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Estimating Nonlinear Economic Models Using Surrogate Transitions

Abstract

We propose a novel combination of algorithms for jointly estimating parameters and unobserv-

able states in a nonlinear state space system. We exploit an approximation to the marginal likelihood

to guide a Particle Marginal Metropolis-Hastings algorithm. While this algorithm seemingly targets

reduced dimension marginal distributions, it draws from a joint distribution of much higher dimen-

sion. The algorithm is demonstrated on a stochastic volatility model and a Real Business Cycle

model with robust preferences.



1 Introduction

Before writing down the probability density function associated with an economic model, one needs

to solve the functional equations that define an equilibrium. Typically, these functions are unavail-

able in closed form. If the solution is unavailable, so to is its associated likelihood function and

one is left with an unfortunate dilemma. Solving a model using a linear or log-linear approxima-

tion, some higher order perturbation method, Chebyshev polynomials, or value function iteration

will ultimately induce a different probability distribution over the same sequence. In this paper

we propose combining such solution methods to aid in estimating the structural parameters of an

economic model.

After the solution method is chosen, economic models have a state space representation. Esti-

mating both parameters and unobservable states in nonlinear state space models is an active area

of research. One technique recently proposed is Particle Markov Chain Monte Carlo (PMCMC)

by Andrieu, Doucet, and Holenstein (2010). PMCMC involves embedding a particle filter within a

Metropolis-Hastings algorithm to draw from the joint posterior distribution of parameters, θ, and

unobservable states X1:T given the data Y1:T . One algorithm in this class, the Particle Marginal

Metropolis-Hastings algorithm (PMMH), uses a particle filter to approximate the marginal like-

lihood p(Y1:T |θ) while drawing from the joint distribution of parameters and states. The main

drawback of this algorithm is that the evaluation of the marginal likelihood using a particle filter

is computationally intensive. In this paper, we approximate the marginal likelihood and use it to

guide our PMMH algorithm. The approximate (surrogate) marginal likelihood guides the PMMH

algorithm by pre-screening proposed parameter configurations. Only once the proposed set of pa-

rameters are accepted in this first step, do we attempt to evaluate the likelihood using a particle

filter. While only computing marginal distributions, we show that this algorithm, like PMMH,

targets a distribution of much higher dimension.

While focused on the estimation of nonlinear economic structures, the use of a surrogate marginal

likelihood can be applied in a wide array of nonlinear state space systems. As such, we first demon-

strate the algorithm on a stochastic volatility model. We then turn our attention to estimating
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nonlinear Dynamic Stochastic General Equilibrium (DSGE) models, although doing so still falls

under the broad category of creating surrogate marginal likelihoods. We fix the model of interest

as one being solved with a third order perturbation solution. First, keeping fixed a nonlinear so-

lution method, we use a marginal likelihood function computed using an Unscented Kalman filter

as our surrogate marginal likelihood. Second, we linearly approximate a model then use a Kalman

filter to evaluate the marginal likelihood. While only exploring these two types of approximations,

the methodology proposed is flexible enough to handle many combination of approximate solution

methods and surrogate likelihoods.1

When estimating DSGE models, one typically uses perturbation to solve for the policy and

value functions, although our method could in practice be used with any solution method. If a

linear solution is obtained, a Kalman filter can be used to evaluate the likelihood. Combining this

technique with an optimization routine or embedding it within a Metropolis-Hastings algorithm has

yielded much new insight into the US and other economies. See Sargent (1989) or more recently

Smets and Wouters (2003), Christiano, Eichenbaum, and Evans (2005), Del Negro, Schorfheide,

Smets, and Wouters (2007) and Justiniano and Primiceri (2008).

Sometimes one needs a nonlinear solution method to answer particular questions of interest,

as in Fernández-Villaverde and Rubio-Ramı́rez (2007), Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramı́rez, and Uribe (2009), Koijen, Fernández-Villaverde, Rubio-Ramı́rez, and van Binsber-

gen (2008) and Bidder and Smith (2010b). These models were solved using higher order perturbation

methods which deliver quick and fairly accurate solutions. As a by-product, this solution method

also delivers a linearized version of the model which until now has not been exploited as a compu-

tational aid when trying to estimate the full nonlinear model. As explored by Fernández-Villaverde

and Rubio-Ramı́rez (2005), nonlinear solutions give more accurate estimates of the underlying struc-

tural parameters, but the authors did not explore combining the two approximations within one

algorithm. When a linearly approximated model differs substantially from the nonlinear model of

interest, an Extended or Unscented Kalman filter can be used to evaluate the surrogate marginal

likelihood.

1For example, a surrogate likelihood computed using a lower tolerance level for convergence of value function
iteration, or, finite elements with less elements than the model of interest.
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Combining Extended or Unscented Kalman filters, and even the Surrogate Transition method,

with particle filters has been done before, for example, Liu and Chen (1998), Doucet, Godsill,

and Andrieu (2000) van der Merwe, de Freitas, Doucet, and Wan (2000), and Andreasen (2010).

However, they have typically been used in the importance sampling step of particle filters and not

as an over-arching approximation to the entire marginal likelihood. Further, given one has already

programmed an Extended or Unscented Kalman filter, it requires only marginal additional effort to

add it as a surrogate guide in the PMCMC routine.

The idea of embedding a particle filter within a Metropolis-Hastings algorithm comes from

Fernández-Villaverde and Rubio-Ramı́rez (2007) in the context of estimating DSGE models. More

recently, Andrieu, Doucet, and Holenstein (2010) prove convergence of such an algorithm and show

that it targets a distribution of much higher dimension. They show that for any number of particles

N ≥ 1, the algorithm has the correct limiting distribution. The number of particles will affect the

variance of the estimated marginal likelihood function and the speed of convergence to the invariant

distribution. There are no special restrictions placed on the proposal distribution, θ′ ∼ q(θ, ·) above

the usual needed for convergence of an standard Metropolis-Hastings routine where one can exactly

compute the marginal likelihood function.

The use of a surrogate when the target density is computationally demanding was suggested

by Liu (2001),2 who demonstrates that the transition kernel associated with surrogate transitions

satisfies detailed balance with the target density.3 Later, Christen and Fox (2005) suggest using

a state dependent approximation to the true posterior distribution to estimate parameters in a

Bayesian context.4 Rasmussen (2003) approximates the posterior distribution with a normal dis-

tribution and uses that as a surrogate to guide a Hamiltonian Monte Carlo algorithm. Extending

this idea, Fielding, Nott, and Liong (2011) embed an approximate density within a parallel tem-

pering scheme for posterior distributions that are multimodal. While the above “surrogate” papers

share a commonality with this paper, using an approximation but asymptotically drawing from the

correct distribution, the algorithm presented in this paper differs by approximating (and comput-

2Chapter 9.4.3
3See also Efendiev, Hou, and Luo (2006).
4Cui, Fox, and O’Sullivan (2011) add an adaptive proposal distribution to this two-step algorithm.
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ing) a marginal distribution but drawing from a much more complicated joint distribution as in

Andrieu, Doucet, and Holenstein (2010). Alternatively, one could forgo the expensive computa-

tion altogether by approximating the target distribution and carrying out analysis using only this

approximation.5 While we focus on creating a surrogate marginal likelihood through the use of a

Kalman or Unscented Kalman filter, one could use many methods to approximate p(Y1:T |θ).

Our algorithm can be viewed as a special case of Andrieu, Doucet, and Holenstein (2010), with

the insight that the transition kernel in the surrogate step can be used as a proposal density within

a PMCMC framework. Alternatively, we show how to incorporate auxiliary variables within a

surrogate transition framework, but only compute marginal distributions. Our description of the

surrogate steps follows that of Liu (2001), Christen and Fox (2005), and Efendiev, Hou, and Luo

(2006).

2 A Tour of Monte Carlo Algorithms for Bayesian Computation

In a Bayesian estimation context, Monte Carlo methods are used to draw from a posterior distri-

bution of parameters given the data. Using draws from this posterior distribution, one can then

compute various quantities of interest. See Robert and Casella (2004) for a thorough treatment of

this subject. In some simple cases, one can compute and draw exactly from the posterior distribu-

tion. In many cases, this simple sampling is impossible and usually either an importance sampling

or a Metropolis-Hastings algorithm is used.6

2.1 Importance Sampling

Suppose one wishes to calculate the following integral,

Ep[h(X)] =

∫
h(x)p(x)dx.

5See for example, Meyer, Fournier, and Berg (2003),Bliznyuk, Ruppert, Shoemaker, Regis, Wild, and Mugunthan
(2008), Skaug and Yu (2008), and Frangos, Marzouk, Willcox, and van loeman Waanders (2010).

6See Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and Hastings (1970).
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If one could draw X from the distribution p(·) with density p(x), X ∼ p(·), one could estimate the

integral as,

̂Ep[h(x)] =
1

L

L∑
m=1

h(x(m)).

In cases when p(·) is hard to sample from, but there exists another distribution with density g(x)

which is easy to sample from, one could compute

Ep[h(x)] =

∫
h(x)

p(x)

g(x)
g(x)dx = Eg

[
h(x)

p(x)

g(x)

]
,

by drawing L times from g(·) then computing

̂Ep[h(x)] =
1

L

L∑
m=1

h(x(m))
p(x(m))

g(x(m))
.

When a natural candidate g(·) does not exist one can build an importance distribution sequentially.

2.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm seeks to reverse engineer a Markov chain whose invariant dis-

tribution is the distribution from which you want to sample from, p(·). The algorithm requires

a density, p(x) which one can compute up to a normalizing constant, and a proposal distribution

q(x, ·) with density q(x, y), such that, given one is at some point x(m) = x, one proposes a move

y ∼ q(x, ·) and sets x(m+1) = y with probability

α(x, y) = min

{
1,
p(y)q(y, x)

p(x)q(x, y)

}

and x(m+1) = x with probability (1 − α(x, y)). Under some regularity conditions, this algorithm

produces a Markov chain whose invariant distribution is p(·). The transition kernel of the Markov

chain is

K(x, dy) = K(x, y)dy + (1−A(x))δx(dy),
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where A(x) =
∫
K(x, y)dy is the probability of accepting a draw, conditional on being at x, δx(·) is

the point mass at x, K(x, y) = α(x, y)q(x, y), x 6= y and K(x, x) = 0.7

2.2.1 Two Common Examples

There are many choices of proposal densities q(x, y). One common choice of proposal density is a

random walk, where q(x, ·) = N(x,Σ). We then have q(x, y) = q(y, x) and the acceptance probability

becomes

α(x, y) = min

{
1,
p(y)

p(x)

}
.

When a good approximation to the distribution of interest is known, and is easy to sample from,

one can set q(x, ·) = q(·), and propose new configurations from a fixed distribution. This algorithm

is called an Independent Metropolis-Hastings algorithm, and the acceptance probability is

α(x, y) = min

{
1,
p(y)q(x)

p(x)q(y)

}
.

2.3 The Surrogate Transition Method

Suppose that our target density, p(x) is time consuming to calculate but that we have access to an

approximation of p(x), call it p̃(x). Then the following algorithm, the Surrogate Transition Method

(Liu (2001)), simulates draws from p(·).

Starting at some point x(m) = x, we propose y ∼ q̃(x, ·) and set some intermediate point z = y

to with probability

α1(x, y) = min

{
1,
p̃(y)q̃(y, x)

p̃(x)q̃(x, y)

}
,

and z = x with probability (1 − α1(x, y)). Denote the transition kernel of this Markov chain as

S(x, ·).8

7See Tierney (1994) for more details.
8Since we are performing a Metropolis-Hastings update targeting p̃(·) with proposal distribution q̃(x, ·), the tran-

sition kernel S(x, ·) has the same form as in the previous section with p and q replaced by p̃ and q̃.
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If z = y after this accept/reject step, we set x(m+1) = y with probability

α2(x, y) = min

{
1,
p(y)S(y, x)

p(x)S(x, y)

}
= min

{
1,
p(y)p̃(x)

p(x)p̃(y)

}
.

If y is rejected at the first stage or second stage, we set x(m+1) = x.

This algorithm produces Markov chain that has p(·) as its invariant distribution. Liu (2001)

shows how to extend this idea to k intermediate steps. Let S(x, ·) be a reversible Markov transition

kernel with p̃(x). That is, S(x, y) and p̃(x) satisfy the detailed balance condition,

p̃(x)S(x, y) = p̃(y)S(y, x).

