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Abstract 

This paper provides an extensive analysis of the predictive ability to economic activity of 

several measures of asset realized volatility. We construct monthly measures of 

aggregated stock market and industry-level stock volatility, and bond market volatility 

from daily returns. We model log realized volatility as composed of a long-run 

component that is common across all these series, and a short-run sectoral component. If 

volatility indeed has components, volatility proxies are characterized by large 

measurement error, which veils analysis of their fundamental information and 

relationship with the economy. We find that realized volatility of asset returns helps 

predict future economic activity. Notably, there are substantial gains from using the long 

term component of the volatility measures for linearly projecting future economic 

activity, as well as for forecasting business cycle turning points. We extend the analysis 

to extract a nonlinear long-run component of the volatility series and evaluate its 

performance in an out-of-sample real time analysis. Given the unexpected severity of the 

recent 2007-2009 recession, this period offers an ideal environment to evaluate ex-ante 

predictive performance. The nonlinear volatility component yields early real time signals 

of the upcoming recession, concomitant with the first signs of distress in the financial 

markets due to problems in the housing sector in mid 2007. In addition, the model 

implied chronology is consistent with the recession timeline and periods of financial 

distress during the subsequent period. 
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1. INTRODUCTION 

The countercyclical relation between systematic movements in financial asset returns and 

volatility with economic activity has been widely documented in the literature.  Bear markets, 

which correspond to periods of generally decreasing asset prices, usually lead economic 

recessions by a few months and end before the trough, anticipating the economic recovery. These 

periods are characterized by negative returns and high volatility, whereas bull markets, during 

which market prices generally increase, are associated with positive returns and lower volatility.
1
  

In particular, the empirical regularity that stock market volatility is time-varying has led to a vast 

literature on modeling and forecasting its dynamics. At the business cycle frequency, the 

empirical literature in this area has mostly focused on whether macroeconomic variables that 

behave differently over expansion and recession phases can help predict stock volatility.
2
  

On the other hand, there is only a small and incipient literature that uses stock market 

volatility to forecast economic activity. Measures of return volatility may also be useful to 

predict the future path of the economy as they proxy for the uncertainty surrounding future cash 

flows and discount rates. In general, this view is supported by the standard present value model 

of stock prices (e.g., Schwert 1989a, 1989b). Recently, Mele (2007) provides an explicit 

theoretical analysis of this relation in a continuous time rational valuation framework, using the 

fact that risk premia are counter-cyclical, i.e. investors require higher returns during relatively 

bad times. However, the mechanism that leads to counter-cyclical volatility is that changes in 

risk premia are larger in magnitude in bad times. This can be caused by habit formation in 

consumption as in Campbell and Cochrane (1999), and by restricted stock market participation 

as in Basak and Cuoco (1998). Further theoretical underpinnings of the counter-cyclical 

character of asset return volatility can be found in the financial accelerator framework of 

Bernanke, Gertler, and Gilchrist (1999) and more recently in Bloom (2009), who investigates the 

impact of shocks to economic uncertainty under stochastically evolving business conditions. 

Recently, Fornari and Mele (2009) investigate the predictive power of aggregate stock market 

volatility constructed as a moving average of past absolute returns, along with other financial 

                                                           
1
 See for example Officer (1973), Fama and French (1989), Schwert (1989b), Ferson and Harvey (1991), Perez-

Quiros and Timmermann (1995), Hamilton and Lin (1996), Whitelaw (1994), Chauvet (1998/1999), Chauvet and 

Potter (2000, 2001), Maheu and McCurdy (2000), and Senyuz (2010), etc. 
2
 See for example, Schwert (1989b), Hamilton and Lin (1996), Engle and Rangel (2008), and David and Veronesi 

(2009), among many others. 



2 

  

variables for U.S. economic activity. Andreou, Osborn, and Sensier (2000) consider interest rate 

volatility while Andreou, Ghysels, and Kourtellos (2010) use option implied volatility as a 

predictor of economic activity besides other financial indicators.  

In this paper, we analyze the predictive value of various volatility measures for future 

economic activity. We consider not just the aggregate stock market volatility, but also stock 

volatility at the industry level, and bond market volatility. Realized volatility offers a natural 

framework to match the quarterly or monthly frequency of macro series, by aggregating financial 

data available at higher frequencies.
3
 We use daily data to construct realized monthly volatility 

and treat volatility as an observable variable. This allows us to use a variety of linear and 

nonlinear methods to assess predictive power of various volatility measures and their relation 

with the real economy.  

Ex-post sample variances that are computed from higher frequency return data as lower 

frequency volatility measures have been extensively used in empirical finance, see for example 

the early work of Poterba and Summers (1986), French, Schwert and Stambaugh (1987), Schwert 

(1989a, 1989b).
4
 More recently, Andersen, Bollerslev, Diebold, and Labys (2000), and 

Andersen, Bollerslev, Diebold, and Ebens (2001) show the empirical success of realized 

volatility for measuring and modeling underlying return variability. Some of the theoretical 

justifications for their use can be found, for example, in Merton (1980) who shows that for a 

continuous time diffusion process, the diffusion coefficient over a fixed horizon can be 

accurately estimated by using finely sampled data. Based on the theory of quadratic variation 

Andersen, Bollerslev, Diebold and Labys (2001), and Barndorff-Nielsen and Shephard (2002a, 

2002b) provide the theoretical foundation for using realized volatility measures as proxies for the 

true underlying variability in returns, under general conditions. Subsequently, Andersen, 

Bollerslev, Diebold and Labys (2003) advance theoretical underpinnings linking the conditional 

covariance and realized volatility based on the theory of continuous-time arbitrage-free price 

processes in addition to the theory of quadratic variation.  Using realized volatility presents three 

major advantages, as discussed in Andersen, Bollerslev, Diebold and Labys (2001, 2003). First, 

it is a fully nonparametric method, i.e. realized volatility is constructed without the limitations of 

                                                           
3
 An alternative approach is to handle various sampling frequencies using the MIDAS regressions as in Andreou, 

Ghysels, and Kourtellos  (2010), which focus on the information content of mostly the first moment of financial 

return series. 
4
  See survey by Andersen, Bollerslev, Diebold, and Wu (2005). 
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the assumptions of a parametric model. Second, it is an observable ex-post measure of volatility 

that consistently estimates ex-ante expected volatility. Finally, measurement error due to 

limitations on sampling frequency within a finite horizon is uncorrelated over time.  

