoonotic -3.24
(1.68)

1970 GDP 9.39 5.43 11.11
(2.56) (2.36) (2.42)

R2 0.41 0.54 0.38
Observations 70 70 70

Table 2: The Relationship Between Various Types of Pathogens and Hofstede’s Indi-
vidualism Index GDP is the PPP-adjusted GDP from the Penn World Tables. Human indicates pathogens
that are spread directly from human to human. Zoonotic pathogens that develop in non-human hosts and are then
spread to humans. Multi-host refers to pathogens that can develop in either human or non-human hosts. See section
2.1 for more details.

In the first-stage regression, when we use latitude and differences in disease prevalence as instru-

ments, both are highly-significant predictors of social structure (table 1, column 4). The human-

to-human diseases included are tuberculosis and leprosy because these have long been understood

to be spread exclusively by human contact and have been widely prevalent throughout history.

Tuberculosis, if left untreated, kills about one-half of its victims. Nearly one-third of the world

population is thought to carry the disease. The water-borne disease is schistosomiasis, a parasite

that lives primarily in snails, but can infect people who drink unclean water. We choose this disease

because it is never spread from person-to-person and should not affect one’s choice of social contacts

in any way. Although the mortality rate is not very high, schistosomiasis damages internal organs

and affects cognitive development in children. It is the second most socioeconomically devastating

parasitic disease after malaria.

While greater levels of development spur public health initiatives, these measures prevent the

human transmission and water-borne transmission of diseases. Likewise, better health care lowers
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mortality rates from both types of diseases. If anything, there is a tendency for clean water

initiatives to be one of the first public health measures a country adopts when its income rises.

If this were the case, then there would be a negative correlation between water-borne illness and

income and therefore a positive correlation between the difference in human and water diseases and

income. This would make the regression coefficient of the difference in diseases on individualism,

which is positively correlated with income, more positive. To the extent that we find a significant

negative coefficient, it is despite any reverse causality coming from clean-water initiatives spurred

by economic development.

These results are important for the next stage, identifying an effect of institutions on technology

diffusion. But they are also important on their own because they point to reason why countries

may have chosen different social institutions. To the extent that historical disease prevalence or

differences in diseases are exogenous, these results suggest that there is some effect of communicable

pathogens on social structure. It suggests that social structures have evolved, in part, as a defense

against the spread of disease. This seems to be at least part of the reason why some societies have

adopted social structures that are less well-suited to promoting technological diffusion and growth.

3.2 The Relationship between Social Institutions and Technology Diffusion

Our main result is to establish an effect of social structure on technology diffusion. Figure 3

illustrates the statistical relationship between social structure and the speed of technology diffusion.

It reveals that more individualistic societies (those with little interdependence of relationships)

tend to also be societies where technologies diffuse quickly. In table 3, a simple regression of the

CHAT measure of technology diffusion on the Hofstede index of individualism confirms that this

relationship is statistically significant.

Reverse causality is again a concern. Faster technology diffusion raises incomes, which might

well change the social structure. Likewise, the economic development that results from technology

diffusion could produce a wave of urbanization, which influences social structure. The results in

column 2 show that there is an effect of social structure on technology diffusion, above and beyond

that which is captured by higher income and higher population density. The result that social

structure predicts technology diffusion better than income or density does might be a surprising

one. But it is also in line with the findings of Comin, Hobijn, and Rovito (2006), that levels of

technology adoption vary much more than what levels of GDP per capita can explain.

One might still be concerned that technology diffusion might affect social structure through some

non-income-based channel. To alleviate concerns about this alternative type of reverse causality, we

can use pathogen prevalence as an instrument for social structure. The last column of table 3 shows

that instrumenting for social structure only increases the size of the effect that social structure has
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Figure 3: Comin, Hobijn, and Rovito (2006)’s technology diffusion (CHAT) measure plotted against
Hofstede’s individualism index.

Dependent variable: Technology
OLS OLS IVhist IVdiff

Individualism 0.586* 0.626* 0.880* 0.73
(0.084) (0.107) (0.201) (0.11)

1970 GDP -0.474 -3.919
(2.37) (3.32)

1970 density -0.0037 -0.0023
(0.0036) (0.0038)

R2 0.40 0.46 0.41 0.38
N 75 70 70 75

Table 3: Relationship between Social Structure and Technology Diffusion
Technology is Comin, Hobijn, and Rovito (2006)’s measure of the number of technologies adopted in a country.