Starting at some x(m), let y0 = x(m), and sequentially draw yi ∼ S(yi−1, ·) k times. Let Sk(x, ·)

denote this k-step transition kernel. Set x(m+1) = yk with probability

min

{
1,

p(yk)S
k(yk, x

(m))

p(x(m))Sk(x(m), yk)

}
= min

{
1,

p(yk)

p(x(m))

p̃(x(m))

p̃(yk)

}

and set x(m+1) = x(m) otherwise. The surrogate transition method can be viewed as a special case of

the Metropolis-Hastings algorithm where we use the surrogate Markov chain to generate proposals,

q(x, ·) = Sk(x, ·).9

2.4 Filtering and Inference in State Space Models

A state space model is made up of an unobservable sequence {Xt}Tt=1, that evolves according to

Xt ∼ p(·|Xt−1). Although we do not directly observe the sequence Xt, we do observe a sequence

{Yt}Tt=1 which is related to the unobservable sequence as Yt|Xt ∼ p(·|Xt). It may be the case that

the densities depend on a vector of parameters, θ that are also unknown, but, conditional on these

parameters, we have expressions for p(Xt|Xt−1, θ), and p(Yt|Xt, θ). In this joint estimation/signal

extraction problem, we do not observe X1:T , nor θ. We want to draw from the joint posterior

distribution of states and parameters, with density p(θ,X1:T |Y1:T ). We can write the state space

9Some authors explicitly define the Metropolis-Hastings algorithm with q(x, ·) being a Markov chain, for example,
Roberts and Rosenthal (2004).
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model as a transition equation

Xt = g(Xt−1, εt, θ),

and an observation equation

Yt = f(Xt, νt, θ),

where εt ∼ p(·, θ), and νt ∼ p(·, θ). In the special case where the functions g() and f() are linear

in (Xt, εt, νt) and εt and νt are normally distributed, the Kalman filter gives the optimal estimate

of the posterior mean and variance of p(dXt|Y1:t, θ). When g() and f() are no longer linear or the

disturbances are non-normal, approximations must be made.

A particle filter is a Sequential Monte Carlo technique that can approximate this solution, for

a given θ, by drawing from a sequence of target densities, {p(X1:t|Y1:t, θ)}Tt=1 . It is comprised of

an initial distribution of X0 ∼ p(·, θ) (and the ability to draw from that distribution), as well as

two steps: importance sampling and resampling. The algorithm is as follows: Given a set of draws

{Xi
1:t−1}Ni=1 ∼ p(dX1:t−1|Y1:t−1, θ) with weights {W i

t−1}Ni=1

• draw Xi
t ∼ q(·|Xi

t−1, Yt)

• compute weight W i
t =

p(Yt|Xi
t ,θ)p(X

i
t |Xi

t−1,θ)

q(Xi
t |Xi

t−1,Yt,θ)
W i
t−1

• resample Xi
1:t = (Xi

1:t−1, X
i
t) with probability ∝W i

t and set W i
t = 1/N

This algorithm produces a set of points {Xi
1:t}Tt=1 that are distributed approximately according

to p(dX1:t|Y1:t, θ) for each time period. When we use as our importance function q(Xt|Xt−1, Yt, θ) =

p(Xt|Xt−1, θ) we have the Bootstrap filter (Gordon, Salmond, and Smith (1993)) and the weights are

just proportional to the likelihood W i
t ∝ p(Yt|Xi

t). Because of the complex set of nested integrals in

the marginal likelihood, p(Y1:T |θ) =
∏T
t=1 p(Yt|Y1:t−1, θ), one cannot compute this quantity exactly.

This quantity can be estimated using a particle filter. When Xi
1:t ∼ p(dX1:t|Y1:t), then by adding

Xi
t+1 = g(Xi

t , εt+1) to Xi
1:t to get Xi

1:t+1, we have a draw Xi
1:t+1 ∼ p(dX1:t+1|Y1:t, θ), and the
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marginal likelihood can be estimated by

p̂(Y1:T |θ) =
∏T
t=1 p(Yt|Y1:t−1, θ)

=
∏T
t=1

∫
p(Yt|Xt, θ)p(Xt|Y1:t−1, θ)dXt

=
∏T
t=1

(
1
N

∑N
i=1 p(Yt|Xi

t , θ)
)
.

To perform inference in this nonlinear state space model, we can use the Particle Marginal Metropolis-

Hastings algorithm of Andrieu, Doucet, and Holenstein (2010), which embeds a particle filter to

evaluate (an approximation to) the marginal likelihood within a Metropolis-Hastings algorithm.

2.4.1 Particle Markov Chain Monte Carlo - the Particle Marginal Metropolis Hastings

(PMMH) Algorithm

Given some θ(m), X
(m)
1:T

• Draw θ′ ∼ q(θ(m), ·)

• Use a particle filter to evaluate p(Y1:T |θ), call it p̂(Y1:T |θ)

• Draw X ′1:T from particles in particle filter

• Set θ(m+1) = θ′, X
(m+1)
1:T = X ′1:T with probability

min

{
1,

p̂(Y1:T |θ′)p(θ′)q(θ′, θ(m))

p̂(Y1:T |θ(m))p(θ(m))q(θ(m), θ′)

}

As shown by Andrieu, Doucet, and Holenstein (2010), this algorithm produces draws (θ,X1:T ) ∼

p(·|Y1:T ) and the marginal distribution of θ is obtained when the X1:T draws are discarded. The key

insight is to view the algorithm as drawing from the joint distribution of parameters θ and a vector

of random variables, u, that are used to evaluate the particle filter.10 That is, write the estimate of

10See Beaumont (2003) and Andrieu and Roberts (2009) for earlier related work. Our characterization of Andrieu,
Doucet, and Holenstein (2010) follows that of Flury and Shephard (2008) and Silva, Giordani, Kohn, and Pitt (2009)
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the marginal likelihood evaluated using the particle filter as p̂(Y1:T |θ) = p(Y1,T |θ, u) with,

∫
p(Y1:T |θ, u)p(u|θ)du = p(Y1:T |θ).

Then write the proposal density q({θ, u}, {θ′, u′}) as,

q({θ, u}, {θ′, u′}) = q(θ, θ′)p(u′|θ′).

The acceptance probability is,

α({θ, u}, {θ′, u′}) = min
{

1, p(θ
′,u′|Y1:T )q({θ′,u′},{θ,u})

p(θ,u|Y1:T )q({θ,u},{θ′,u′})

}
= min

{
1, p(θ

′,u′|Y1:T )q(θ′,θ)p(u|θ)
p(θ,u|Y1:T )q(θ,θ′)p(u′|θ′)

}
= min

{
1, p(Y1:T |θ′,u′)p(θ′,u′)q(θ′,θ)p(u|θ)

p(Y1:T |θ,u)p(θ,u)q(θ,θ′)p(u′|θ′)

}
= min

{
1, p(Y1:T |θ′,u′)p(u′|θ′)p(θ′)q(θ′,θ)p(u|θ)

p(Y1:T |θ,u)p(u|θ)p(θ)q(θ,θ′)p(u′|θ′)

}
= min

{
1, p(Y1:T |θ′,u′)p(θ′)q(θ′,θ)

p(Y1:T |θ,u)p(θ)q(θ,θ′)

}
= min

{
1, p̂(Y1:T |θ′)p(θ′)q(θ′,θ)

p̂(Y1:T |θ)p(θ)q(θ,θ′)

}
.

Thus, this Particle Marginal Metropolis Hastings algorithm is actually a Metropolis-Hastings algo-

rithm on an extended space (θ, u).

3 PMMH with Surrogate Transitions

In this section, we suggest a specific proposal density for our parameters, namely one in which uses

a simple to compute likelihood function, p̃(Y1:T |θ) to perform a surrogate transition step within the

PMMH algorithm. Our algorithm is as follows: Given some θ(m), X
(m)
1:T

• sample θ′ ∼ q(θ(m), ·)

• set z = θ′ with probability,

α1(θ(m), θ′) = min

{
1,

p̃(θ′|Y1:T )q(θ′, θ(m))

p̃(θ(m)|Y1:T )q(θ(m), θ′)

}
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• If z 6= θ(m),

– run a particle filter

– sample X ′1:T from the particles in the particle filter

– set (θ(m+1), X
(m+1)
1:T ) = (θ′, X ′1:T ) with probability

α2(θ(m), θ′) = min
{

1, p̂(θ
′|Y1:T )p̃(θ(m)|Y1:T )

p̂(θ(m)|Y1:T )p̃(θ′|Y1:T )

}
= min

{
1, p̂(Y1:T |θ′)p(θ′)p̃(Y1:T |θ(m))p̃(θ(m))

p̂(Y1:T |θ(m))p(θ(m))p̃(Y1:T |θ′)p̃(θ′)

}

• Else set (θ(m+1), X
(m+1)
1:T ) = (θ(m), X

(m)
1:T )

Even though the above was motivated as a surrogate step only in the θ dimension, it is actually a

surrogate transition (which is a particular Metropolis-Hastings update) in the larger space (θ, u).

The appendix formally sets up and proves this result, but below we sketch the main ideas.

Define the surrogate target density as p̃(θ, u|Y1:T ) ∝ p̃(Y1:T |θ, u)p(u|θ)p̃(θ), where p̃(Y1:T |θ, u) is

an approximation to the likelihood function, p(u|θ) is the density of the vector of random variables

in u that are used to evaluate the particle filter given our vector of structural parameters θ, and p̃(θ)

is some alternate density of our parameters θ, not necessarily equal to the prior. We will create an

approximate likelihood function does not depend on the vector u, or that p̃(Y1:T |θ, u) = p̃(Y1:T |θ).

Further, we assume that the support of the surrogate target density contains the support of the

target density,

supp {p(θ, u|Y1:T )} ⊂ supp {p̃(θ, u|Y1:T )} .

This guarantees that we do not automatically reject any point in the support of p(θ, u|Y1:T ).

The proposal density for the surrogate transition step is,

q̃({θ, u}, {θ′, u′}) = q(θ, θ′)p(u′|θ′).
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The acceptance probability in the surrogate chain becomes,

α1({θ, u}, {θ′, u′}) = min
{

1, p̃(θ
′,u′|Y1:T )q({θ′,u′},{θ,u})

p̃(θ,u|Y1:T )q({θ,u},{θ′,u′})

}
= min

{
1, p̃(Y1:T |θ′,u′)p(u′|θ′)p̃(θ′)q({θ′,u′},{θ,u})

p̃(Y1:T |θ,u)p(u|θ)p̃(θ)q({θ,u},{θ′,u′})

}
= min

{
1, p̃(Y1:T |θ′,u′)p(u′|θ′)p̃(θ′)q(θ′,θ)p(u|θ)

p̃(Y1:T |θ,u)p(u|θ)p̃(θ)q(θ,θ′)p(u′|θ′)

}
= min

{
1, p̃(Y1:T |θ′,u′)p̃(θ′)q(θ′,θ)

p̃(Y1:T |θ,u)p̃(θ)q(θ,θ′)

}
= min

{
1, p̃(Y1:T |θ′)p̃(θ′)q(θ′,θ)

p̃(Y1:T |θ)p̃(θ)q(θ,θ′)

}
.

By having our target and proposal density including p(u|θ), and our approximation of the marginal

likelihood a deterministic function of θ, we can accept or reject the pair (θ, u) without reference to

u.

The transition kernel of the Markov Chain constructed using this Metropolis-Hastings update

with p̃(θ, u|Y1:T ) as a target density and proposal distribution q̃({θ, u}, ·) is,

S({θ, u}, ·) = α({θ, u}, ·)q̃({θ, u}, ·) + (1−A(θ, u))δθ,u(·).

By construction, our kernel satisfies detailed balance with p̃(θ, u|Y1:T ), that is,

p̃(θ, u|Y1:T )S({θ, u}, {θ′, u′}) = S({θ′, u′}, {θ, u})p̃(θ′, u′|Y1:T )

p̃(Y1:T |θ, u)p(u|θ)p̃(θ)S({θ, u}, {θ′, u′}) = S({θ′, u′}, {θ, u})p̃(Y1:T |θ′, u′)p(u′|θ′)p̃(θ′),

or alternately,

p̃(Y1:T |θ,u)p(u|θ)p̃(θ)
p̃(Y1:T |θ′,u′)p(u′|θ′)p̃(θ′) = S({θ′,u′},{θ,u})

S({θ,u},{θ′,u′}) .