In this paper, we model log realized volatility as composed of a long-run component that 

is common across all series, and a short-run sectoral component. We find that there are 

substantial advantages in extracting volatility components. If volatility indeed has components, 

volatility proxies are characterized by large measurement error, which veils analysis of their 

fundamental information and relationship with the economy. For example, Schwert (1989b) find 

little evidence of links between asset volatility and economic activity when aggregating daily 

data into monthly realized volatilities, whereas there is a growing literature that models volatility 

as composed of several factors and finds substantial evidence of their linkages, such as  Ding and 

Granger (1996), Gallant, Hsu, and Tauchen (1999), Engle and Lee (1999), Alizadeh, Brandt, and 

Diebold (2002), Bollerslev and Zhou (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), 

Chacko and Viceira (2003), Adrian and Rosenberg (2008), Engle, Ghysels, and Sohn (2008), 

among many others. In particular, Adrian and Rosenberg (2008) develop a three-factor ICAPM 

where factors are total stock market volatility and its long-term and transitory components. They 

show that this model is successful in modeling the cross section of expected returns and that the 

long-term component of volatility is strongly related with economic fundamentals. 

This paper provides an extensive analysis of the predictive ability to economic activity of 

several measures of asset volatility, at the aggregate and industry-level, and from the bonds 

market. We also provide analysis of the gains obtained from using the long term component of 

the volatility measures for linearly projecting future economic activity, as well as for forecasting 

business cycle turning points. The analysis is implemented in-sample, out-of-sample, and using 

real time data. We find that realized volatility of asset returns helps predict future economic 

activity. We first analyze the predictive power of constructed realized volatility measures using 

linear predictive regressions for monthly industrial production growth and an economic factor 

extracted from four coincident macroeconomic series. We extract the long-run component of 

volatility that is common across all series, motivated by the ICAPM of Adrian and Rosenberg 

(2008). Combining information in the realized volatility series proves to be very useful in 

predicting both growth of industrial production and the economic factor as well as turning points 

of business cycles via probit and nonlinear dynamic factor models. When we allow for nonlinear 



4 

  

dynamics in the common factor of volatility and in the common factor of coincident macro 

variables, we observe that the estimated factors as well as their implied regime classifications are 

highly correlated with each other. 

We also provide an out-of-sample real time analysis of the last five years of the sample 

using the nonlinear dynamic factor model of volatility. Given the unexpected severity of the 

recent 2007-2009 recession, this period offers an ideal environment to evaluate ex-ante 

predictive performance. The nonlinear long run component of volatility gives early signals of the 

upcoming recession, simultaneously with the first signs of distress in financial markets due to 

problems in the housing market, which made headlines in mid 2007. In addition, the model 

implied chronology is consistent with the recession timeline and periods of financial distress in 

the subsequent period. 

The rest of the paper is organized as follows. Next section explains the construction of 

the realized volatility measures. Section 3 describes the data sets used and provides an analysis 

of the macroeconomic and asset volatility relations in the context of dynamic factor models. 

Section 4 contains a comprehensive analysis of the predictive power of various volatility 

measures for economic activity using linear regressions, probit models, and Markov-switching 

dynamic factor models in-sample and in an out-of-sample real time analysis. This section also 

includes the results of the out-of sample forecasting exercise as well as turning point analysis of 

the nonlinear volatility factor. Section 5 concludes. 

 

2. REALIZED VOLATILITY MEASURES 

We construct three measures of realized volatility series: aggregate stock market volatility, 

aggregated industry level volatility, and bond market volatility. Let ��� denote the daily excess 

return over the risk free rate for the value-weighted market portfolio, where s denotes the trading 

days in a given month, indexed by �. Then, the monthly realized market volatility, ����, is 

defined as follows 

 

	1�          ���� 
 �� ����
��
���

�
�/�

,    � 
 1,… , �, 
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where �� denotes the number of trading days in month �, and � denotes the total number of 

months in the sample.
5
 

Following Campbell, Letteu, Malkiel, and Xu (2001), we also consider a measure of 

industry level realized volatility, constructed from the difference between industry returns and 

the market return. Let ��� denote the daily value-weighted return of all firms in industry �. 
Defining ��� 
 ��� � ��� and aggregating across industries, we obtain the monthly industry 

realized volatility measure, ���� 
 

	2�          ���� 
 �� !��� ����
��
���

�"

�#�
�
�/�

,         � 
 1,… , �, 

 

where !�� is the weight of industry � in the market portfolio with respect to market capitalization, 

and $� denotes the total number of industries. This definition of volatility stands between the 

systemic volatility as measured by the volatility of the market portfolio, and the idiosyncratic 

firm level volatility. Campbell, Letteu, Malkiel, and Xu (2001) document strong correlation 

between ��� and GDP growth. 

Finally, the third realized volatility measure considered is obtained from the Treasury 

bond market.  Let %� denote the continuously compounded yield of the 10-year zero coupon T-

bond. The daily bond return is given by �&� 
 10	%�(� � %��. We then construct the bond market 

realized volatility measure, ��)� based on this daily return as follows 

 

	3�          ��)� 
 �� �&��
��
���

�
�/�

,         � 
 1, … , �. 