Individualism is the Hofstede index. Density is the country’s population density in people per square kilometer. IV

uses historical pathogen prevalence as an instrument for individualism. IVdiff uses latitude and the difference in

human and water-borne disease prevalence as instruments. * indicates significance at the 5% level.

on technology diffusion. This effect continues to be highly significant.

The instrumental variables estimate is also important because it tells us how much of the

variation in technology diffusion is due to our mechanism. It isolates the part of variation in social

structure due to differences in disease prevalence and quantifies the importance of this variation

for technology diffusion. We find that 46% of the variation in technology diffusion is due to social

structure, income and density. When we isolate the part of social structure due to differences in
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pathogen prevalence, we still explain 41% of that variation.

One might still be concerned that social structure could explain disease prevalence 40 years

prior. Therefore, the final step uses the difference in human-to-human and water-borne pathogen

prevalence as an exogenous instrument to isolate the effect of social structure on technological

advancement. In the column labeled IVdiff in table 3, the coefficient on individualism is highly

statistically significant and large economically. The Hofstede index standard deviation is 28. Thus

an one-standard-deviation increase in individualism results in 21 (28×0.73) additional technologies

being in use in a country.

The argument that our difference in disease instrument is a valid one is supported by the Sargan

test and the Basmann test of over-identifying restrictions. Both test the null hypothesis that the

instruments are uncorrelated with the regression residuals. The probability that you can reject

this hypothesis (instruments are invalid) is p = 0.40 under the Sargan test and p = 0.41 under the

Basmann test.

3.3 Could Social Structure Really Change in Response to Disease?

The idea that people might choose their social circles based on disease avoidance might sound far-

fetched. But researchers in animal behavior have long known that other species choose their mates

with health considerations in mind (Hamilton and Zuk, 1982). Furthermore, primate research has

shown that the animals most similar to human beings behave similarly to the agents in our model.

Their mating strategies, group sizes, social avoidance and barriers between groups are all influenced

by the presence of socially transmissible pathogens (Loehle, 1995).

4 Quantifying the Potential Effect on Technology

An potential concern about using this model to explain income differences across countries is the

worry that its effect is trivial. This concern is not misplaced since because cross-country differences

in incomes can be 100-fold.

What our calibration exercise shows is that changing a society’s social network structure has

a small effect on the annual diffusion rate. Over time, small effects cumulate. The result is

large differences in productivity levels in the long run. Thus, changes in network choice produce

differences in technology diffusion rates which could explain a modest part of the disparity in

countries’ incomes.
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4.1 Calibrated Parameters

To know whether changes in the network can produce big differences in technology levels, we need

to choose some realistic parameter values for our model and analyze the simulated model outcomes.

The key parameters in the model are the probabilities of disease and technology transmission, the

initial pathogen prevalence rate and the rate of arrival of new technologies. These parameters are

summarized in table 4.1.

Parameter Value Target

Initial disease Prob(nj(0) = 0) 0.5% (high) TB death rate China

prevalence 0.035% (low) in New Zealand

Disease transmission pψ 31% disease steady state

probability in individualistic netwk

Technology arrival λ 5% 2% growth rate in

rate low-disease country

Technology transfer p 50% Half-diffusion in

probability 19 years (Comin et. al. ’06)

For the initial pathogen prevalence rate, we will use a high and a low value and compare them.

These high and low values are the max and min across all countries of the deaths from tuberculosis,

per 1,000 inhabitants per year. Tuberculosis is the most common cause of death in our sample.

Note that these are mortality rates, not infection rates. Since individuals who get sick in the

model die, this is the relevant comparison. Also, it is a conservative calibration because it would

be easier to get large effects out of the higher disease prevalence rates. The probability of disease

transmission is chosen to make the initial prevalence rate equal to the steady state rate of infection.

Thus, the economy starts with a given fraction of the population being sick and each sick person

represents an independent 31% risk (π) of passing the disease on to everyone that person is friends

with.

Everyone starts with a technology level of 1. But each period, there is a chance that any given

person may discover a new technology that raises their productivity by one percent. The rate of

arrival of new technologies is calibrated so that the individualistic network economy (more likely

to be the developed economy in the data) grows at a rate of 2% per year. The probability of

transmitting a new technology to each friend (λ) is chosen to explain the fact that for the average

technology, the time between invention and when half the population has adopted the technology

is approximately 19 years (Comin, Hobijn, and Rovito, 2006).

We simulate the high and low disease prevalence economies each with collectivist and individ-

ualistic networks. In this example, the economy consists of 1000 people, each with 4 friends.
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4.2 Simulation Results

First, we show the process by which technologies and diseases spread in a small-scale illustrative

example. Then, we consider the calibrated simulation with many agents and many periods, averaged

over many runs to get a more precise idea of the aggregate effect of a network.