If we define as a proposal distribution,

q({θ, u}, ·) = S({θ, u}, ·),
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we have an acceptance probability for θ′ 6= θ of,

α2({θ, u}, {θ′, u′}) = min
{

1, p(θ
′,u′|Y1:T )q({θ′,u′},{θ,u})

p(θ,u|Y1:T )q({θ,u},{θ′,u′})

}
= min

{
1, p(θ

′,u′|Y1:T )S({θ′,u′},{θ,u})
p(θ,u|Y1:T )S({θ,u},{θ′,u′})

}
= min

{
1, p(Y1:T |θ′,u′)p(u′|θ′)p(θ′)S({θ′,u′},{θ,u})

p(Y1:T |θ,u)p(u|θ)p(θ)S({θ,u},{θ′,u′})

}
= min

{
1, p(Y1:T |θ′,u′)p(u′|θ′)p(θ′)p̃(Y1:T |θ,u)p(u|θ)p̃(θ)

p(Y1:T |θ,u)p(u|θ)p(θ)p̃(Y1:T |θ′,u′)p(u′|θ′)p̃(θ′)

}
= min

{
1, p(Y1:T |θ′,u′)p(θ′)p̃(Y1:T |θ,u)p̃(θ)

p(Y1:T |θ,u)p(θ)p̃(Y1:T |θ′,u′)p̃(θ′)

}
= min

{
1, p̂(Y1:T |θ′)p(θ′)p̃(Y1:T |θ)p̃(θ)

p̂(Y1:T |θ)p(θ)p̃(Y1:T |θ′)p̃(θ′)

}
.

If we have rejected (θ′, u′) in the surrogate phase, that is, θ′ = θ, we do not need to re-run the

particle filter. When θ′ 6= θ at the end of the surrogate phase, we then need to evaluate the particle

filter and compute what the associated u′ is. That is, we can delay computation of u′ until we

evaluate the particle filter.

4 Discussion

4.1 Balancing Statistical and Computational Efficiency

Dynamic samplers, such as the Metropolis-Hastings algorithm, generate correlated draws that are

approximately distributed according to the target distribution. Thus the estimate of

Ep[h(X)] =

∫
h(x)p(x)dx,

by

ĥ =
1

L

L∑
i=1

h(x(i)),

has a variance

var(ĥ) = varp(h(X))
τ

L
,

13



where τ is the integrated autocorrelation time defined as

τ = 1 + 2

∞∑
j=1

ρj .

Here, ρj is the correlation between h(Xt) and h(Xt−j).
11 The goal of designing good dynamic

samplers is to design Markov chains with low τ . The closer τ is to unity, the closer the variance of

the Monte Carlo estimate of the quantity h is to one using independent draws from p(·). However,

it is only fair to use τ to compare two algorithms if they take the same time to compute the same

number of draws. Thus a natural extension is to look at the seconds per effectively independent

sample. Let τ rt be the running time in seconds to produce a chain of length L. The seconds per

effectively independent draw of a chain of length L is computed as,

s/Eff =
τ rtτ

L
.

The speedup from using algorithm 2 relative to a base algorithm, 1, is then the ratio of the seconds

per effectively independent draw of each algorithm,

Speedup =
τ rt1 τ1

τ rt2 τ2
.

We can see two forces playing a role in the computed speedup. By foregoing filter evaluations on

points which have a very small probability of acceptance, we can decrease the running time of our

algorithm. By sampling multiple times from our surrogate density, or designing better samplers in

the surrogate step, we can potentially decrease τ2 relative to τ1. If we consider the running time of

a PMMH algorithm of length L,12

τ rtMH ≈ (seconds to evaluate particle filter) ∗ L,

11In our experiments, we estimate τ by the following, τ̂ = 1 + 2
∑2000
j=1 (1− j

2000
)ρ̂j .

12This assumes that the time to draw from and compute q(x, y) is negligible.
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whereas for the PMMH with surrogate transitions, with K surrogate steps,

τ rtST ≈ (seconds to evaluate surrogate likelihood) ∗K ∗ L

+ (seconds to evaluate particle filter) ∗ (average probability of move from surrogate) ∗ L

For DSGE models that requires one to both solve for the various policy functions and evaluate the

likelihood, the running times become,

τ rtMH ≈ (seconds to solve full model + seconds to evaluate particle filter) ∗ L,

and,

τ rtST ≈ (seconds to solve surrogate model + seconds to evaluate surrogate likelihood) ∗K ∗ L

+ (seconds to solve full model + seconds to evaluate particle filter)

∗ (average probability of move from surrogate) ∗ L

From this decomposition of running times, we can see where the surrogate method might see ad-

vantages relative to the Metropolis-Hastings algorithm, as well as how one might be able to design

surrogates to decrease the running times. Analysis of the ratio of integrated autocorrelation times is

less clear. Following the insights contained in Cui, Fox, and O’Sullivan (2011), consider moving from

a point x to y obtained from a 1 step surrogate move. Because our algorithm uses two accept/reject

tests, it will accept less often than if we were able to directly sample from our surrogate model,

α1(x, y)α2(x, y) ≤ α2(x, y).

15



Further we have that,

α1(x, y)α2(x, y) = min

{
1,
p̃(y)q̃(y, x)

p̃(x)q̃(x, y)

}
min

{
1,
p(y)p̃(x)

p(x)p̃(y)

}
≤ min

{
1,
p(y)q̃(y, x)

p(x)q̃(x, y)

}
= αMH(x, y)

Thus multiple acceptance steps, while required to maintain detailed balance, decreases the accep-

tance probability relative to sampling directly from p̃(·) as well as a Metropolis-Hastings algorithm

with target p(·) and proposal distribution q(x, ·). When α1(x, y) and α2(x, y) both agree on the

same move from x to y in the sense of α1(x, y) = α2(x, y) = 1 or, α1(x, y) < 1, α2(x, y) < 1, we

have α1(x, y)α2(x, y) = αMH(x, y). From this we can see that the closer our surrogate p̃(·) is to

our model of interest, p(·), the closer the 1 step surrogate algorithm mimics a Metropolis Hastings

algorithm with the proposal distribution q̃(x, ·) and target p(·). By avoiding expensive likelihood

evaluations, an accurate surrogate should be able to produce draws faster than such a Metropolis

algorithm with minimal loss from higher integrated autocorrelation times by requiring multiple ac-

ceptance steps. Inefficiencies arise when proposed moves from x to y, are rejected in the first step,

but certainly accepted in the second, α1(x, y) < 1 and α2(x, y) = 1. In words, if y was proposed

sampling directly from p̃(·), we would move to y, but since we are not drawing directly from p̃(·), we

may reject this move before having an opportunity to test it with α2(x, y). If we focus on symmetric

surrogate proposal densities, q(x, y) = q(y, x), this happens when moving from x to y is costly in

terms of p̃(·) but favored (strongly) according to p(·). When α1(x, y) = 1, but α2(x, y) < 1, that

is, our surrogate phase accepts the move with certainty, but the second step rejects the point with

some probability, we have, α1(x, y)α2(x, y) = α2(x, y), and we accept the move with the same prob-

ability as if we were sampling from p̃(·). We expect that the surrogate method will have a larger

integrated autocorrelation time when only one update is used and speedup (if any) will likely come

from a lower computational time. When multiple surrogate steps are performed with a surrogate

which closely matches our target, we would expect lower correlation in our Markov chain and similar

computational time.
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4.2 Tuning

There are many aspects of this algorithm that one can choose, such as the choice of the surrogate

model, choice of proposal density within the surrogate phase and number of steps. Rather than

searching for an optimal surrogate proposal, we will strive to learn in what circumstances can using

the method improve performance over a random walk sampler.

We have seen that conditional on reaching the second stage, the acceptance probability matches

that of an Independent Metropolis-Hastings algorithm. A necessary and sufficient condition the

Independent Metropolis-Hastings algorithm to sample approximately from p(θ, u|Y1:T ) is that the

support of proposal distribution contains that of the target distribution.13 That is, p(θ, u|Y1:T ) >

0 → p̃(θ, u|Y1:T ) > 0, which we have assumed for our surrogate transitions sampler. However,

the rate of convergence of the IMH algorithm depends on the tails of the two densities through

the ratio p(x)
p̃(x) . We use this insight to alleviate potential problems in the tails our our surrogate

distribution, we can scale our surrogate log density by a temperature term, T. That is, we can use

p̃
1
T (θ|Y1:T ) ∝ p̃(θ|Y1:T )

1
T as our surrogate.14 Increasing the temperature increases the chance that

the algorithm accepts moves which would normally have been rejected, thus over sampling the tails

relative to sampling from p̃(θ, u|Y1:T ). Following the discussion in the previous section, this should

decrease the cases when α1(x, y) < 1, and α2(x, y) = 1, but the proposal was rejected using α1(x, y).

Although motivated as an improvement for estimating parameters in a Bayesian context through

a simpler to compute likelihood, the surrogate target density has another degree of freedom, its

priors. While our forthcoming examples will use p̃(θ) = p(θ), one can choose a surrogate prior

density p̃(θ) that differs from p(θ). This might be useful when the surrogate likelihood is nearly flat,

or differs substantially from the target likelihood in some dimension.

The number of intermediate steps in the surrogate transition phase will have two effects. First,

increasing the number of intermediate steps will increase the probability when we actually run the

expensive particle filter. Second, more intermediate steps decreases the dependence of that draw

from the current state. If the approximations to the true marginal likelihood are accurate, one can

13See Robert and Casella (2004) for a discussion of the IMH algorithm and convergence properties.
14Explicitly taking into account the random variables u, the surrogate would be p̃

1
T (θ, u|Y1:T ) ∝

(p̃(Y1:T |θ)p̃(θ))
1
T p(u|θ).
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expect to accept the proposal value with probability one as the acceptance criteria is,

min
{

1, p̂(Y1:T |θ′)
p̃(Y1:T |θ′)

p̃(Y1:T |θ(m))

p̂(Y1:T |θ(m))

}
= min {1,≈ 1} .

However, in cases where p̃(Y1:T |θ) is crude and perhaps tempered, the acceptance probability will

not be close to one.

In the examples that follow, we use a random walk proposal distribution in the surrogate phase.

Following the results of the optimal tuning literature (Roberts and Rosenthal (2001)), we choose

q(θ, ·) = N(θ,Σ′) where Σ′ = 2.382

d Σ, with Σ an estimate of the true covariance of the resulting

posterior distribution and d is the dimension of θ. In situations where the surrogate likelihood

differs from the likelihood of interest and substantial differences in computational time exist, it

is not clear what sort of acceptance probability one should strive for in the surrogate phase. As

we will keep the proposal distribution the same, even as we temper the surrogate density, the

probability of accepting a draw in the surrogate phase will increase as the temperature rises. Since

we are choosing the surrogate likelihoods that are fast to compute, one could design more elaborate

samplers in the surrogate transition step as opposed to a simple random walk, allowing for example,

tempered or HMC transitions as in Rasmussen (2003) and Fielding, Nott, and Liong (2011). Lastly,

computational resources will determine the effectiveness of using a surrogate as a guide. Each chain

was run on a single core of a Xeon X5670 processor, 2.93GHz with 12MB Cache.15 Faster processors

that decreases running times of the particle filter relative to the surrogate model decreases the value

of forgoing filter evaluations.16

15Previous drafts of this paper included results from Xeon E5345 and E5410 (2.33GHz) processors performed while
a graduate student at NYU.

16We omit sampling and storing the unobservable series X1:T .
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5 Examples

5.1 A stochastic volatility model

Consider the stochastic volatility model,

Yt = e(
µ+Xt

2
)νt

Xt = ρXt−1 + τεt.

Here, {Yt}Tt=1 is a sequence of observables, say asset returns or log consumption growth, and {Xt}Tt=1

is an unobservable component that dictates the current period’s volatility. The goal is to estimate

the sequence of unobservables X1:T as well as the vector of parameters θ = (µ, ρ, τ). The likelihood

function for this stochastic volatility model is unavailable in closed form. We form the surrogate

model by first squaring and taking logarithms of the observation equation to get the following state

space system,

log(Y 2
t ) = µ+Xt + log(ν2

t )

Xt = ρXt−1 + τεt.

While linear, the term log(v2
t ) no longer is normally distributed, but has mean approximately −1.27

and variance 4.93. Here we replace log(v2
t ) with a normally distributed term v̂t ∼ N(−1.27, 4.93).