 

The realized volatility approach provides directly observable return volatility measures that 

are consistent, and approximately unbiased. Note that this procedure is a convenient 

nonparametric way of exploring the inherent information in the higher-frequency for lower 

                                                           
5
 A realized volatility measure taking into account the first order autocorrelation in daily returns can be calculated 

similarly. We consider this alternative in our calculations and find that the results obtained are qualitatively similar 

across these measures. 
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frequency volatility movements. We use these properties to understand the extent of the relation 

between financial return volatility and aggregate economic activity. 

 

3. REALIZED VOLATILITY AND THE BUSINESS CYCLE 

We use daily stock market and industry returns to calculate monthly realized volatilities, 

retrieved from Kenneth French’s Data Library. We consider 48 industries in our data set. The 

bond dataset is obtained from Gurkaynak, Sack and, Wright (2007).
 6

 The sample is from 1971:9 

to 2009:9, mainly determined by the availability of the daily bond yield data. Our first goal is to 

understand the relation between economic activity and these realized volatility measures, which 

contain information on changes in the stock and bond markets. We then explore whether these 

realized volatility series forecast economic activity in the following sections. 

Figure 1 plots the natural logarithm of the three realized volatility measures constructed 

as described in Section 2, with shaded areas representing recessions as dated by the NBER. The 

volatilities are individually very noisy. However, a slightly similar pattern can be observed, with 

them being generally higher during recessions and lower during expansions. The aggregated 

industry level stock volatility moves closely with the market volatility. Notice that both series 

increased considerably from mid-1990s to early 2000s, reflecting the great uncertainty 

surrounding the stock market boom and subsequent crash during this period. Interestingly, a 

subsequent very low volatility period followed since, which lasted until the beginning of the 

recent financial crisis in 2007-2008. Bond market volatility generally coincides with the 

dynamics of the stock market volatility, with some exceptions. In terms of its level, the bond 

market volatility is lower 1970s, compared to the last three decades. Second, contrarily to the 

stock market, bond market volatility remained relatively low from the mid-1990 to the early 

2000s. 

The differences in the dynamics of the volatility measures suggest that a combination of 

the series could contain additional information on their relationship with the economy. However, 

we face two potential problems in this analysis. First, as observed in Figure 1, the volatility 

series are very noisy, which veils to some extent their relationship with the economy, and it 

                                                           
6
 Refer to Kennett French’s website for a complete list of the industries and classification procedures. Gurkaynak, 

Sack, and Wright (2007) dataset can be downloaded from the research site at the Board of Governors of the Federal 

Reserve System. 
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makes it difficult to discriminate recession and downturn signals. Second, the volatility series are 

highly correlated with each other in the entire sample, and even more so when the sample is 

divided into recession or expansion phases. These two features make it difficult to study how the 

various volatility series are related to the economy. Therefore, to reduce noise and to aggregate 

information across volatility series in a formal way, we propose a common factor specification. 

A dynamic factor model is a signal-noise extractor that filters out idiosyncratic noise inherent to 

each series from common cyclical movement. This framework, thus, enables analysis of the 

common variation in the three realized volatility series. The proposed model is related to Adrian 

and Rosenberg’s (2008) ICAPM, which decomposes return volatility into a relatively persistent 

long-term component and a transitory short-term component.  

Let ,�� denote the log of the �-. realized volatility series where � 
 1 for ����, � 
 2 for 

����, and � 
 3 for ��)�. The dynamic factor model of volatility dynamics can be represented 

as follows: 

 

	4�         ,�� 
 0��1� 2 3�� ,     3�� ~ 5�670, 89"� :,  
  

	5�         �1� 
 < 2 =�1�(� 2 >�?,       >�? ~ 5�6	0, 8?��, 
 

where �1� is the common volatility factor, 3�� denotes the idiosyncratic component and 0� 
denotes the factor loading for the �-. series. The factor loadings show to what extent each 

realized volatility series is affected by the common factor. The common factor is extracted as a 

single volatility measure from all three realized volatility series and is assumed to be 

uncorrelated with idiosyncratic terms at all leads and lags to ensure identification. The model is 

estimated using the Kalman filter, and the maximum likelihood estimates are reported in Table 1. 

The extracted volatility factor is highly persistent with an autoregressive coefficient estimate of 

around 0.92. All factor loadings are positive indicating positive correlation between the realized 

volatility measures and the extracted factor.  

Figure 2 plots the extracted common volatility factor along with the NBER recessions. 

Notice how the dynamic factor model filters out the noise and yields a smooth variable that 

summarizes information common to three realized volatility measures.  This feature is important 

in relating financial volatility to macroeconomic dynamics. The common cyclical volatility in the 

aggregate and industry-level stock market and in the bond market shows a striking business cycle 



8 

  

pattern and is closely related to NBER recessions: it starts rising in the middle of economic 

expansions, reaching a peak around recessions, subsequently falling during the first stages of 

economy recoveries. It then reaches a trough around the middle of expansions. The low volatility 

in the bond market in the early 1970s and in the late 1990s, when combined with the information 

of high uncertainty in the stock market, yields a common volatility factor that is more closely 

related to business cycle phases and more robust to outliers. The volatility factor still exhibits 

some spikes in two other periods that were not followed by recessions. The highest such increase 

takes place during the 1987 stock market crash. There is also an increase in volatility around 

1998-1999 during which the U.S. experienced a mild slowdown associated with the effects of the 

Asian crisis in 1994, the 1998 Russian crisis, and the 1999 Brazilian and Argentinean currency 

crises.  The common volatility in the stock and bond markets rose in 1998 and remained high 

during the 2001 recession and jobless recovery that lasted until 2003, indicating the high 

uncertainty surrounding this period.  