Figure 4 illustrates the diffusion of technology and disease. Each box represents a person/date

combination. Time is on the horizontal axis. People are lined up on the vertical axis according to

their location. In the first period (first column of boxes on the left), everyone starts with the same

technology level. But there are a few agents who have a disease (the darkest boxes).
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Figure 4: Spread of disease and evolution of technology in a collectivist network (left) and a
individualistic network (right). The darkest boxes indicate individuals who acquired the disease
in period t and therefore have zero time-t productivity. Warmer colors indicate higher levels of
technology.

By the second period, new ideas start to arrive. In the second column of boxes, there are a

couple of lighter-colored boxes that indicate that these agents have reached the next technology

level. In the collectivist network (left figure), some agents who are adjacent to or 2 places away

from agents that were sick in period 1 are now sick. In the individualistic network (right figure),

some agents who are adjacent to or 4 places away from agents that were sick in period 1 are now

sick. In period 3, the new ideas that arrived in period 2 start to diffuse to nearby locations. In

the collectivist network, individuals are still using the initial technology level in period 8. In the

individualistic network, all the healthy agents have adopted the second technology level after period

5. (In the calibrated model, this diffusion process takes longer. We sped up technology diffusion in

this graphical example to make it easier to visualize diffusion taking place.)

After 30 periods, the most technologically advanced agents in the collectivist network only

realize 7 steps in the quality ladder. In the individualistic network, some agents operate at 9 steps.
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Since each innovation represents a 5% productivity increase, being two steps further represents a

10% higher degree of productivity. Of course, this is just an illustrative example. It is a comparison

of the maximum level of technology from a small number of agents. To get a sense of the aggregate

effect, the next exercise averages the technology level over 1000 agents and 30 independent runs.

This example is meant to illustrate the mechanics of the model. It makes clear that an individu-

alistic network spreads ideas more efficiently, but that it also spreads germs more efficiently. While

idea transmission facilitates reaching higher levels of productivity, disease prevalence diminishes

productivity. To see the net effect of these two forces, we simulate the model many times and

examine the average outcomes.
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Figure 5: Prevalence of disease (×10, 000) and average technology level in a collectivist network
(left) and a individualistic network (right).

Figure 5 plots the average disease prevalence (times 10,000) and the average technology level

for the whole population over 200 years. These are results for the high-disease calibration (0.5%

initial infection rate). The fraction of the population infected with disease is significantly higher in

the individualistic network society. In fact, the collectivist networks inhibit the spread of disease

so much that it becomes extinct in this calibration.

However, having a individualistic network results in technology that grows at 2.0% per year.

This is true by construction because it was one of the calibration targets. But the economy with

the collectivist network grows at only 1.8% per year. While the difference in growth rates is small,

in time, it produces large level differences. After 200 years, the average level of technology is about

60% higher in the individualistic network than in the collectivist network. This simple example

makes the point that a difference in network structure can create a small friction in technology

diffusion. When cumulated over a long time horizon, this small friction has the potential to explain

large differences in countries’ incomes.

21



5 Conclusions

Our results are consistent with the idea that countries with high pathogen prevalence tend to choose

social structures where people have more friends in common. These social structures may be very

persistent. This allows them to inhibit or facilitate technology diffusion and become an important

determinant of a country’s level of development.

The next steps in this project include calibrating the model to data on disease prevalence,

infectiousness and virulence so that we can accurately predict the type of social network each

country would optimally form. Then, using facts about technology diffusion, we could calibrate

the rate of technology transmission and get some estimates for the amount of variation in national

productivity levels that social structure might account for.

Another step left to be done is to use the difference between diseases that are socially transmitted

from those that are not to identify the effect of social structure on technology diffusion. While both

types of diseases make people sick, retard productivity growth and reduce income, only the socially

transmissible diseases should rationally affect the types of social connections people choose to

form. Thus, the additional effect of socially transmissible diseases on social structure and in turn,

on technology diffusion and income levels could be attributed to our mechanism.
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A Proofs of Propositions

Proof of result 3. Proof: Without loss of generality, consider the agent in the last position, the agent with
location n on the circle.Case 1: n even. If n is even, then the farthest node from n is n/2. If each person is connected
to the φ closest people, where φ is even, then they are connected to φ/2 people on either side. Therefore, the shortest
path will be the one that advances φ/2 places around the circle, at each step in the path, until it is within φ/2 nodes
of its end point. For example, agent n reach φ/2 in one step, φ in two steps and n/2 in (n/2)/(φ/2) = n/φ steps,
if n/φ is an integer. If dividing n by φ leaves a remainder m, then one step in the path to reach n/2 must be only
m < n/2 nodes away. Thus, when n is even, the shortest path to the furthest node n/2 is ceil(n/φ), where ceil(x) = x
if x is an integer, and is otherwise, the next largest integer.