Also, for notational sake, let Ŷt = log(Y 2
t ) and form the linear Gaussian state space system:

Ŷt=µ+Xt + ν̂t

Xt=ρXt−1 + τεt

Note that one could potentially maximize the likelihood and estimate θ using (say) a Laplace

approximation to evaluate the likelihood following Meyer, Fournier, and Berg (2003). Instead, we

use this as an surrogate marginal likelihood. To see the surrogate transition method in action, we

simulate the model for 1000 time periods at parameter values µ = 1, ρ = 0.9, τ = 0.5. We use 5000

particles in the evaluation of the particle filter, and run our algorithm to generate 100000 draws.

We run our surrogate transitions algorithms for various levels of the temperature, T , from 1 to

4, and number of intermediate steps, K, from 1 to 6. The constant across algorithms covariance
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matrix of the random walk chain was computed as the covariance matrix of an initial Random Walk

Metropolis-Hastings chain.17

5.1.1 Results

We first examine the results from our standard Random Walk Metropolis-Hastings chain. We

compute the acceptance rate of the chain, the number of seconds it took to run the 100000 draws,

as well as the integrated autocorrelation time, and finally the number of seconds per effectively

independent sample from the chain.

[INSERT TABLE 1 ABOUT HERE]

As we see in table 1, the acceptance rate for our Random Walk Metropolis chain is close to the oft

cited optimal 0.234. As discussed in Roberts and Rosenthal (2001), an acceptance rate of about

25% maximizes the efficiency of the Markov chain for certain target distributions. However, for

acceptance rates between 15− 40% the chain is still upwards of 80% efficient.18

We take the draws from the posterior distribution and calculate the integrated autocorrelation

time for mean estimate of the parameters. The numbers range from 10.8− 12.6, meaning that the

variance of the estimate is 10.8 − 12.6 times larger than if we had independent draws from the

posterior. Alternatively, the variance of the estimate is about the same as if we only had a little

under 10000 independent draws from the posterior distribution. Combining these results with the

running time, we compute the time per effectively independent sample. As we see, the numbers

range from 2.5− 3 seconds for each variable.

[INSERT TABLE 2 ABOUT HERE]

As we see in table 2, for our surrogate transition chain, the acceptance rate varies from a low of

0.2 to a high of 0.4, depending on the temperature (T ) and number of intermediate steps (K) used.

The lower acceptance rates come from combinations of temperature/intermediate steps (T,K) that

17While we refer to this as Random Walk Metropolis-Hastings, or just RWMH, we could alternatively call it the
PMMH with a random walk proposal density.

18Also note that the 0.234 number is an asymptotic result for a large parameter space for certain target distributions.
In one dimension, the actual optimal acceptance rate is closer to 50%.
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are either both high or both low. This is most likely due to differences in the surrogate and true

posterior distribution.

[INSERT TABLE 3 ABOUT HERE]

Our surrogate chain runs anywhere from a little more then twice as fast when (T,K) = (1, 1), to

slightly longer for T and K both high. The decrease in running time is due to the avoidance of the

relatively more expensive particle filter evaluation. When T and K are both low, the probability of

rejecting the intermediate point it quite high and we avoid the expensive evaluation. With K and

T higher, we most likely move far away from the starting point and almost certainly evaluate the

particle filter.

The overall effect of the surrogate method depends on the integrated autocorrelation time, or

how correlated the draws from our posterior distribution are. As we see, for low K we actually have

a larger integrated autocorrelation time than the Metropolis chain. This drops substantially as K

is increased to 5 and 6. For low K, any speedup with then be achieved through speedup of the

running time rather than a speedup from a lower variance of the resulting estimate. For high K the

opposite is true and the speedup will be due to lower integrated autocorrelation time.

[INSERT TABLE 4 ABOUT HERE]

[INSERT TABLE 5 ABOUT HERE]

[INSERT TABLE 6 ABOUT HERE]

To compare the surrogate transitions chain to the Random Walk Metropolis-Hastings chain, we

compute the seconds per effectively independent draw of each of the algorithms. We then take the

ratio of this time of the PMMH and divide it by that of PMMH with Surrogate Transitions to get the

speedup (or slowdown) of the new algorithm. For example, the number 2 would state that surrogate

transitions produces effectively independent samples twice as fast as the RWMH algorithm, or that

our new algorithm is 100% more efficient.

As we can see, for this very simplistic model where the computation of the likelihood via particle

filtering is quick and not many particles are needed to get an accurate approximation, we still see
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speedups. Rather than searching for an optimal (T,K) combination, we observe that the numbers,

while having a large range (1.11− 3.10), are all bigger than 1, and on average are quite substantial,

about 1.7 averaging over the parameters and (T,K) combinations.

5.2 An Asset Pricing RBC Model with Robust Preferences

Here we estimate a simple real business cycle model with an agent who fears his model is misspecified.

In Koijen, Fernández-Villaverde, Rubio-Ramı́rez, and van Binsbergen (2008), the authors estimate

a slightly richer model with Epstein and Zin (1989) preferences using both macro and yield curve

data. The authors do maximum likelihood estimation but suggest that one could use a Random

Walk Metropolis-Hastings algorithm to estimate parameters in a Bayesian setting. We demonstrate

the benefits of PMMH with Surrogate Transitions over a random walk algorithm on a similar model

using simulated data.

Agent’s utility satisfy the risk sensitive recursion,

Ut = (1− β)(log(Ct)) +
β

1− γ
log
(
E[e(1−γ)Ut+1 ]

)
.

Here, Ct is consumption of the agent at time t, β is the discount factor, and γ is a parameter

governing either risk aversion (Tallarini (2000)), or aversion to model uncertainty (Hansen and

Sargent (2007), Barillas, Hansen, and Sargent (2009), Bidder and Smith (2010a) and Bidder and

Smith (2010b)).

Aggregate feasibility is

Ct +Xt = eZtKα
t ,

where Xt is investment in capital and Kt is current level of capital in the economy. Capital accu-

mulates as

Kt+1 = (1− δ)Kt +
(

1− S
(

Xt
Xt−1

))
Xt,
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where S() is an investment adjustment cost function specified as

S
(

Xt
Xt−1

)
= κ

2

(
Xt
Xt−1

− e
φ

1−α
)2
.

Finally, technology, Zt evolves as a random walk with drift

Zt = φ+ Zt−1 + τεt.

These preferences can be interpreted as a special case of Epstein and Zin (1989) preferences where

the intertemporal elasticity of substitution is set equal to 1. As demonstrated by Koijen, Fernández-

Villaverde, Rubio-Ramı́rez, and van Binsbergen (2008), it is impossible to estimate γ through lin-

earization or log-linearization. Terms involving γ show up in the second order solution as part of

the constant risk-adjustment, as well as in the third and higher orders as part of the time varying

adjustment for risk. We explore two choices of surrogate marginal likelihoods. The first surrogate

marginal likelihood is constructed using a Square Root Unscented Kalman filter (van der Merwe and

Wan (2001)), keeping fixed the nonlinear solution. A second surrogate is constructed from linearizing

the equilibrium conditions and using a Kalman filter to compute the marginal likelihood.19

The planner chooses an allocation (Ct, Xt,Kt+1) to maximize utility subject to aggregate feasi-

bility and capital accumulation. Let Vt denote the optimal value of the problem. The solution of

the planners problem yields the first order conditions.

0 = −µt + β e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

(
αλt+1e

Zt+1Kα−1
t+1 + µt+1(1− δ)

)
0 = −λt + β e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

(
µt+1S

′
(
Xt+1

Xt

)(
Xt+1

Xt

)2
)

+µt

(
S
(

Xt
Xt−1

)
+ S′

(
Xt
Xt−1

)(
Xt
Xt−1

))
0 = −λt + (1−β)

Ct

Where λt, and µt are Lagrange multipliers on the resource and capital accumulation constraints

respectively. If we let qt = µt
λt

, and some algebra yields:

19In this second surrogate, the parameter γ is unidentified in the likelihood.
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0 = −qt + β Ct
Ct+1

e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

(
αeZt+1Kα−1

t+1 + qt+1(1− δ)
)

0 = −1 + β Ct
Ct+1

e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

(
qt+1S

′
(
Xt+1

Xt

)(
Xt+1

Xt

)2
)

+qt

(
S
(

Xt
Xt−1

)
+ S′

(
Xt
Xt−1

)(
Xt
Xt−1

))
Now define the return on capital, Rkt+1 as:

Rkt+1 =

(
αeZt+1Kα−1

t+1 + qt+1(1− δ)
)

qt

And a risk free return Rft , which satisfies:

1 = Rft Et

[
β
Ct
Ct+1

e(1−γ)Vt+1

Et[e(1−γ)Vt+1 ]

]

Combining with our definitions of the value function, resource constraint, capital evolution, and

first order conditions, we get the following set of equilibrium conditions.

1 = Et

[
β Ct
Ct+1

e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

Rft

]
1 = Et

[
β Ct
Ct+1

e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

Rkt+1

]
1 = Et

[
β Ct
Ct+1

e(1−γ)Vt+1

Et[e
(1−γ)Vt+1 ]

(
qt+1S

′
(
Xt+1

Xt

)(
Xt+1

Xt

)2
)]

+qt

(
1− S

(
Xt
Xt−1

)
− S′

(
Xt
Xt−1

)(
Xt
Xt−1

))
Rkt+1 =

(αeZt+1Kα−1
t+1 +qt+1(1−δ))
qt

Vt = (1− β)log(Ct) + β
1−γ log

(
Et[e

(1−γ)Vt+1 ]
)

Ct = Kα
t e

Zt −Xt

Kt+1 = (1− δ)Kt +
(

1− S
(

Xt
Xt−1

))
Xt

Zt = φ+ Zt−1 + τεt
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Since technology is growing over time, we need to redefine some of our variables. Define:

X̃t = Xt

e
Zt

1−α

C̃t = Ct

e
Zt

1−α

K̃t+1 = Kt+1

e
Zt

1−α

Ṽt+1 = Vt+1 − zt
1−α

Then the equilibrium conditions become:

1 = Et

[
β C̃t

C̃t+1e
1

1−α∆Zt+1

e(1−γ)Ṽt+1

Et[e
(1−γ)Ṽt+1 ]

Rft

]
1 = Et

[
β C̃t

C̃t+1e
1

1−α∆Zt+1

e(1−γ)Ṽt+1

Et[e
(1−γ)Ṽt+1 ]

Rkt+1

]
1 = Et[β

C̃t

C̃t+1e
1

1−α∆Zt+1

e(1−γ)Ṽt+1

Et[e
(1−γ)Ṽt+1 ](

qt+1S
′
(
Xt+1

Xt
e

1
1−α∆Zt+1

)(
Xt+1

Xt
e

1
1−α∆Zt+1

)2
)

]

+qt

(
1− S

(
Xt
Xt−1

e
1

1−α∆Zt
)
− S′

(
Xt
Xt−1

)(
Xt
Xt−1

e
1

1−α∆Zt
))

Rkt =
(αe∆Zt+1K̃α−1

t +qt(1−δ))
qt−1

Ṽt = (1− β)log(C̃t) + 1
1−α∆Zt + β

1−γ log
(
Et[e

(1−γ)Ṽt+1 ]
)

C̃t = K̃α
t e
− α

1−α∆Zt − X̃t

K̃t+1 = (1− δ)K̃te
− α

1−α∆Zt +
(

1− S
(

X̃t
X̃t−1

e
1

1−α∆Zt
))

X̃t

∆Zt = φ+ τεt

Let χ be the perturbation parameter, and let ˆvar denote the deviations of vart from its deterministic

steady state, ˆvart = vart− varss. Here it is assumed that χ = 1, and χss = 0. We will let lowercase

letters denote log of the variables, ie ct = log(C̃t). The state is the vector ŝt = (k̂t, x̂t−1, q̂t−1, ε̂t, χ̂),

The 3rd order approximation of variable var ∈ {Vt, ct, xt, kt+1, r
k
t , r

f
t } are as follows,

var(ŝt) ≈ varss +
∑

i vari,ssŝ
i
t +
∑

i

∑
j

1
2varij,ssŝ

i
ts
j
t +

∑
i

∑
j

∑
l

1
6varijl,ssŝ

i
tŝ
j
t ŝ
l
t.
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The log-linearized version only include terms up to the first order, that is

var(ŝt) ≈ varss +
∑

i vari,ssŝ
i
t.