Next, we compare the relationship of the volatility factor with a comprehensive measure 

of aggregate economic activity at the monthly frequency. We estimate a dynamic economic 

factor that summarizes information common to four coincident economic variables, as in 

Chauvet (1998). The macro variables used are 100 times the log first differences of seasonally 

adjusted monthly U.S. industrial production index (�@), real personal income less transfer 

payments (@�A�@), real manufacturing and trade sales (��B), and employees on non-

agricultural payroll (@C,�DAA). 
7
 These are the same four coincident series used in Chauvet 

(1998), Chauvet and Piger (2008), by the Conference Board to build its coincident indicator, and 

by the NBER Business Cycle Dating Committee to date recessions. 

Let EF� be 100 times the log first difference of the observable macroeconomic variables 

where G 
 1 for �@, G 
 2 for @�A�@, G 
 3 for ��B, and G 
 4 for @C,�DAA. Then, the 

measurement equation, which links the observables variables and the unobservable factor, and 

the transition equation are given by: 

 

	6�         EF� 
 0FI1� 2 3F�, 

 

                                                           
7
 PILTP and MTS are obtained from the Bureau of Economic Analysis, and PAYROLL from the Bureau of Labor 

Statistics.  
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	7�         I1� 
 < 2 =I1�(� 2 >�K ,       >�K  ~ 5�6	0, 8K��,  

 

	8�         3F� 
 MF3F,�(� 2NF�,       NF� ~ 5�670, 8OP
� :, 

 

where I1� is the scalar common economic factor and 3F� denotes the idiosyncratic component 

for the G-. series of the economic factor model. 

Table 2 presents the maximum likelihood estimates of the macroeconomic model. The 

extracted economic factor is much less persistent, with an autoregressive parameter estimate of 

0.57. The underlying economic series are positively correlated with the factor. Parameters 

estimates of all idiosyncratic components indicate significant idiosyncratic variation in each of 

the macroeconomic series. 

Figure 3 plots the extracted economic factor and the volatility factor obtained from the 

above specified dynamic factor models. The strong association between the two factors is 

striking. There is a negative relationship between the two series, with the volatility factor tending 

to rise when the economic factor falls, especially around NBER recessions. This suggests that the 

extracted factors that combine information in the individual series may provide useful 

information to the predictive relationship between financial volatility dynamics and the 

economy. 

 

4. PREDICTING ECONOMIC ACTIVITY USING FINANCIAL VOLATILITY 

We now investigate whether the individual realized volatility series and the extracted common 

factor representing variation in the stock and bond markets contain useful information to forecast 

macroeconomic activity at the monthly frequency. First, we examine the marginal predictive 

content of the individual volatility series and of the volatility factor in predicting industrial 

production growth and the coincident indicator of the economy. Second, the nonlinear 

relationship of each of the series is analyzed using probability methods to determine if they 

anticipate the peaks and troughs of NBER-dated recessions. In particular, we estimate probit 

models and Markov switching models for each volatility series and for the dynamic factor 

volatility. The estimated probabilities of high or low states for each series are used in the analysis 

of the nonlinear lead-lag relationship with NBER recessions. 
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The analysis is implemented for both full sample and out of sample prediction. The full 

sample runs from 1971:9 to 2009:9. The out-of-sample analysis is conducted by estimating all 

models from 1971:9 to 2004:9, and then recursively re-estimating each of them for the remaining 

5 years.
8
 In both cases, the best specifications are chosen using cross-correlograms, significance 

tests as well as Akaike and Bayesian model selection criteria. The forecasting performance is 

evaluated with respect to symmetric mean squared error (�BI) and asymmetric A�5A�5 

functions (Granger, 1969) given by: 

 

	9�         �BI� 
 1
�� R�̂��

T

�#T(�U�
 , 

 

	10�         A�5A�5� 
 1
�� V	R�̂� W 0�|R�̂�| 2 V	R�̂� Y 0�2|R�̂�|

T

�#T(�U�
, 

 

where V	. � denotes the standard indicator function. In the case of A�5A�5, the loss associated 

with a negative error is twice as much as the loss associated with a positive error of the same 

magnitude. To assess statistical significance of out-of-sample loss differences, we use the reality 

check proposed by White (2000). In this framework, a number of alternative models are jointly 

compared to a benchmark where the null simply states that the best alternative is not better than 

the benchmark with respect to a selected loss function. 

 

4.1 Predicting Industrial Production Growth 

We start with predictive regressions focusing on �@ growth. The benchmark model is a simple 

autoregressive model for �@ growth. We then add lags of each realized volatility measures and 

the extracted volatility factor to this autoregressive model individually to study whether they 

increase the predictive power of the benchmark model. The benchmark and the alternative 

specifications can be summarized as follows: 

  

	11�                   ��Z[:         �@�] 
 ^_� 2� ^̀��@�(`]]a

`#�
 2 R��] , 

 

                                                           
8
 We have also implemented fixed and rolling schemes as well, and the results are qualitatively similar. 
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	12� � 	14�     ��Z[:         �@�] 
 ^_� 2� ^̀��@�(]`]a

`#�
2� b̀�

a

`#�
,�(�,�(]`] 2 R��] ,     � � c2,3,4d, 

 

	15�                   �eZ[:         �@�] 
 ^_e 2� ^̀e�@�(]`]a

`#�
2� b̀e

a

`#�
�1�(]` 2 Re�] ,  

 

 

where �@�] is the f-period cumulative growth in �@ from � � f to �,  ,�,�]  is the arithmetic average 

of the log of the �-. realized volatility series over the same period, and f � c1,3,6,12d. Note that 

the extracted volatility factor is not averaged as it is already much less noisy compared to the raw 

�� series. The lag structure is set to ensure that there is no information overlap in the cumulative 

growth rates and averages. Based on the criteria stated above we set g 
 3 for f 
 1, g 
 4 for 

f 
 3, g 
 2 for f 
 6, and g 
 1 for f 
 12. 
9
  

Table 3 presents the full sample evaluation results. For all horizons the factor based 

model dominates all others by providing minimum �BI. The p-values from the standard 

Granger Causality test indicate that the reductions in �BI when we consider the volatility factor 

as a predictor are highly significant. Table 4 reports the out-of sample forecast comparison 

results with respect to both loss functions. Minimum �BI is again achieved by the common 

factor volatility model, �eZ[ , over all horizons. The out-of-sample �BI loss associated with �eZ[ 

relative to the benchmark, ��Z[ , ranges from 72.8% (f 
 6) to 90.3% (f 
 12). These 

improvements are significant as indicated by the Reality check p-values except for f 
 12. �eZ[ 

is the best performing model with respect to A�5A�5 loss as well but the loss differences are not 

statistically significant. The results from both in-sample and out-of-sample analysis indicate that 

lags of the volatility factor help predict �@ growth with significant gains over the benchmark 

autoregressive model that does not include information on volatility.  