Case 2: n odd. If n is odd, then (n − 1)/2 and (n + 1)/2 are equally far from node n. Each is (n − 1)/2 nodes
away. Following the same logic as before, the shortest path will be the one that advances φ/2 places around the
circle, and reaches the furthest node in ceil((n− 1)/2)/(φ/2) = ceil((n− 1)/φ) steps.

Lastly, note that when n is even, ceil(n/φ) = ceil((n − 1)/φ). Note that, since φ > 1 and both φ and n are
integers, ceil(n/φ) and ceil((n − 1)/φ) will only differ if (n − 1)/φ is an integer, so that adding 1/φ to it will make
ceil(n/φ) the next largest integer. But if φ is even and (n− 1)/φ is an integer, then n− 1 must be even, which makes
n odd. Thus, ceil(n/φ) = ceil((n− 1)/φ).2

Proof of result 4. Proof: Without loss of generality, consider the distance from the last node, n. n can be
connected to nodes 1 though φ/2 and n− 1 through n− φ/2 in 1 step. More generally, it can be connected to nodes
(s− 1)φ/2 + 1 through sφ/2 and n− (s− 1)φ/2− 1 through n− sφ/2, in s steps. For each s, there are φ nodes for
which the shortest path length to n is s steps. We know from result 1 that when φ is even and n/φ is an integer,
the longest path length (the diameter) is n/φ. Thus, the average length of the path from n to any other node is

1/n
∑n/φ

s=1 φs. Using the summation formula, this is (φ/n)(n/φ)(n/φ+ 1)/2 = 1/2 + n/(2φ). 2

Proof of result 5. The diameter of an individualistic network, with n > 4 nodes where each node i is connected
to i− 4, i− 1, i+ 1, and i+ 4, is round(n/8) + 1.

Proof: Without loss of generality, consider distances from the agent located at node n. n can reach nodes 1, 4,
n − 1 and n − 4 in one step. It can reach nodes 2, 3, 5, 8 and n − 2, n − 3, n − 5 and n − 8 in two steps. In any
number of steps s > 1, agent n can reach nodes 4(s− 2) + 2, 4(s− 1)− 1, 4(s− 1) + 1, 4s (moving clockwise around
the circle) as well as n− 4(s− 2)− 2, n− 4(s− 1) + 1, n− 4(s− 1)− 1, n− 4s (moving counter-clockwise).

Let the operator floor(x) be the largest integer y such that y ≤ x. Define ñ ≡ 4 ∗ floor(n/8). Then r̃ ≡ n− 2 ∗ ñ
is the remainder when n is divided by 8. There are eight cases to consider, one for each possible value of r̃.

Case 1: r̃ = 0. If the total number of nodes in the network n is a multiple of 8, then it takes (1/4) ∗ n/2 steps
to connect node n with node n/2, the geographically farthest node in the network. But it takes one more step to
reach n/2− 1, n/2 + 1. The nodes n/2− 2 and n/2 + 2 can be reached in 2 steps from n/2− 4 and n/2 + 4, each of
which is one step closer to n than n/2 is. Thus, every node can be reached in n/8 + 1 steps, making the diameter of
the network n/8 + 1.

Case 2: r̃ = 1. In this case, ñ and ñ+ 1 are equally far away from n in the network. Each requires ñ/4 steps.
But it takes one more step to reach ñ− 1, ñ− 2, ñ+ 2 or ñ+ 3. Since ñ = 4floor(n/8), ñ/4 = floor(n/8), and thus
the diameter is one step more than that, which is floor(n/8) + 1.

Case 3: r̃ = 2. In this case, ñ and ñ+ 2 are equally far away from n in the network. Each requires ñ/4 steps.
But it takes one more step to reach ñ− 1, ñ− 2, ñ+ 1, ñ+ 3 or ñ+ 4. Thus, the diameter is again floor(n/8) + 1.
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Case 4: r̃ = 3. In this case, ñ and ñ + 3 are equally far away from n in the network. Each requires ñ/4 steps
to reach. It is still the case that it takes one more step to reach ñ− 1, ñ− 2 and ñ+ 1. ñ+ 2 can be reached in one
additional step from ñ + 3, as can ñ + 4. And ñ + 5 can be reached in 2 additional steps from ñ + 4, which is one
step closer to n than ñ+ 3. Thus, every node can still be reached in floor(n/8) + 1 steps.