We use as the observable series log investment growth, log consumption growth, log return on capital

and log of the risk free rate, Yt = (∆log(Xt),∆log(Ct), log(Rkt ), log(Rft )) and so we link them to our

model by the following,

∆log(Xt) = xt − xt−1 + 1
1−α(φ+ τεt) + σ1ν1,t

∆log(Ct) = ct − ct−1 + 1
1−α(φ+ τεt) + σ2ν2,t

log(Rkt ) = log(Rkss) + rkt + σ3ν3,t

log(Rft ) = log(Rfss) + rft + σ4ν4,t

where νt = (ν1,t, ν2,t, ν3,t, ν4,t)
′ is a vector of normally distributed measurement error shocks, νt ∼

N(0, I) and σ1, . . . , σ4 are loadings on the measurement errors. That is, our measurement equation,

Yt = f(St, νt).

The unobservable states in our state space system, will now be denoted St instead of the more

common Xt as written in the previous sections due to an unfortunate notation clash with investment.

The unobservable state is St = (ŝt, ŝt−1)′ with transition:
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∑
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ε̂t+1 = ε̂t+1

1 = 1

ŝt = ŝt
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or,

St+1 = g(St, εt+1).

We generate data of length 200 using the following parameter values.

[INSERT TABLE 7 ABOUT HERE]

We do not estimate the measurement error loadings and instead fix each σi = 0.001.20 The prior

distribution for the vector of structural parameters as follows:

[INSERT TABLE 8 ABOUT HERE]

The priors and parameters were chosen to be representative of what one might estimate from

the data using more complicated model but not necessarily the parameters one would get if such a

simple model was brought to the data. The particle filter was evaluated with 5000 particles and the

Metropolis-Hastings was run for 100000 draws. The surrogate transitions algorithm was also run

identical starting values, number of particles, and number of draws. Like the previous example, the

covariance matrix for the random walk part of the chain was estimated as the covariance matrix of

the resulting draws from a previous run of the RWMH algorithm. As before, we demonstrate the

algorithm varying the temperature from 1 to 4, and number of surrogate steps from 1 to 6.

5.2.1 Nonlinear Transitions

Here we examine the results for a model that is solved using a third order approximation with a

marginal likelihood evaluated using a (square root) Unscented Kalman filter as our surrogate.

[INSERT TABLE 9 ABOUT HERE]

The output for the RWMH algorithm is reported in table 9. The Random Walk chain was fairly

well tuned, achieving an acceptance rate of about 40%, although perhaps a bit too high. The

autocorrelations range from 16− 26 meaning that when one is estimating the mean of the posterior

distribution, the variance of the resulting estimate is 16−26 times larger than if one had independent

draws. The particle filter took approximately 0.4 seconds per evaluation.

20We also do not estimate the discount factor β.
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[INSERT TABLE 10 ABOUT HERE]

The acceptance rates for the surrogate transitions chain are presented in table 10. They range

from 0.33 all the way up to 0.87. While both the Surrogate Transitions and RWMH chains have

higher than the reference acceptance rates, it is unclear what effects changing the proposal variance

in the random walk chain will have as this might improve the performance of algorithms.

[INSERT TABLE 11 ABOUT HERE]

As we can see from the running times, by avoiding running the particle filter on rejected parame-

ter values in the surrogate phase, we are able to decrease running times relative to the RWMH algo-

rithm. This is especially true when we perform just one surrogate proposal step for any temperature.

As with the stochastic volatility model in the previous section, for high temperature/intermediate

step combinations, the surrogate transitions algorithm actually takes longer than the RWMH algo-

rithm. And as before, this is because we are very likely to accept a draw in the surrogate phase and

thus run the resulting particle filter at a new draw. Whether or not these produce a speedup with

then depend greatly on the decrease in integrated autocorrelation time produced from our Markov

chain.

[INSERT TABLE 12 ABOUT HERE]

[INSERT TABLE 13 ABOUT HERE]

In terms of autocorrelations, the surrogate transitions sampler yields a wider range of estimates

of the integrated autocorrelation time, depending on the (T,K) combination. For a low number of

intermediate steps, the sampler produces a higher integrated autocorrelation time for the parameters

than the Metropolis algorithm. Fortunately, the increase in autocorrelation time is offset by the

substantial decrease in running time of the algorithm. For a fixed T , as we increase K, the number

of surrogate steps, the autocorrelation time decreases substantially.

[INSERT TABLE 14 ABOUT HERE]
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If we take both running times and integrated autocorrelation times into account, we can examine

the overall speedup. The speedup is positive for most (T,K) combinations. For T low and more

than 1 intermediate step, the sampler sees a speedup of 1.4−6 over the simple RWMH chain. Thus,

our new sampler is anywhere from 40 to 500% more efficient than the naive implementation of

the Random Walk Metropolis-Hastings chain, depending on the parameter and (T,K) combination

used. Only one estimate showed slowdown, estimating γ with low K. Averaged over parameters

and (T,K) combinations, the speedup is approximately 2.24, and, focusing on the subblock with

temperatures less than or equal to 2, and more than 1 interemediate step, speedup was on average

2.85.

5.2.2 Nonlinear Transitions: Adjusting the Surrogate Proposal Density

We notice that the speedup computed in the previous section was primarily due to decreases in inte-

grated autocorrelation time when the number of intermediate steps is large. This section addresses

whether there is room to scale the surrogate proposal density in such a way to trade higher auto-

correlation time for less computational time. For this experiment, we scale the standard deviation

of the surrogate proposal density of our parameters by the square root of the number of surrogate

steps, q(θ, ·) = N(θ,KΣ′) for a surrogate sampler with K steps. Larger proposal variance should

decrease the chance that we accept the move, but, when we do move, move us further in the state

space. By decreasing the number of acceptances in the surrogate step, we should run our filter less

often. When we do try to evaluate the particle filter, hopefully we will be further from our previous

parameter configuration, maintaining a favorable integrated autocorrelation time.

[INSERT TABLE 15 ABOUT HERE]

Acceptance rates are lower than in the unscaled case, and running times in table 16 are all less

than in the unscaled case. Thus, we are accepting less points in the surrogate phase and need to

run the particle filter less often.

[INSERT TABLE 16 ABOUT HERE]
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[INSERT TABLE 17 ABOUT HERE]

Integrated autocorrelation times are reported in table 17. For K = 1 they are the same as before.

For larger K ′s are slightly larger than in the unscaled case, but not by much.

[INSERT TABLE 19 ABOUT HERE]

In terms of overall speedup, we see in table 19 a dramatic improvement relative to the unscaled

case. The mean speedup over all parameters and (T,K) combinations is now 2.97, while the mean

speedup over parameters and the T ≤ 2, K ≥ 2 block of runs is 4.47. This shows that while varying

the temperature and number of surrogate steps can and will affect the performance of the algorithm,

large gains in efficiency can be achieved by taking care in designing the surrogate Markov chain.

5.2.3 Linear Transitions

A more extreme implementation of the surrogate transition method is to uses a linearized model

as a surrogate guide. This linear model takes almost no additional coding given one is solving for

a higher order approximation. Further, linearized models are still the primary tool for analysis in

DSGE models and are able to fit quantities quite well. Unfortunately, linearization, as pointed out

by Fernández-Villaverde and Rubio-Ramı́rez (2005) has its drawbacks. On major drawback is that

the parameter γ is not identified when taking a first order approximation to the policy functions.

Thus the surrogate phase merely samples from the prior on γ which is always valid so long as the

prior is not improper. We also demean the data before evaluating the Kalman filter in the surrogate

step. The results are contained in tables 20 - 24.

[INSERT TABLE 20 ABOUT HERE]

[INSERT TABLE 21 ABOUT HERE]

[INSERT TABLE 22 ABOUT HERE]

[INSERT TABLE 23 ABOUT HERE]
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[INSERT TABLE 24 ABOUT HERE]

Relative to the nonlinear filter, the surrogate method with a linearized model shows much lower

acceptance rates and similar running times for a wide array of (T,K) combinations.21 Again, inte-

grated autocorrelation times drop as the number of intermediate steps rise, but not as dramatically

as with using the nonlinear surrogate likelihood. The integrated autocorrelation times for our lin-

earized surrogate model are higher than those for the nonlinear one. In terms of overall speedup

relative to the RWMH we see that it is general positive, except for very high (T,K) combinations

and when K = 1. The algorithm shows slowdown when estimating γ, when K = 1 for any T ,

although this performance could have been expected given that it is unidentified in the surrogate

likelihood. However, increases in efficiency are seen in the parameters that are shared across models.

Even taking into account this slowdown, averaging speedup over the parameters remains positive.

The average over all parameters and (T,K) combinations showed a speedup of 1.62. For lower T ,

and K greater than 2, it ranges from 1.11−2.86. It is less efficient than using the nonlinear filter as

a surrogate, suggesting that nonlinearities are important and differences exist between the posterior

distribution induced by linear and nonlinear solution methods. As a word of caution, the results

for unidentified parameters vary substantially if the true likelihood is far away from a tight prior,

which suggests the use of fairly diffuse priors for such parameters.

6 Conclusion

This paper has proposed a novel combination of ideas for estimating parameters in a nonlinear state

space system. By combining various approximation methods, we are able to substantially speedup

the rate at which our Markov chain produces draws from its invariant distribution. This method is

especially suited for the estimation of nonlinear DSGE models where different solution methods can

be combined to form surrogate models. As we have explored the sampler for only the simplest of

DSGE models, more complicated models with large state spaces and/or a lot of particles should see

21We compute the second stage acceptance rate for K = 1 to get an idea of how close the surrogate is to the
likelihood of interest. For the nonlinear surrogate model, it ranged from approximately 0.9 when T = 1 to 0.55 when
T = 4. For the linear surrogate model, the second stage acceptance rates ranged from 0.5− 0.65. This suggests that
the nonlinear surrogate is very accurate for low T and we lose little from using multiple accept/reject steps with this
approximation.
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an even greater advantage. Another way of viewing our algorithm is that running the particle filter

can be seen as a way of correcting the invariant distribution of a Markov chain that is computed by

an approximate marginal likelihood function.

Although we generally find good performance with only a few intermediate steps, tuning the

surrogate sampler and temperature level is an open question. What optimal acceptance rate one

should strive for, in both the surrogate and overall algorithm is unknown and very likely problem

dependent.

Exploiting the linear model allows an increase in efficiency over the baseline, especially for the

parameters which are well identified in the linear model. Nonlinear approximations to the marginal

likelihood increase the efficiency gains. This is the result of nonlinearities being important. However,

as we show, we can still use the linear parts of the model in such a way to aid in characterizing these

effects. One can certainly come up with examples in which using a linear state space model or an

Unscented Kalman filter to evaluate the likelihood gives disastrous results, and one should design a

surrogate model with care.
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Table 1: SV Model: Random Walk Metropolis-Hastings

ρ τ µ

AR 0.29
Time 23874.50
IAT 12.60 10.80 11.58
s/Eff 3.01 2.58 2.76



Table 2: SV Model: Surrogate Transitions Acceptance Rates

T\K 1 2 3 4 5 6

1 0.20 0.31 0.36 0.39 0.40 0.40
2 0.25 0.35 0.39 0.38 0.37 0.36
3 0.26 0.34 0.35 0.33 0.31 0.29
4 0.27 0.32 0.32 0.29 0.27 0.24



Table 3: SV Model: Surrogate Transitions Running time

T\K 1 2 3 4 5 6

1 9229.31 14832.38 18371.88 20555.92 21892.49 22747.26
2 12010.63 18048.08 21165.83 22638.38 23438.59 23814.77
3 14046.27 19985.97 22522.86 23621.78 24222.10 24227.45
4 15462.99 21094.90 23197.13 23895.08 24284.64 24371.16



Table 4: SV Model: Surrogate Transitions Integrated Autocorrelation Time

ρ

T\K 1 2 3 4 5 6

1 23.32 11.04 12.56 9.71 8.91 8.76
2 12.27 9.36 7.30 7.75 7.98 6.95
3 18.11 10.16 9.71 7.09 6.28 6.24
4 13.52 9.19 7.24 11.37 8.69 8.77

τ

T\K 1 2 3 4 5 6

1 24.61 14.47 11.96 9.35 7.24 8.46
2 14.04 7.64 7.58 6.11 8.84 7.02
3 16.59 7.56 7.86 7.63 5.51 5.25
4 13.28 7.86 7.98 7.61 7.65 8.06