We repeat the above analysis using unrevised data on �@ growth to assess the predictive 

value of volatility in real time. We obtained the unrevised IP data series from the Federal 

Reserve Bank of Philadelphia real time data archive, described in Croushore and Stark (2001). 

The realizations, or vintages, of this series correspond to their values as they would have 

                                                           
9
 Note that we present here the results for a common g for all models, but we have undertaken extensive analysis 

with different lag structures and find that the results are quite robust to different values across models. The results 

are available upon request. 
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appeared at the end of each month from October 2004 to September 2009.  For each vintage, the 

sample collected begins in September 1971 and ends with the most recent data available for that 

vintage. 

Table 5 presents the results. Results are qualitatively similar to the case of revised data, 

but gains in terms of reduction in �BI compared to the benchmark are larger for f W 3. We also 

reject the benchmark for all horizons at 10% level. With respect to A�5A�5 loss, we reject the 

benchmark for f 
 6 at 10% level with a loss reduction of around 15% over the benchmark. 

 

4.2 Predicting Economic Growth 

Here we repeat the analysis in section 4.1 by replacing �@ growth with the coincident economic 

factor I1, which provides more comprehensive information about the state of the economy at 

the monthly frequency. The benchmark and the alternative predictive models are given by: 

  

	16�                   ��hi:       I1�] 
 ^_� 2� ^̀�I1�(`]]a

`#�
 2 R��] , 

 

	17� � 	19�     ��hi:    I1�] 
 ^_� 2� ^̀�I1�(]`]a

`#�
2� b̀�

a

`#�
,�(�,�(]`] 2 R��] ,    � � c2,3,4d,        

	20�                   �ehi:         I1�] 
 ^_e 2� ^̀eI1�(]`]a

`#�
2� b̀e

a

`#�
�1�(]` 2 Re�] ,   

 

Specification criteria tests for these models lead to the same lag structures stated above. 

Tables 6 and 7 summarize the results of the full-sample and out-of sample forecast analysis, 

respectively. In the full sample, the benchmark model is rejected at 5% with respect to �BI. The 

best performing model for f 
 1 is the extended model that includes the aggregate stock market 

volatility. For all other horizons, the model that includes the volatility factor, �ehi , outperforms 

the other specifications. In the out-of-sample exercise, the best model is again �ehi  with 

substantial loss reductions at all considered horizons, e.g. for f 
 6 relative loss is 73.8%. 

Furthermore, these reductions are significant at the 10% level for f 
 3,6. Similar to the case of 

�@ growth, we observe loss reductions with respect to A�5A�5 as well, but these are not 

statistically significant.  
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In summary, the results from both �@ and I1 predictive regressions highlight the 

importance of combining information across individual volatility series. Overall, the best 

performing model is the one that includes the volatility factor. 

 

4.3 Event Timing Analysis 

In this sub-section we study the performance of the constructed realized volatility measures and 

the extracted volatility factor in event timing predictions. The recent financial crisis and 

economic recession have revived widespread interest in predicting business cycle turning points 

rather than just focusing on linear point forecasts. We conduct event timing analysis to predict 

business cycle phases by estimating both probit models and nonlinear Markov switching 

dynamic factor models. The probit models use as the dependent variable the NBER reference 

cycle that takes the value 0 for expansions and 1 for recessions. The Markov-switching models 

produce probabilities of recessions that can be used for regime classification. We compare their 

ability to predict NBER business cycle turning points. By comparing the frequencies of correctly 

identified business cycle phases, we assess the usefulness of the information provided by the 

realized volatility measures. 

 

4.3.1 Probit-based Predictions of Recessions 

We consider a benchmark autoregressive model using industrial production growth, and 

extended specifications that include additionally lags of the realized volatility measures as well 

as the common realized volatility factor. The recession probability predictions are generated 

from the following model: 

 

	21�           @	5)I�� 
 1j��(] � 
 Φ	^l m�(] �, 
 

where 5)I�� is the 0/1 dummy  that equals to one (zero) during NBER recessions (expansions), 

��(] denotes the information set available at time � � f, m�(] is the vector of lagged predictive 

variables (including unity as the first entry), ^l is the vector of regression coefficients, and Φ	. � 
is the Gaussian cumulative distribution function, and f � c1,3,6,12d. Note that since we are 

predicting a categorical variable, the forecasts are simply f-step ahead instead of being 
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cumulative f-period predictions as in �@ and I1 analyzed above.  The set of models considered 

are as follows: 

 

	22�        �Z[,�nohp:     @	5)I�� 
 1|��(]� 
 Φ7 _̂� 2 �̂��@�(]] :, 
 

	23�       �Z[,�nohp:      @	5)I�� 
 1|��(]� 
 Φ7 _̂� 2 �̂��@�(]] 2 ^��,�(�,�(]] :,     � � c2,3,4d, 
 

	24�      �Z[,enohp:      @	5)I�� 
 1|��(]� 
 Φ7 _̂e 2 �̂e�@�(]] 2 ^�e�1�(]:. 
 