Case 5: r̃ = 4. In this case, ñ and ñ+4 are equally far away from n in the network. Each requires ñ/4 steps to
reach. But now, getting to ñ+ 2 requires 2 additional steps. Thus, the diameter of this network is floor(n/8) + 2.

Case 6: r̃ = 5. In this case, ñ and ñ + 5 are equally far away from n in the network. Each requires ñ/4
steps to reach. Getting to either ñ + 2 or ñ + 3 requires 2 additional steps. Thus, the diameter of this network is
floor(n/8) + 2.

Case 7: r̃ = 6. In this case, ñ and ñ + 6 are equally far away from n in the network. Each requires ñ/4 steps
to reach. In one additional step, one can connect from ñ to ñ+ 1 or ñ+ 4 or from ñ+ 6 to ñ+ 2 or ñ+ 5. It takes
two additional steps from ñ to connect to ñ+ 3. Thus, the diameter of this network is floor(n/8) + 2.

Case 8: r̃ = 7. In this case, ñ and ñ + 7 are equally far away from n in the network. Each requires ñ/4 steps
to reach. In one additional step, one can connect from ñ to ñ + 1 or ñ + 4 or from ñ + 7 to ñ + 3 or ñ + 6. It
takes two additional steps from either ñ or ñ+ 7 to connect to ñ+ 2 or ñ+ 5. Thus, the diameter of this network is
floor(n/8) + 2.

The one condition that encapsulates all 8 of these cases is diameter=round(n/8) + 1. To see this, recall that
r̃ is the remainder when n is divided by 8. When this remainder is zero, then (n/8) + 1 =round(n/8) + 1. When
this remainder is less than 4, then floor(n/8) + 1 =round(n/8) + 1. When this remainder is 4 or more (4-7), then
round(n/8) =floor(n/8) + 1, and therefore floor(n/8) + 2 =round(n/8) + 1. Thus, in each case of the 8 cases, the
diameter of the network is equal to round(n/8) + 1.2

Proof of result 6. In the example individualistic network, when n/8 is an integer, the average path length is
7/8 + n/16. This is less than the average path length in a collectivist network with φ = 4, when the network is large
(n > 6).

Proof: Without loss of generality, consider distances of each node from node n. n can reach 4 different nodes:
1, 4, n − 1 and n − 4 in one step. It can reach 8 different nodes 2, 3, 5, 8 and n − 2, n − 3, n − 5 and n − 8 in two
steps. More generally, for a number of steps s ≥ 2, agent n can reach 8 new nodes with each step. These nodes are:
4(s−2)+2, 4(s−1)−1, 4(s−1)+1, 4s (moving clockwise around the circle) as well as n−4(s−2)−2, n−4(s−1)+
1, n − 4(s − 1) − 1, n − 4s (moving counter-clockwise). This rule holds until the number of steps s reaches n/8, the
number of steps to travel approximately half way around the circle. At that point, the number of additional nodes
that can be reached in an additional step depends on the size of the network. There are 8 cases to consider.

Recall that ñ ≡ 4 ∗ floor(n/8) and that r̃ ≡ n− 2 ∗ ñ is the remainder when n is divided by 8. There are eight
cases to consider, one for each possible value of r̃.

If the total number of nodes in the network n is a multiple of 8, then it takes n/8 steps to connect node n with node
n/2. Using the algorithm above, it also takes n/8 steps to connect with nodes n/2−6, n/2−5, n/2−3, n/2+6, n/2+5
and n/2+3. But this is 7 total nodes instead of 8 total nodes because when the total number of steps being considered
is n/8 (s = n/8) nodes 4s and n− 4s are both equal to node n/2.

It takes one more step to reach n/2− 1, n/2 + 1. The nodes n/2− 2 and n/2 + 2 can be reached in 2 steps from
n/2 − 4 and n/2 + 4, each of which is one step closer to n than n/2 is. Thus, 4 additional nodes can be reached in
n/8 + 1 steps.