µ

T\K 1 2 3 4 5 6

1 12.48 11.62 9.03 5.09 6.78 5.74
2 13.19 7.02 6.59 3.94 6.57 4.20
3 16.00 9.06 6.80 5.40 7.05 5.20
4 10.74 6.17 6.30 5.11 7.04 6.56



Table 5: SV Model: Surrogate Transitions Time per Effectively Independent Sample

ρ

T\K 1 2 3 4 5 6

1 2.15 1.64 2.31 2.00 1.95 1.99
2 1.47 1.69 1.55 1.76 1.87 1.66
3 2.54 2.03 2.19 1.68 1.52 1.51
4 2.09 1.94 1.68 2.72 2.11 2.14

τ

T\K 1 2 3 4 5 6

1 2.27 2.15 2.20 1.92 1.58 1.92
2 1.69 1.38 1.61 1.38 2.07 1.67
3 2.33 1.51 1.77 1.80 1.33 1.27
4 2.05 1.66 1.85 1.82 1.86 1.97

µ

T\K 1 2 3 4 5 6

1 1.15 1.72 1.66 1.05 1.49 1.31
2 1.58 1.27 1.39 0.89 1.54 1.00
3 2.25 1.81 1.53 1.28 1.71 1.26
4 1.66 1.30 1.46 1.22 1.71 1.60



Table 6: SV Model: Speedup Relative to Random Walk Metropolis-Hastings

ρ

T\K 1 2 3 4 5 6

1 1.40 1.84 1.30 1.51 1.54 1.51
2 2.04 1.78 1.95 1.71 1.61 1.82
3 1.18 1.48 1.38 1.80 1.98 1.99
4 1.44 1.55 1.79 1.11 1.43 1.41

τ

T\K 1 2 3 4 5 6

1 1.13 1.20 1.17 1.34 1.63 1.34
2 1.53 1.87 1.61 1.86 1.24 1.54
3 1.11 1.71 1.46 1.43 1.93 2.03
4 1.26 1.55 1.39 1.42 1.39 1.31

µ

T\K 1 2 3 4 5 6

1 2.40 1.60 1.67 2.64 1.86 2.12
2 1.74 2.18 1.98 3.10 1.80 2.76
3 1.23 1.53 1.80 2.17 1.62 2.20
4 1.66 2.12 1.89 2.26 1.62 1.73



Table 7: RBC Model: Parameters
γ 50
α 0.4
δ 0.03
κ 4
φ 0.005
log(τ) -5.3



Table 8: RBC Model: Priors
γ Normal(50, 102)
α Normal(0.3, 0.052)
δ Normal(0.025, 0.0052)
κ Normal(4, 1.52)
φ Normal(0.3, 0.052)
log(τ) Normal(-5.3, 22)



Table 9: RBC Model: Random Walk Metropolis-Hastings

γ α δ κ φ τ

AR 0.40
Time 43452.28
IAT 16.31 18.51 21.04 25.94 21.72 20.59
s/Eff 7.09 8.04 9.14 11.27 9.44 8.95



Table 10: RBC Model: Nonlinear Surrogate Transitions Acceptance Rates

T\K 1 2 3 4 5 6

1 0.37 0.59 0.72 0.80 0.85 0.87
2 0.40 0.55 0.61 0.62 0.61 0.59
3 0.40 0.50 0.50 0.48 0.45 0.42
4 0.40 0.47 0.44 0.40 0.36 0.33



Table 11: RBC Model: Nonlinear Surrogate Transitions Running time

T\K 1 2 3 4 5 6

1 19692.80 32292.76 39792.75 45780.85 49597.33 50241.67
2 25964.66 38934.23 45257.38 51278.58 51411.03 53320.81
3 29564.54 40926.98 46061.55 48388.76 50029.13 51387.92
4 32613.70 42968.98 46838.05 48895.27 50325.81 51418.05



Table 12: RBC Model: Nonlinear Surrogate Transitions Integrated Autocorrelation Time

γ

T\K 1 2 3 4 5 6

1 36.07 9.68 8.69 5.37 5.11 4.04
2 27.76 11.96 9.25 7.83 8.36 5.71
3 24.06 13.01 13.73 9.52 9.19 5.27
4 18.93 14.31 11.58 9.66 10.43 12.76

α

T\K 1 2 3 4 5 6

1 18.71 14.25 6.10 8.26 4.13 3.96
2 20.39 14.39 7.12 5.22 6.63 5.80
3 22.78 11.59 8.35 7.20 8.25 5.90
4 18.21 14.26 10.29 12.41 7.66 8.90

δ

T\K 1 2 3 4 5 6

1 25.28 16.60 11.94 6.36 6.01 5.28
2 20.19 14.71 8.29 6.54 6.03 3.85
3 19.97 14.01 7.36 7.66 6.77 5.48
4 25.68 15.92 10.77 9.28 10.40 8.83

κ

T\K 1 2 3 4 5 6

1 20.55 11.53 8.28 9.26 4.44 3.73
2 17.73 17.57 12.09 7.02 5.82 4.86
3 30.27 13.04 11.00 11.41 7.48 6.81
4 20.54 19.56 13.10 10.12 9.33 8.35

φ

T\K 1 2 3 4 5 6

1 30.85 11.57 7.67 6.65 4.84 4.80
2 30.73 11.55 8.57 7.00 6.96 4.63
3 22.68 14.78 11.97 8.34 9.16 6.83
4 16.92 14.50 12.45 8.92 9.75 11.98

τ

T\K 1 2 3 4 5 6

1 34.70 9.83 8.13 5.68 5.92 4.00
2 22.15 10.30 8.30 9.14 8.62 4.43
3 18.70 14.00 11.53 8.78 7.10 7.05
4 20.26 16.25 14.48 12.08 9.13 9.97



Table 13: RBC Model: Nonlinear Surrogate Transitions Time per Effectively Independent Sample

γ

T\K 1 2 3 4 5 6

1 7.10 3.13 3.46 2.46 2.54 2.03
2 7.21 4.66 4.18 4.02 4.30 3.04
3 7.11 5.33 6.32 4.61 4.60 2.71
4 6.17 6.15 5.42 4.72 5.25 6.56

α

T\K 1 2 3 4 5 6

1 3.68 4.60 2.43 3.78 2.05 1.99
2 5.29 5.60 3.22 2.68 3.41 3.09
3 6.74 4.74 3.85 3.48 4.13 3.03
4 5.94 6.13 4.82 6.07 3.86 4.58

δ

T\K 1 2 3 4 5 6

1 4.98 5.36 4.75 2.91 2.98 2.65
2 5.24 5.73 3.75 3.35 3.10 2.05
3 5.90 5.73 3.39 3.71 3.39 2.81
4 8.37 6.84 5.04 4.54 5.24 4.54

κ

T\K 1 2 3 4 5 6

1 4.05 3.72 3.29 4.24 2.20 1.87
2 4.60 6.84 5.47 3.60 2.99 2.59
3 8.95 5.34 5.07 5.52 3.74 3.50
4 6.70 8.41 6.13 4.95 4.70 4.29

φ

T\K 1 2 3 4 5 6

1 6.08 3.74 3.05 3.04 2.40 2.41
2 7.98 4.50 3.88 3.59 3.58 2.47
3 6.71 6.05 5.51 4.04 4.58 3.51
4 5.52 6.23 5.83 4.36 4.91 6.16

τ

T\K 1 2 3 4 5 6

1 6.83 3.18 3.24 2.60 2.94 2.01
2 5.75 4.01 3.76 4.69 4.43 2.36
3 5.53 5.73 5.31 4.25 3.55 3.62
4 6.61 6.98 6.78 5.91 4.60 5.13



Table 14: RBC Model: Nonlinear Surrogate Speedup Relative to Random Walk Metropolis-Hastings

γ

T\K 1 2 3 4 5 6

1 1.00 2.27 2.05 2.88 2.80 3.49
2 0.98 1.52 1.69 1.76 1.65 2.33
3 1.00 1.33 1.12 1.54 1.54 2.62
4 1.15 1.15 1.31 1.50 1.35 1.08

α

T\K 1 2 3 4 5 6

1 2.18 1.75 3.31 2.13 3.93 4.05
2 1.52 1.44 2.50 3.00 2.36 2.60
3 1.19 1.70 2.09 2.31 1.95 2.65
4 1.35 1.31 1.67 1.33 2.09 1.76

δ

T\K 1 2 3 4 5 6

1 1.84 1.71 1.92 3.14 3.07 3.45
2 1.74 1.60 2.44 2.73 2.95 4.46
3 1.55 1.59 2.70 2.47 2.70 3.25
4 1.09 1.34 1.81 2.02 1.75 2.01

κ

T\K 1 2 3 4 5 6

1 2.79 3.03 3.42 2.66 5.12 6.01
2 2.45 1.65 2.06 3.13 3.77 4.35
3 1.26 2.11 2.23 2.04 3.01 3.22
4 1.68 1.34 1.84 2.28 2.40 2.63

φ

T\K 1 2 3 4 5 6

1 1.55 2.53 3.09 3.10 3.93 3.92
2 1.18 2.10 2.43 2.63 2.64 3.83
3 1.41 1.56 1.71 2.34 2.06 2.69
4 1.71 1.52 1.62 2.16 1.92 1.53

τ

T\K 1 2 3 4 5 6

1 1.31 2.82 2.77 3.44 3.05 4.45
2 1.56 2.23 2.38 1.91 2.02 3.79
3 1.62 1.56 1.68 2.11 2.52 2.47
4 1.35 1.28 1.32 1.52 1.95 1.74



Table 15: RBC Model: Nonlinear Surrogate Transitions Acceptance Rates,
√
Kscale

T\K 1 2 3 4 5 6

1 0.37 0.40 0.39 0.37 0.34 0.32
2 0.40 0.39 0.36 0.34 0.32 0.29
3 0.40 0.36 0.32 0.29 0.26 0.24
4 0.40 0.33 0.27 0.24 0.22 0.19



Table 16: RBC Model: Nonlinear Surrogate Transitions Running time,
√
Kscale

T\K 1 2 3 4 5 6

1 18883.73 21589.49 22051.98 21875.95 21725.40 21652.62
2 25468.33 29137.78 29874.37 30091.10 29832.27 29485.74
3 31119.73 35687.11 37385.15 39256.09 38219.48 38447.14
4 34327.98 40368.05 40925.25 42536.11 43748.29 42742.30



Table 17: RBC Model: Nonlinear Surrogate Transitions Integrated Autocorrelation Time,
√
Kscale

γ

T\K 1 2 3 4 5 6

1 36.07 12.03 9.09 7.61 6.49 7.32
2 27.76 12.28 8.51 8.13 8.72 9.03
3 24.06 13.72 11.52 8.46 11.98 9.79
4 18.93 15.65 11.37 10.15 11.09 13.18

α

T\K 1 2 3 4 5 6

1 18.71 12.01 7.45 7.44 8.40 6.57
2 20.39 11.51 9.89 8.27 7.19 8.34
3 22.78 14.76 12.92 8.73 10.08 8.13
4 18.21 16.37 7.05 11.82 10.14 13.72

δ

T\K 1 2 3 4 5 6

1 25.28 8.23 9.45 6.01 5.91 8.31
2 20.19 11.22 6.93 8.21 8.08 6.32
3 19.97 17.40 7.27 8.80 9.06 12.06
4 25.68 12.79 11.36 11.69 10.70 15.55

κ

T\K 1 2 3 4 5 6

1 20.55 13.31 8.00 8.88 7.13 6.55
2 17.73 12.66 6.32 7.52 6.99 8.31
3 30.27 15.38 10.23 8.75 10.71 9.81
4 20.54 14.50 10.88 12.37 11.24 17.19

φ

T\K 1 2 3 4 5 6

1 30.85 14.30 9.10 6.40 7.81 5.71
2 30.73 13.65 10.86 7.31 7.66 9.25
3 22.68 16.72 12.76 8.54 12.06 11.06
4 16.92 16.40 9.86 9.02 11.79 10.08

τ

T\K 1 2 3 4 5 6

1 34.70 9.10 6.99 7.98 6.37 6.84
2 22.15 13.72 7.18 7.46 7.18 7.87
3 18.70 17.80 8.97 10.07 9.71 9.73
4 20.26 13.08 11.59 9.08 11.23 12.96