Table 8 presents the full sample results. The model that includes aggregate stock market 

volatility, �Z[,�nohp , achieves the largest loss reduction over the benchmark for f 
 1,3. The 

volatility factor based model, �Z[,enohp , and the bond market volatility based model, �Z[,qnohp, are 

the best models for  f 
 6 and f 
 12, respectively.  

Table 9 reports the out-of-sample forecast evaluation statistics.
10

 The volatility factor 

based model, �Z[,enohp exhibits the best result for all horizons. The maximum gain is achieved for 

f 
 1 with a relative loss equal to 66.5% with respect to �BI. The benchmark model is rejected 

for all horizons with the exception of f 
 12 with respect to both loss functions. 

We implement the same forecasting analysis as above to the extracted economic factor, 

I1. Replacing �@ with I1 yields the following specifications. 

 

	25�                  �hi,�nohp:     @	5)I�� 
 1|��(]� 
 Φ7^_� 2 �̂�I1�(]] :, 
 

	26 � 28�       �hi,�nohp:      @	5)I�� 
 1|��(]� 
 Φ7 _̂� 2 �̂�I1�(]] 2 ^��,�(�,�(]] :,     � � c2, 3, 4d, 
 

	29�                �hi,enohp:      @	5)I�� 
 1|��(]� 
 Φ7^_e 2 �̂eI1�(]] 2 ^�e�1�(]:. 
 

                                                           
10

 Note that for the probit model evaluation, we are penalizing positive errors twice as much as negative errors 

instead. This is consistent with the idea of penalizing a model more heavily when it misses a downward movement 

in the economy. 
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Tables 10 and 11 present the full sample and out-of-sample results respectively. For the 

full sample, similarly to the �@ based probit models, �Z[,�nohp provides the minimum loss for 

f 
 1,3, �Z[,enohp for f 
 6,  and �Z[,qnohpfor f 
 12. Out-of-sample results are also qualitatively 

very similar to the case of �@ based models. The benchmark is rejected for all horizons except 

for f 
 12 with respect to both loss functions and the best performing model is again �Z[,enohp. 

Summing up, the probit-based predictive analysis indicates that the realized volatility 

measures – especially the extracted volatility factor – contain useful information that improves 

predictions of the NBER-dated recessions in-sample and out-of-sample.  

 

 

4.3.2 Nonlinear Dynamic Factor Model-Based Predictions of Recessions  

This section considers nonlinear versions of the common dynamic factor models specified for 

financial volatility and economic activity described in section 4.1. In the factor volatility model, 

we allow both the drift and variance of the common factor to vary across different regimes with 

switches driven by an unobservable Markov process. This characterization allows for potential 

time-varying and countercyclical volatility dynamics. We let the drift and variance to switch 

between phases, without imposing any a priori assumption to restrict their values.  The transition 

equation for the factor volatility (5) is now replaced with: 

 

	5l�         �1� 
 <r�s 2 =�1�(� 2 >�?,       >�? ~ 5�6	0, 8?��, 
 

where <r�s 
 <_	1 � B�?� 2 <�B�? and 8r�s� 
 8_�	1 � B�?� 2 8��B�?. B�? is the state variable that 

governs the regimes for the volatility factor. This state variable takes values 0 or 1, according to 

a first order two-state Markov process, with transition probabilities given by g�?̀ 
 Pr vB�? 

w|B�(�? 
 �x where �, w 
 0, 1. States 0 and 1 represent low and high volatility periods, 

respectively. The nonlinear dynamic factor model of the volatility measures is composed of 

equations (4) and (5’). 

Similarly, in the context of the economic factor model, we allow the drift of the common 

factor to switch between recessions and expansions.  The transition equation for the economic 

factor (7) is replaced with: 
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	7l�         I1� 
 <r�y 2 =I1�(� 2 >�K ,       >�K  ~ 5�6	0, 8K��,  

where <r�y 
 <_	1 � B�K� 2 <�B�K,  and B�K is the state variable that drives dynamics of the 

economic factor with transition probabilities g�K̀ 
 Pr vB�K 
 w|B�(�K 
 �x. States 0 and 1 are 

associated with low and high values of the economic factor, respectively. The dynamic factor 

economic model is now composed of the equations (6), (7’), and (8). 

The models are estimated by numerical optimization. We first cast them in state space 

form and then combine a nonlinear discrete version of the Kalman filter with Hamilton’s (1989) 

filter using  Kim’s (1994) approximate maximum likelihood method. This allows the estimation 

of the unobserved state vector and the Markov state probabilities using the observable data. A 

nonlinear optimization procedure is used to maximize the likelihood function, which is based on 

the probabilities of the Markov states. Predictions of the factors and the Markov probabilities are 

obtained from the filter. 

Table 12 presents the maximum-likelihood estimates of the nonlinear common factor 

model of realized volatilities. The model distinguishes between two different levels of volatility, 

producing a classification of high versus low volatility regimes. All regime switching parameters 

are highly statistically significant. The intercept estimate for the level of volatility is around 0.24 

in the high volatility regime, whereas it is around 0.15 in the low volatility regime. The standard 

deviation of the factor in the high volatility regime is around 0.2, whereas it is close to 0.07 in 

the low volatility regime. This indicates that the volatility of volatility is positively related with 

the level of volatility. Transition probability estimates reveal that the low volatility regime is 

more persistent than the high volatility regime, which is in line with the documented dynamics of 

financial volatility, e.g. Andersen, Bollerslev, Diebold, and Labys (2003). The factor loading of 

market realized volatility is normalized to 1 to provide a scale for the common factor. Note that 

this has no effect on the time series properties of the extracted factor. The other two realized 

volatility series are positively correlated with the common factor with statistically significant 

factor loadings.  

Table 13 presents the maximum likelihood estimates of parameters and standard 

deviations of Markov-switching dynamic factor models of the real economy. The intercept of the 

economic factor during recessions is estimated to be around -1.27, whereas the one for 

expansions is around 0.82. Both parameters are statistically significant, supporting the presence 
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of asymmetry in the mean behavior of the common economic factor. Expansions, characterized 

by positive growth, are more persistent than recessions, which are shorter and more abrupt. 