Counting up, there is 1 node (n) reachable in zero steps, 4 nodes reachable in 1 step, 8 nodes reachable in s
steps for s ε{2, 3, . . . , n/8 − 1}, 7 nodes reachable in n/8 steps and 4 nodes reachable in n/8 + 1 steps. That makes

the average path length 1/n times the sum of all the path lengths to the n nodes: 1/n[4 + 8
∑n/8−1

s=2 s + 7 ∗ n/8 +

4 ∗ (n/8 + 1)]. Applying the summation formula, 8
∑n/8−1

s=2 s = 8(n/8)(n/8− 1)/2− 8, where the −8 corrects for the
fact that the sum begins at s = 2, rather than at s = 1. Substituting in this formula and collecting terms, this is
1/n[4 + 8(n/8)(n/8− 1)/2− 8 + 11n/8 + 4] = 1/8n[n(n− 8)/2 + 11n] = 7/8 + n/16. 2

Proof of result 7 For a large network (n > 8) where n/8 is an integer, the individualistic network has a smaller
diameter and a shorter average path length than a collectivist network with equal size n and equal degree φ = 4.

Proof: We begin with the diameter. If n/8 is an integer, then n must also be a multiple of 4. Since the diameter
of the collectivist network with φ = 4 is (n − 1)/4 or the next highest integer, that integer-valued diameter will be
n/4. Likewise, in the individualistic network, round(n/8) + 1 = n/8 + 1. Thus, the diameter of the individualistic
network is smaller iff n/8 + 1 < n/4, which is true iff n > 8.

Next, we turn to average path length. If n/8 is an integer and φ = 4, then result 4 tells us that the average
path length of a collectivist network is 1/2+n/8. Result 6 tells us that the average path length of the individualistic
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network is 7/8 + n/16. Thus, the individualistic path length is smaller iff 7/8 + n/16 < 1/2 + n/8, which is true iff
n > 6. Thus, n ≥ 8 is a sufficient condition for the individualistic network to have a shorter average path length. 2

Proof of result 1 In a collectivist network, where φ = 4, there are n unique triples.
Claim 1: Any three adjacent nodes are a triple.

Proof: Consider nodes j, j+1 and j+2. Since every node is connected to its adjacent nodes, j+1 is connected to j
and j + 2. And since every node is also connected to nodes 2 places away, j is connected to j + 2. Since all 3 nodes
are connected to each other, this is a triple.

Claim 2: Any sets of 3 nodes that are not 3 adjacent nodes are not a triple.
Proof: Consider a set of 3 nodes. If the nodes are not adjacent, then two of the nodes must be more than 2 places
away from each other. Since in a collectivist network with φ = 4, nodes are only connected with other nodes that
are 2 or fewer places away, these nodes must not be connected. Therefore, this is not a triple.

Thus, there are n unique sets of 3 adjacent nodes (for each j there is one set of 3 nodes centered around j:
{j − 1, j, j + 1}). Since every set of 3 adjacent nodes is a triple and there are no other triples, there are n triples in
the network. 2

Proof of result 2 In an individualistic network, where where each person i is connected to i− ψ, i− 1, i+ 1,
and i+ ψ, where ψ > 2, there are zero triples.

Proof: Consider each node connected to an arbitrary i, and whether it is connected to another node, which is
itself connected to i. In addition to being connected to i, node i−ψ is connected to i− 2ψ, i−ψ− 1, and i−ψ+ 1.
None of these is connected to i. Node i− 1 is also connected to i− 2, i− ψ − 1 and i+ ψ − 1. But none of these is
connected to i. Node i + 1 is also connected to i + 2, i − ψ + 1 and i + ψ + 1. But none of these is connected to i.
Finally, node i−ψ is also connected to i+ψ−1, i+ψ+1 and i+2ψ. But none of these is connected to i. Therefore,
there are no triples among any connections of any arbitrary node i. 2

B Visual Representations of our collectivist and Individualistic
Networks

Clustered Network Dispersed Network
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The connection matrix N of the collectivist network is



0 1 1 0 . . . 0 1 1
1 0 1 1 0 . . . 0 1
1 1 0 1 1 0 . . . 0
0 1 1 0 1 1 0 . . .

...
1 1 0 . . . 0 1 1 0



.

This matrix had zeros on the diagonal. (Typically, we don’t consider one’s relationship with oneself to be a connec-
tion.) It has two ones just to the left and right of the diagonal, indicating that each person is connected to the two
people to their left and the two people to their right. The three entries in the top-right and bottom-left corners also
have ones. This captures the connection between agents 1 and 2, who are located adjacent to agents n − 1 and n
on the circle. The rest of the entries are zeros, indicating that these individuals are not directly connected in the
network.