Table 18: RBC Model: Nonlinear Surrogate Transitions Time per Effectively Independent Sample,√
Kscale

γ

T\K 1 2 3 4 5 6

1 6.81 2.60 2.00 1.66 1.41 1.59
2 7.07 3.58 2.54 2.44 2.60 2.66
3 7.49 4.90 4.31 3.32 4.58 3.76
4 6.50 6.32 4.65 4.32 4.85 5.64

α

T\K 1 2 3 4 5 6

1 3.53 2.59 1.64 1.63 1.83 1.42
2 5.19 3.35 2.96 2.49 2.15 2.46
3 7.09 5.27 4.83 3.43 3.85 3.13
4 6.25 6.61 2.88 5.03 4.44 5.86

δ

T\K 1 2 3 4 5 6

1 4.77 1.78 2.08 1.31 1.28 1.80
2 5.14 3.27 2.07 2.47 2.41 1.86
3 6.21 6.21 2.72 3.45 3.46 4.64
4 8.81 5.16 4.65 4.97 4.68 6.65

κ

T\K 1 2 3 4 5 6

1 3.88 2.87 1.76 1.94 1.55 1.42
2 4.52 3.69 1.89 2.26 2.09 2.45
3 9.42 5.49 3.82 3.44 4.09 3.77
4 7.05 5.85 4.45 5.26 4.92 7.35

φ

T\K 1 2 3 4 5 6

1 5.83 3.09 2.01 1.40 1.70 1.24
2 7.83 3.98 3.24 2.20 2.28 2.73
3 7.06 5.97 4.77 3.35 4.61 4.25
4 5.81 6.62 4.03 3.84 5.16 4.31

τ

T\K 1 2 3 4 5 6

1 6.55 1.96 1.54 1.74 1.38 1.48
2 5.64 4.00 2.14 2.25 2.14 2.32
3 5.82 6.35 3.35 3.95 3.71 3.74
4 6.95 5.28 4.74 3.86 4.91 5.54



Table 19: RBC Model: Nonlinear Surrogate Speedup Relative to Random Walk Metropolis-
Hastings,

√
Kscale

γ

T\K 1 2 3 4 5 6

1 1.05 2.75 3.56 4.29 5.07 4.50
2 1.01 2.00 2.81 2.92 2.75 2.68
3 0.95 1.46 1.66 2.15 1.56 1.90
4 1.10 1.13 1.54 1.65 1.47 1.27

α

T\K 1 2 3 4 5 6

1 2.29 3.13 4.93 4.98 4.44 5.69
2 1.56 2.42 2.74 3.26 3.78 3.30
3 1.14 1.54 1.68 2.37 2.10 2.59
4 1.30 1.23 2.81 1.61 1.83 1.38

δ

T\K 1 2 3 4 5 6

1 1.93 5.19 4.42 7.01 7.18 5.12
2 1.79 2.82 4.45 3.73 3.82 4.95
3 1.48 1.48 3.39 2.67 2.66 1.99
4 1.05 1.78 1.98 1.85 1.97 1.39

κ

T\K 1 2 3 4 5 6

1 2.93 3.95 6.44 5.85 7.33 8.00
2 2.52 3.08 6.02 5.02 5.44 4.64
3 1.21 2.07 2.97 3.31 2.78 3.01
4 1.61 1.94 2.55 2.16 2.31 1.55

φ

T\K 1 2 3 4 5 6

1 1.63 3.08 4.74 6.80 5.61 7.70
2 1.22 2.39 2.93 4.32 4.16 3.49
3 1.35 1.59 1.99 2.84 2.06 2.24
4 1.64 1.44 2.36 2.48 1.84 2.21

τ

T\K 1 2 3 4 5 6

1 1.38 4.59 5.85 5.17 6.52 6.09
2 1.60 2.26 4.20 4.02 4.21 3.89
3 1.55 1.42 2.69 2.28 2.43 2.41
4 1.30 1.71 1.90 2.33 1.83 1.63



Table 20: RBC Model: Linear Surrogate Transitions Acceptance Rates

T\K 1 2 3 4 5 6

1 0.32 0.45 0.50 0.51 0.49 0.47
2 0.37 0.45 0.45 0.42 0.39 0.36
3 0.38 0.42 0.39 0.34 0.30 0.27
4 0.39 0.40 0.34 0.29 0.25 0.22



Table 21: RBC Model: Linear Surrogate Transitions Running time

T\K 1 2 3 4 5 6

1 23069.16 34762.59 41329.10 44819.00 46775.13 48249.95
2 29304.32 40313.62 44776.56 46852.80 48014.90 50022.72
3 32793.09 42812.45 46149.10 48090.15 48442.30 49216.49
4 35176.48 44087.98 46755.08 47726.13 48536.65 49232.81



Table 22: RBC Model: Linear Surrogate Transitions Integrated Autocorrelation Time

γ

T\K 1 2 3 4 5 6

1 35.33 18.34 10.99 11.35 8.57 8.71
2 34.02 15.19 12.60 10.72 10.79 9.81
3 28.02 12.29 11.48 9.55 9.68 13.43
4 28.01 16.57 14.53 11.50 14.62 15.49

α

T\K 1 2 3 4 5 6

1 25.04 13.68 11.73 9.25 11.29 6.95
2 33.19 12.91 11.60 8.92 8.31 9.12
3 27.69 14.56 11.46 9.66 12.73 11.38
4 20.70 12.76 13.01 10.07 16.81 12.40

δ

T\K 1 2 3 4 5 6

1 27.29 13.91 14.26 9.94 9.68 8.24
2 17.65 14.48 11.05 8.18 9.84 7.41
3 22.79 21.20 12.05 8.65 8.10 11.30
4 17.97 15.23 12.65 13.71 12.06 15.87

κ

T\K 1 2 3 4 5 6

1 34.41 15.85 10.30 9.46 13.01 10.91
2 23.20 11.09 9.82 9.22 9.36 8.63
3 22.71 12.90 11.75 12.25 10.55 12.34
4 29.02 18.53 8.91 14.16 10.76 14.61

φ

T\K 1 2 3 4 5 6

1 25.83 13.80 14.90 7.35 9.14 8.05
2 28.41 16.29 12.81 10.90 8.14 9.71
3 25.82 12.55 14.23 10.31 9.74 15.19
4 17.68 15.84 16.93 12.86 14.69 12.46

τ

T\K 1 2 3 4 5 6

1 33.51 17.96 13.26 12.94 7.31 10.87
2 27.43 15.31 12.45 11.62 9.72 11.48
3 26.28 17.45 10.46 11.43 13.67 10.24
4 23.67 16.41 15.94 14.94 11.40 10.53



Table 23: RBC Model: Linear Surrogate Transitions Time per Effectively Independent Sample

γ

T\K 1 2 3 4 5 6

1 8.15 6.37 4.54 5.08 4.01 4.20
2 9.97 6.12 5.64 5.02 5.18 4.91
3 9.19 5.26 5.30 4.59 4.69 6.61
4 9.85 7.30 6.79 5.49 7.10 7.63

α

T\K 1 2 3 4 5 6

1 5.78 4.76 4.85 4.14 5.28 3.36
2 9.73 5.20 5.20 4.18 3.99 4.56
3 9.08 6.23 5.29 4.65 6.17 5.60
4 7.28 5.63 6.08 4.81 8.16 6.10

δ

T\K 1 2 3 4 5 6

1 6.29 4.84 5.89 4.45 4.53 3.98
2 5.17 5.84 4.95 3.83 4.73 3.71
3 7.47 9.08 5.56 4.16 3.93 5.56
4 6.32 6.71 5.91 6.54 5.85 7.81

κ

T\K 1 2 3 4 5 6

1 7.94 5.51 4.26 4.24 6.09 5.27
2 6.80 4.47 4.40 4.32 4.49 4.32
3 7.45 5.52 5.42 5.89 5.11 6.07
4 10.21 8.17 4.17 6.76 5.22 7.19

φ

T\K 1 2 3 4 5 6

1 5.96 4.80 6.16 3.30 4.27 3.89
2 8.32 6.57 5.73 5.10 3.91 4.86
3 8.47 5.37 6.57 4.96 4.72 7.48
4 6.22 6.99 7.92 6.14 7.13 6.14

τ

T\K 1 2 3 4 5 6

1 7.73 6.24 5.48 5.80 3.42 5.24
2 8.04 6.17 5.57 5.45 4.67 5.74
3 8.62 7.47 4.83 5.49 6.62 5.04
4 8.33 7.23 7.45 7.13 5.53 5.18



Table 24: RBC Model: Linear Surrogate Speedup Relative to Random Walk Metropolis-Hastings

γ

T\K 1 2 3 4 5 6

1 0.87 1.11 1.56 1.39 1.77 1.69
2 0.71 1.16 1.26 1.41 1.37 1.44
3 0.77 1.35 1.34 1.54 1.51 1.07
4 0.72 0.97 1.04 1.29 1.00 0.93

α

T\K 1 2 3 4 5 6

1 1.39 1.69 1.66 1.94 1.52 2.40
2 0.83 1.55 1.55 1.92 2.02 1.76
3 0.89 1.29 1.52 1.73 1.30 1.44
4 1.10 1.43 1.32 1.67 0.99 1.32

δ

T\K 1 2 3 4 5 6

1 1.45 1.89 1.55 2.05 2.02 2.30
2 1.77 1.57 1.85 2.39 1.93 2.47
3 1.22 1.01 1.64 2.20 2.33 1.64
4 1.45 1.36 1.55 1.40 1.56 1.17

κ

T\K 1 2 3 4 5 6

1 1.42 2.05 2.65 2.66 1.85 2.14
2 1.66 2.52 2.56 2.61 2.51 2.61
3 1.51 2.04 2.08 1.91 2.21 1.86
4 1.10 1.38 2.71 1.67 2.16 1.57

φ

T\K 1 2 3 4 5 6

1 1.58 1.97 1.53 2.86 2.21 2.43
2 1.13 1.44 1.65 1.85 2.42 1.94
3 1.11 1.76 1.44 1.90 2.00 1.26
4 1.52 1.35 1.19 1.54 1.32 1.54

τ

T\K 1 2 3 4 5 6

1 1.16 1.43 1.63 1.54 2.62 1.71
2 1.11 1.45 1.61 1.64 1.92 1.56
3 1.04 1.20 1.85 1.63 1.35 1.78
4 1.07 1.24 1.20 1.25 1.62 1.73



A Appendix

This section proves PMMH with surrogate transitions has the correct limiting distribution. The

notation, definitions, and description follow almost exactly from Andrieu, Doucet, and Holenstein

(2010), with the theorem and proof are augmented in the appropriate way. We included this section

here for completeness. Much like how Andrieu, Doucet, and Holenstein (2010), show PMMH is a

Metropolis-Hastings algorithm on an extended state space, we show here that PMMH with marginal

surrogate transitions is a surrogate transition (which can be viewed as a specific Metropolis-Hastings

update) with appropriately defined target, surrogate, and proposal densities.

A.1 Preliminaries

We let the parameters be denoted by θ, where θ ∈ Θ. The unobserved states are the random variable

X ∈ X , and denote a vector of unobserved states of length P as X1:P ∈ XP . Define X̄n as an N

vector of states at time n, X̄n = (X1
n, · · · , XN

n ). We want to sample from the density,

π(θ, x1:P ) = γ(θ, x1:P )/Z.

Here, γ : Θ×XP → R+, and Z is a normalizing constant. We write,

π(θ, x1:P ) = π(θ)πθ(x1:P )

where,

πθ(x1:P ) = γ(θ, x1:P )/γ(θ),

γ(θ) =

∫
XP

γ(θ, x1:P )dx1:P ,

and,

π(θ) = γ(θ)/Z.



For any θ ∈ Θ, we will define a family of importance sampling densities as

{
M θ
n(xn|x1:n−1

)
;n = 1, . . . , P},

and a family of bridging densities,

{
πθn(x1:n);n = 1, . . . , P

}
.

Here, πθ0(x1:0) = 1 and M θ
1 (x1|x1:0) = M θ

1 (x1). Each bridging density can be written πθn(x1:n) =

γn(θ, x1:n)/γn(θ), and πθP (x1:P ) = γ(θ, x1:P )/γ(θ). We will call π̂N (dx1:P ) and γ̂N (θ) the SMC

approximation using N particles to πθ(dx1:P ) and γ(θ).