Factor loadings for all series are significant and positive indicating positive correlation with the 

factor. The autoregressive coefficients in the idiosyncratic components and error variances are 

also statistically significant for all series, indicating persistent sectoral dynamics. 

Given that we are interested in predicting the beginning and end of the Markov phases, 

we need a decision rule to convert the probabilities produced by the nonlinear dynamic factor 

model into turning point dates. One approach, used by Hamilton (1989) among others, is to 

classify a turning point as occurring when the probabilities move from below 50% to above 50% 

or vice versa. This has an intuitive appeal as it separates times when an expansion state is more 

likely from those when a recession state is more likely. We apply the same rule to distinguish 

economic expansions and recessions as well as high volatility versus low volatility states. We 

then compare the chronology obtained from the volatility factor with that of the economic factor 

and with the NBER reference dates to analyze the lead-lag relationship between the economic 

states and the volatility states. 

The smoothed probabilities from the economic and volatility models are plotted in Figure 

4. The probabilities of recessions from the economic factor closely match the NBER business 

cycle classification, rising above 50% during recessions, and reaching values close to zero during 

expansions. Noticeably, the high volatility states obtained from the volatility factor are strongly 

correlated with NBER recessions and the economic model predictions. Each high volatility 

period is associated with economic recessions, with the exception of 1987 stock market crash. 

The volatility factor moves ahead of the economic factor and of most NBER recessions, giving 

early warning signals.  

Table 14 reports the peak signals from the economic and realized volatility factors and 

the reference business cycle chronology from the NBER Business Cycle Committee.
11

 The 

economic factor, I1, is on average coincident with recessions.  On the other hand, the volatility 

factor, �1, leads all economic recessions, with the exception of the 1990-1991 recession – in this 

case, the volatility factor rises at, not before, the onset of this recession. 

                                                           
11

 Note that these signals are based on the smoothed probabilities of recession obtained from a sample that excludes 

recessions in the late 1950s and in 1960s. This explains some differences in the peak dates compared to Chauvet and 

Hamilton (2006) and in Chauvet and Piger (2008).  
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Notice that before the severe double-dip recession in 1980-1981 to 1982, the probabilities 

of high volatility state increase, signaling the recession that started in January 1980 with a five 

month lead. Before the 1981-1982 recession, the probabilities of high volatility regime rise again 

four months before the recession started. Noticeably, starting from early 1998, the probabilities 

of high volatility regime rise above 50% and remain high until after the official ending of the 

2001 recession. The increase in volatility is associated with the uncertainty surrounding the 

currency crises experienced by Russia in 1998, Brazil in 1999, and Argentina from 1999 to 2001. 

Interestingly, the probabilities of high volatility regime also remained above 50% even after the 

2001 recession had ended, reflecting the great uncertainty during the ‘jobless recovery’ between 

2002-2003. In fact, the weak economic activity during this period led most to believe that the 

recession had not ended.  This was reflected on the NBER Business Cycle Dating Committee’s 

decision to delay announcement that the recession had ended in 2001 until mid 2003. The results 

indicate that the common realized volatility factor has information about future economic 

activity and is therefore useful in anticipating beginnings of recessions. 

We also provide an out-of-sample real time analysis of the last five years of the sample 

using the nonlinear dynamic factor model of volatility and the nonlinear economic dynamic 

factor model.
12

 Given the unexpected severity of the recent 2007-2009 recession, this period 

offers an ideal environment to evaluate the performance of the extracted common volatility 

factor model in signaling the downturn. As shown in Table 14, the nonlinear factor anticipates 

the beginning of the recession with a 6-month lead. Figure 5 plots the out-of-sample probabilities 

of high volatility state from 2004:10 to 2009:9. Around mid-2007 there is a steep increase in the 

probabilities. This is when first signs of distress in the financial market due to housing market 

problems made headlines. The probabilities remained high until the end of the sample, and their 

rises closely match periods of financial turmoil in the first and last two quarters of 2008. 

 

5. CONCLUSION 

We analyze the predictive value of various volatility measures for economic activity by 

considering stock and bond market dynamics. Inspired by recent developments in the financial 

volatility literature, we construct measures of realized volatility from the aggregate stock market, 

                                                           
12

 The real time data for the coincident series underlying the factor has been collected by Chauvet, and the real time 

probabilities of recession posted monthly at http://sites.google.com/site/marcellechauvet/probabilities-of-recession. 
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and industry level stocks, and from the bond market. Monthly measures of realized volatility are 

obtained by aggregating information in the daily series. This method provides observable asset 

return volatility series, which allows assessment of their predictive power and relationship with 

the economy. 

We model log realized volatility as composed of a long-run component that is common 

across all series and short-run sectoral components. The dynamic factor framework extracts a 

long-run component that represents common information in the realized volatility series as a 

single smoothed factor, and separates out transitory movements inherent to each series. We find 

that there are substantial advantages in extracting volatility components. The realized volatilities 

– especially their long run component – help predict industrial production growth and a 

coincident indicator of the business cycle. Lagged values of the realized volatility measures and 

of the extracted common volatility factor, when incorporated into predictive regressions for 

different measures of economic activity significantly improve the model fit in and out-of-sample. 

The recent financial crisis and economic recession have revived widespread interest in 

predicting business cycle turning points rather than just focusing on linear point forecasts. We 

conduct event timing analysis to predict business cycle phases by estimating both probit models 

and nonlinear Markov switching dynamic factor models. Thus, we further extend the previous 

analysis by extracting a nonlinear long run volatility component, which switches between 

regimes according to the state of financial markets. We find that realized volatility improves the 

fit of probit regressions to predict NBER recessions. Further, allowing for asymmetric behavior 

of the long run component of the realized volatility series significantly improves prediction of 

business cycle peaks. The nonlinear long run volatility factor consistently enters into a high 

volatility state prior to all economic recessions. The in-sample and out of sample turning point 

analysis reveals that the volatility factor consistently leads business cycle peaks.  