The connection matrix N of our example individualistic network is



0 1 0 0 1 0 . . . 0 1 0 0 1
1 0 1 0 0 1 0 . . . 0 1 0 0
0 1 0 1 0 0 1 0 . . . 0 1 0

...
0 0 1 0 . . . 0 1 0 0 1 0 1
1 0 0 1 0 . . . 0 1 0 0 1 0



.

Again, there are zeros on the diagonal. There is one 1 entry just to the left and to the right of the diagonal. This
represents each agent’s connection with their immediate neighbor. There is also a 1 four columns to the left and
four columns to the right of the diagonal, indicating the connection between agent j and j + 4, and between agent j
and j − 4. As before, there are a handful of 1’s in the top-left and bottom-right corners, indicating the connections
between agents near n and those near 1, who are one or four spots away from each other on the circle. The rest of
the entries are zeros, indicating that these individuals are not directly connected in the network.

C Data Details

Pathogen prevalence The pathogen prevalence measure used in these baseline regressions is from Murray
and Schaller ”Historical Prevalence of Infectious Diseases within 230 geopolitical regions: A Tool for investigating the
origins of culture”. They extended the work of Gangestad and Buss (1993) who employed old epidemiological atlases
to rate the prevalence of seven different kinds of disease-causing pathogens and combined estimates into a single
measure indicating the historical prevalence of pathogens in each of 29 countries. More recently, Murray and Schaller
used a similar procedure to rate the prevalence of nine infectious diseases in each of 230 geopolitical regions world.
The nine diseases coded were leishmanias, schistosomes, trypanosomes, leprosy, malaria, typhus, filariae, dengue,
and tuberculosis. Epidemiological atlases were used to estimate the prevalence of each of these nine diseases in each
region. For eight of them (excluding tuberculosis), prevalence of each disease was based primarily on epidemiological
maps provided in Rodenwaldt and Bader’s (1952-1961) World-Atlas of Epidemic Diseases and in Simmons and others
(1944) Global Epidemiology. A 4-point coding scheme was employed: 0 = completely absent or never reported, 1 =
rarely reported, 2= sporadically or moderately reported, 3 = present at severe levels or epidemic levels at least once.
The prevalence of tuberculosis was based on a map contained in the National Geographic Society’s (2005) Atlas of the
World, which provides incidence information in each region for every 100,000 people. Prevalence of tuberculosis was
coded according to a 3-point scheme: 1 = 3− 39, 2 = 50− 99, 3 = 100 or more. For 160 political regions, they were
able to estimate the prevalence of all nine diseases. The remaining 70 regions typically lacked historical data on the
prevalence of either tuberculosis or leprosy; 6 of these regions lacked data on malaria as well. Therefore, in addition
to create a 9 item index of disease prevalence (computed for 160), they also created a seven item index (excluding
both leprosy and tuberculosis) for 224 regions and a six item index (excluding also malaria) for 230 regions. To ensure
all different disease prevalence indices were computed on a common scale of measurement, all nine disease prevalence
ratings were standardized by converting them to z scores. Each overall disease prevalence index was then computed
as the mean of z scores of the items included in the index. Thus, for each index the mean is approximately 0, positive
scores indicate disease prevalence that is higher than the mean and negative scores indicate disease prevalence that
is lower than the mean.

27



Hofstede Index Hofstede defines individualism in the following way: “Individualism (IDV) on the one side
versus its opposite, collectivism, that is the degree to which individuals are integrated into groups. On the individualist
side we find societies in which the ties between individuals are loose: everyone is expected to look after him/herself
and his/her immediate family. On the collectivist side, we find societies in which people from birth onwards are
integrated into strong, cohesive in-groups, often extended families (with uncles, aunts and grandparents) which
continue protecting them in exchange for unquestioning loyalty.”

The original questions from the 1966-1973 Hermes (IBM) attitude survey questionnaires used for the international
comparison of work-related values were listed in Hofstede (1980, Appendix 1). Appendix 4 of the same book presented
the first Values Survey Module for future cross-cultural studies. It contained 27 content questions and 6 demographic
questions. This VSM 80 was a selection from the IBM questionnaires, with a few questions added from other sources
about issues missing in the IBM list and judged by the author to be of potential importance. In the 1984 abridged
paperback edition of Hofstede (1980) the original IBM questions were not included, but the VSM 80 was.

A weakness of the VSM 80 was its dependence on the more or less accidental set of questions used in the IBM
surveys. Therefore in 1981 Hofstede through the newly-founded Institute for Research on Intercultural Cooperation
(IRIC) issued an experimental extended version of the VSM (VSM 81). On the basis of an analysis of its first results,
a new version was issued in 1982, the VSM 82. This was widely used.