Table 25: Notation Relation
General State Space

π(θ, x1:P ) p(θ, x1:T |y1:T )
πθ(x1:P ) p(x1:T |θ, y1:T )
π(θ) p(θ|y1:t)
γ(θ, x1:P ) p(θ, x1:T , y1:T )
γ(θ) p(y1:T |θ)p(θ)
Z p(y1:T )

A.2 Ancestral lineage

The resampling procedure is the operation by which offspring at time n choose their parents at time

n−1. Let Akn−1 denote the index of the parent at time n−1 of particle Xk
1:n. Further, let the vector

of parent indicies at time n− 1 be An−1 = (A1
n−1, . . . , A

N
n−1). This vector, An−1, parameterizes the

random mapping {1, . . . , N} → {1, . . . , N}N .

Parents are chosen according to probability distribution r(·|Wn−1). Here Wn−1 is the N dimen-

sional vector of the normalized particle weights at time n−1, that is, Wn−1 = (W 1
n−1,W

1
n−1, . . . ,W

N
n−1).



For a given vector of normalized weights, parents are chosen according to

r(An−1|Wn−1) =
N∏
k=1

F(Akn−1|Wn−1),

where F(Akn−1|Wn−1) is the density of a multinomial distribution with probabilities given by Wn−1.

We let Bk
n be the index of the ancestor particle of Xk

1:P at time n. That is, Bk
P = k, and,

Bk
n = A

Bkn+1
n .

Then the vector Bk
1:P is,

Bk
1:P = (Bk

1 , · · · , Bk
P−1, k).

The kth vector from the N particle approximation of p̂N (dx1:P ) is then,

Xk
1:P = (X

Bk1
1 , X

Bk2
2 , . . . , X

BkP−1

P−1 , Xk
P ).

Let the number of offspring of particle k at time n be Okn =
∑N

m=1 I(Amn = k).

A.3 Generic Sequential Monte Carlo Algorithm

For any θ ∈ Θ, the following algorithm can be used to construct an approximation to πθ(dx1:P ).

We omit dependence of the weight on θ.

• Step 1

– Sample Xk
1 ∼M θ

1 (·)

– Compute and Normalize the weights

w1(Xk
1 ) =

γ1(θ,Xk
1 )

M θ
1 (Xk

1 )

• Step 2, for n = 2, · · · , P :

– Sample An−1 ∼ r(·|Wn−1)



– Sample Xk
n ∼M θ

n(·|XAkn−1

1:n−1)

– Compute and normalize the weights

wn(Xk
1:n) =

γn(θ,Xk
1:n)

γn−1(θ,X
Akn−1

1:n−1)M θ
n(Xk

n|X
Akn−1

1:n−1)

W k
n =

wn(Xk
1:n)∑N

m=1wn(Xm
1:n)

This algorithm yields particle approximation’s to πθ(dx1:P ) and γ(θ) as

π̂N (dx1:P ) =
N∑
k=1

W k
P δXk

1:P
(dx1:P )

and

γ̂N (θ) =
P∏
n=1

1

N

N∑
k=1

wn(Xk
1:n)

respectively.

A.4 Support Definitions

For any θ ∈ Θ, define the support of importance density and the support of the target density as,

Qθn =
{
x1:n ∈ X n : πθn−1(x1:n−1)M θ

n(xn|x1:n−1) > 0
}

and,

Sθn =
{
x1:n ∈ X n : πθn(x1:n) > 0

}
respectively. The support of the marginal density is

S = {θ ∈ Θ : π(θ) > 0} ,



while the support of the surrogate marginal density is

S̃ = {θ ∈ Θ : π̃(θ) > 0} .

A.5 PMMH With Surrogate Transitions

For i = 1,. . . ,L

• sample θ′ ∼ q(θ(i− 1), ·)

• set z = θ′ with probability,

α1(θ(i− 1), θ′) = min

{
1,

γ̃(θ′)q(θ′, θ(i− 1))

γ̃(θ(i− 1))q(θ(i− 1), θ′)

}

where γ̃ is an approximation to γ(θ).

• If z 6= θ(i− 1),

– Run a SMC targeting πθ(dx1:P )

– sample X ′1:P from π̂Nθ′ (·)

– set (θ(i), X1:P (i)) = (θ′, X ′1:P ) with probability

α2(θ(i− 1), θ′) = min

{
1,
γ̂N (θ′)γ̃(θ(i− 1))

γ̂N (θ(i− 1))γ̃(θ′)

}

• Else set (θ(i), X1:P (i)) = (θ(i− 1), X1:P (i− 1))

A.6 Assumptions

Here we give the assumptions that we will use in the proof of the theorem.

• Assumption 1: For any k = 1, . . . , N, and n = 1, . . . , P , the resampling scheme satisfies

E(Okn|Wn) = NW k
n



and

r(Akn = m|Wn) = Wm
n .

• Assumption 2a: S ⊆ S̃

• Assumption 2b: For any θ ∈ S̃, we have Sθn ⊆ Qθn

Note that assumptions 2a,b imply for any θ ∈ S, we have Sθn ⊆ Qθn.

• Assumption 3: The Surrogate Transitions algorithm with target density π(θ), surrogate target

density π̃(θ), surrogate proposal density q(θ, θ′) is irreducible and aperiodic.

Assumption 1 is the same as in Andrieu et al. It is a restriction on the resampling procedure such

that it is unbiased. The second part of the assumption is needed in the proof of the theorem below.

It can be enforced by a random permutation of the particles at each time period. Assumption

2a states that the support of the surrogate marginal density contains that of the true marginal

density, which will be needed for the us to be able to sample from π̃(·) to draw from π(·) using

surrogate transitions. Assumption 2b says that for any of the parameters contained in the support

of the surrogate marginal target density, our SMC is valid to sample from πθ(·). Assumptions

2a,b imply the assumption 2 used in Andrieu et al. Assumption 3 states that if we were able to

compute the true target marginal density, our surrogate method would create a Markov chain whose

invariant distribution is π(θ) for almost any starting point. This is the surrogate transition analog

of Assumption 3 used in Andrieu et al.

A.7 Some simplifying notation

We will define the vector u of random variables that make up the particle filter as

U = (X̄1, . . . , X̄P ,A1, . . . ,AP−1)

is a random variable defined on U , where,

U = XPN × {1, · · · , N}(P−1)N .



Define the extended state space (θ, k,u) ∈ X as

X = Θ× {1, · · · , N} × U .

A.8 Theorem

1. Assume assumption 1, then PMMH with Surrogate Transitions is a surrogate transition on an

extended space, X with the following definitions:

• Surrogate target density,

π̃(θ, k,u) = wkP π̃(θ)ϕθ(u)

where wk
′
P is the realized weight associated with k’,

π̃(θ) = γ̃(θ)/Z̃

and,

ϕθ(u) =

N∏
m=1

M θ
1 (xm1 )

P∏
n=2

r(an−1|wn−1)

N∏
m=1

M θ
n(xmn |x

amn−1

1:n−1).

• Surrogate proposal density,

q̃(θ, k,u, θ′, k′,u′) = wk
′
P ϕ

θ′(u′)q(θ, θ′).

• Proposal density,

q(θ, k,u, θ′, k′,u′) = S(θ, k,u, θ′, k′,u′)

where S(θ, k,u, ·) is the transition kernel of the surrogate Markov Chain.

• Target density,

π(θ, k,u) =
π(θ, xk1:P )

NP

ϕθ(u)

M θ
1 (x

bk1
1 )
∏P
n=2 r(b

k
n−1|wn−1)M θ

n(x
bkn
n |x

bkn−1

1:n−1)

2. Assume assumptions 2a,b and 3, then for any N ≥ 1, then PMMH with Surrogate Transitions



generates a sequence {θ(i), X1:P (i)} whose marginal distributions
{
LN {(θ(i), X1:P (i)) ∈ ·}

}
satisfy ∥∥LN {(θ(i), X1:P (i)) ∈ ·} − π(·)

∥∥→ 0

as i→∞

A.9 Proof of Theorem

To prove the theorem, we need to show that the acceptance probabilities correspond to those given

in the algorithm.

In the surrogate phase, we have, a standard MH update on the extended space, using the

surrogate target and proposal density,

π̃(θ, k,u) = wkP γ̃(θ)/Z̃ϕθ(u)

and,

q̃(θ, k,u, θ′, k′,u′) = wk
′
P ϕ

θ′(u′)q(θ, θ′)

respectively.

The acceptance probability of a Metropolis-Hastings algorithm targeting π̃(θ, k,u) using proposal

q̃(θ, k,u, θ′, k′,u′) is,

α1(θ, k,u, θ′, k′,u′) = min
{

1, π̃(θ′,k′,u′)q̃(θ′,k′,u′,θ,k,u)
π̃(θ,k,u)q̃(θ,k,u,θ′,k′,u′)

}
= min

{
1,

wk
′
P γ̃(θ′)/Z̃ϕθ

′
(u′)wkPϕ

θ(u)q(θ′,θ)

wkP γ̃(θ)/Z̃ϕθ(u)wk
′
P ϕ

θ′ (u′)q(θ,θ′)

}
= min

{
1, γ̃(θ′)q(θ′,θ)

γ̃(θ)q(θ,θ′)

}
= α1(θ, θ′)

Transition kernel for the surrogate Markov Chain is,

S(θ, k,u, ·) = α1(θ, k,u, ·)q̃(θ, k,u, ·) + (1−A(θ, k,u))δθ,k,u(·).



By construction, this kernel satisfies detailed balance with π̃,

π̃(θ, k,u)S(θ, k,u, θ′, k′,u′) = π̃(θ′, k′,u′)S(θ′, k′,u′, θ, k,u).

This gives us a second stage proposal density of

q(θ, k,u, θ′, k′,u′) = S(θ, k,u, θ′, k′,u′).

We form the Metropolis-Hastings acceptance probability using proposal density q(θ, k,u, θ′, k′,u′)

and target density π(θ, k,u). This acceptance probability is,

α2(θ, k,u, θ′, k′,u′) = min
{

1, π(θ′,k′,u′)q(θ′,k′,u′,θ,k,u)
π(θ,k,u)q(θ,k,u,θ′,k′,u′)

}
= min

{
1, π(θ′,k′,u′)S(θ′,k′,u′,θ,k,u)

π(θ,k,u)S(θ,k,u,θ′,k′,u′)

}
= min

{
1, π(θ′,k′,u′)π̃(θ,k,u)

π(θ,k,u)π̃(θ′,k′,u′)

}
= min

{
1,

π(θ′,k′,u′)wkP π̃(θ)ϕθ(u)

π(θ,k,u)wk
′
P π̃(θ′)ϕθ′ (u′)

}
= min

{
1,

π(θ′,k′,u′)wkPϕ
θ(u)γ̃(θ)

π(θ,k,u)wk
′
P ϕ

θ′ (u′)γ̃(θ′)

}
= min

{
1, γ̂

N (θ′)γ̃(θ)
γ̂N (θ)γ̃(θ′)

}
= α2(θ, θ′)

Where, going from lines 1 to 2 we’ve used the definition of q(θ, k,u, θ′, k′,u′), from 2 to 3, detailed

balance of the surrogate transition, lines 3 to 5, the definition of π̃(θ, k,u) and π̃(θ). Finally, line 5

to 6 follows from Andrieu et al. 2010 (Theorems 2 and 4), but redo the algebra below.



π(θ,k,u)

wkPϕ
θ(u)

=
π(θ,xk1:P )N−Pϕθ(u)
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Mθ
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θ
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bkn
n |x

bkn−1
1:n−1)
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n=1 w

bkn
n wkP

=
π(θ,xk1:P )N−P

Mθ
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1 )
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n=2 M

θ
n(x

bkn
n |x

bkn−1
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=
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bkn
1:n)

=
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 γn(θ,X
bkn
1:n)

γn−1(θ,X
bkn−1
1:n−1)Mθ

n(Xkn|X
bkn−1
1:n−1)



=
π(θ,xk1:P )

∏P
n=1

1
N {

∑M
m=1 wn(xm1:n)}

γP (θ,x
bk
P

1:P )

= 1
Z

γ(θ,xk1:P )
∏P
n=1

1
N {

∑M
m=1 wn(xm1:n)}

γ(θ,xk1:P )

= γ̂N (θ)
Z

The proof of the second part of the theorem follows directly from Andrieu and Roberts (2009),

Theorem 1.
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