The VSM 82 questionnaire is too long to include in its entirety. However, factor analysis of 14 ”work goals”
questions from the survey produced 2 factors that together explained 46% of the variance. The first factor was
demographic characteristics. The second set pertain to work goals. Here are those key work goals questions:

In this section, we have listed a number of factors which people might want in their work. We are asking you to
indicate how important each of these is to you. Possible answers: of utmost importance to me (1), very important
(2), of moderate importance (3), of little importance (4), of very little or no importance. ”How important is to you”:

1. Have challenging work to do

2. Live in an area desirable to you and your family

3. Have an opportunity for high earnings

4. Work with people who cooperate well with each other

5. Have training opportunities

6. Have good fringe benefits

7. Get the recognition you deserve when you do a good job

8. Have good physical working conditions

9. Have considerable freedom to adopt your own approach to the job

10. Have the security that you will be able to work for your company as long as you want to

11. Have an opportunity for advancement to higher level job

12. Have a good working relationship with your manager

13. Fully use your skills and abilities on the job

14. Have a job which leaves you sufficient time for your personal or family life

The answers to these questions were used to develop the Hofstede index of individualism for each country.

D Robustness: Alternative Measures of Social Structure

The hardest variable to quantify is clearly the social structure. While Hofstede’s definition of collectivism is a
reasonable fit with the notion of collectivist networks in the model, exploring alternative interpretations of social
structure and network type would give us added confidence that we are measuring a concept similar to that in
the model. To that effect, we consider alternative indicators of social structure. Below, we describe some of these
alternative measures.
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D.1 A Geographic Measure of Clustering: Range Size

Another way of interpreting network clustering is geographically. How physically separated is one community from
another? The greater the degree of separation, the more difficult it will be for pathogens and technologies from diffuse
from one society to another.

Looking at evidence from historical hunter-gatherer societies, Binford (2001) measures the geographic clustering
as the total land in square kilometers occupied by the group. He calls this measure “range size.” The larger the range
size, the less connected societies are with one another and the greater the degree of clustering. Societies with a small
range size are more likely to have connections outside of their communities, as do individuals in the individualistic
network.

The 339 groups Binford examines are primarily in developing countries and their economies are based mainly on
hunting, fishing and gathering. The groups’ populations range from 22 to 13,000 members, with an average size of
812.

The pathogens data measures prevalence by country. These clustering measures are not country-level measures
of clustering, but rather group-level measures. The groups are not representative of the country. However, we have
geographic characteristics of the land occupied by each group that we can use to impute the degree of pathogen
prevalence.

First, we regress pathogen prevalence at the country level on country-level geographic characteristics. Then, we
use the coefficients from the regression and the same geographical characteristics measured for each group to produce
a predicted level of pathogen prevalence for the group. The advantage of this procedure is that the geography
measures used to impute pathogen prevalence are exogenous, immutable features of the group’s surroundings. By
using exogenous variables to impute pathogens, we remedy concerns about reverse causality.

Dependent variable: Range Size
(IV)

Pathogens 0.189
(0.0373)

Population 0.650
(0.051)

Hunters 0.044
(0.003)

Gatherers 0.0094
(0.0040)

R2 0.59

Observations 339

Table 4: More disease corresponds to societies with greater geographic clustering. Geographic
variables are instruments for pathogen prevalence.

Table 4 shows that this geographic measure of social structure exhibits the same relationship with pathogen
prevalence. When pathogens are more prevalent, societies are more geographically isolated, more collectivist. This
result also holds after controlling for number of moves and distanced moved, and for residuals clustered by country.

D.2 World Values Survey

The 2005 World Values Survey asked a number of questions that are indicative to the type of social structure in the
respondent’s country. Below, we describe each survey question we use and how it relates to our network model.

Nuclear family This question asks how often the respondent visits their nuclear family. People who visit their
nuclear family often have stronger bonds with those family members, who are connected to each other. Such a society
would be one with more triples.
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Associations This question asks if the respondent has participated more than twice in a social organization,
such as a sports, political, or charitable organization. Such organizations create communities of people who know
each other and increase the presence of triples.

Jobs This question asks the respondent how he or she found their current job. Did they find out about the job
from friends/relatives, or from an agency, school or advertisement? If the job was discovered through a personal
connection, this indicates less of a market-based society and one where connections between people who know each
other is more important. If you need to be introduced by a friend or family member to someone in order to have an
economic relationship, this signifies the importance of trust and the presence of many relationship triples.
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