Finally, we implement a real time out-of-sample analysis and find that the nonlinear 

volatility factor model performs remarkably well in anticipating the recent 2007-2009 recession. 

In addition, spikes in the probabilities of high volatility state closely match signals of financial 

distress during this period.  
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Table 1: Maximum Likelihood Estimates of the 

Dynamic Factor Volatility Model 

 

Parameter Estimate 

< 0.909 

 (0.19) 

= 0.917 

 (0.02) 

0� 

 

0.127 

 (0.01) 

0� 

 
0.118 

 (0.01) 

0z 

 
0.082 

 (0.01) 

89{ 0.337 

 (0.01) 

89| 0.144 

 (0.01) 

89} 0.488 

 (0.02) 

Log-L 832.01 

 

The monthly sample runs from 1971:9 to 2009:9. Asymptotic standard errors in 

parentheses correspond to the diagonal elements of the inverse hessian obtained through 

numerical calculation. The variance of the common factor (8?�) is set to one for 

identification. 
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Table 2: Maximum Likelihood Estimates of the Dynamic Economic Factor Model 

Parameter Estimate Parameter Estimate 

< 0.224 M� -0.166 

 (0.06)  (0.05) 

= 0.574 Mz -0.320 

 (0.06)  (0.05) 

0� 0.449 Mq 0.915 

 (0.03)  (0.05) 

0� 0.237 8O{ 0.519 

 (0.02)  (0.02) 

0z 0.425 8O| 0.561 

 (0.03)  (0.02) 

0q 0.152 8O} 0.839 

 (0.01)  (0.03) 

M� -0.194 8O~ 0.519 

 (0.06)  (0.01) 

Log-L 495.89   

 

The monthly sample runs from 1971:9 to 2009:9. Asymptotic standard errors in 

parentheses correspond to the diagonal elements of the inverse hessian obtained 

through numerical calculation. The variance of the common economic factor (8K�) is 

set to one for identification in each model.  
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Table 3: Full Sample Evaluation of Predictive Regressions for IP Growth 

 

f Best Model 
Relative 

�BI Loss 
GC p-value 

1 �eZ[ 94.77% 0.000 

3 �eZ[ 86.09% 0.000 

6 �eZ[ 89.00% 0.000 

12 �eZ[ 92.86% 0.000 

 

The monthly sample runs from 1971:9 to 2009:9. ��Z[ is the benchmark regression model 

using lags of �@. Models ��Z[ - �eZ[ include lags of �� based predictors besides lagged �@ 

growth. GC p-value is the asymptotic p-value from the Granger Causality test. f denotes 

cumulative forecast horizon in months. 

 

Table 4: Out of Sample Forecast Evaluation of Predictive Regressions for IP Growth 
 

 
�BI A�5A�5 

f 
Best 

Model 

Relative 

Loss 

RC p-

value 

Best 

Model 

Relative 

Loss 

RC p-

value 

1 �eZ[ 88.29% 0.096 �eZ[ 94.48% 0.200 

3 �eZ[ 75.45% 0.086 �eZ[ 92.10% 0.262 

6 �eZ[ 72.84% 0.084 �eZ[ 90.91% 0.258 

12 �eZ[ 90.32% 0.146 ��Z[ 100% 1.000 

 

The estimation period is from 1971:9 to 2004:9. The out of sample period consists of the 

remaining 5 years in the sample, from 2004:10 to 2009:09. ��Z[ is the benchmark regression 

model using lags of �@. Models ��Z[ - �eZ[ include lags of �� based predictors besides lagged 

�@ growth. Relative minimum loss and White’s reality check (RC) p-value are reported under 

�BI and A�5A�5 loss functions. f denotes cumulative forecast horizon in months. 
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Table 5: Out of Sample Forecast Evaluation of Predictive Regressions for 

 IP Growth with Real-time Data 
 

 
�BI A�5A�5 

f 
Best 

Model 

Relative 

Loss 

RC p-

value 

Best 

Model 

Relative 

Loss 

RC p-

value 

1 �eZ[ 88.58% 0.092 �eZ[ 94.10% 0.164 

3 �eZ[ 71.52% 0.062 �eZ[ 89.06% 0.144 

6 �eZ[ 69.53% 0.062 �eZ[ 85.19% 0.088 

12 �eZ[ 87.98% 0.092 �eZ[ 98.08% 0.482 
 

The estimation period is from 1971:9 to 2004:9. The real time out of sample period consists of 

the remaining 5 years in the sample, from 2004:10 to 2009:09. We use vintages of IP, 

corresponding to their values as they would have appeared at the end of each month from 

October 2004 to September 2009.  For each vintage, the sample collected begins in September 

1971 and ends with the most recent data available for that vintage. ��Z[ is the benchmark 

regression model using lags of �@. Models ��Z[ - �eZ[ include lags of �� based predictors 

besides lagged �@ growth. Relative minimum loss and White’s reality check (RC) p-value are 

reported under �BI and A�5A�5 loss functions. f denotes cumulative forecast horizon in 

months. 

 

 

 

 

Table 6: Full Sample Evaluation of Predictive Regressions for the Economic Factor 

 

f Best Model 
Relative 

�BI Loss 
GC p-value 

1 ��hi  96.72% 0.002 

3 �ehi  88.09% 0.000 

6 �ehi  88.20% 0.000 

12 �ehi  93.13% 0.000 

 

The monthly sample runs from 1971:9 to 2009:9. ��hi is the benchmark regression model 

using lags of economic growth. Models ��hi - �ehi include lags of �� based predictors 

besides lagged economic growth. GC p-value is the asymptotic p-value from the Granger 

Causality test. f denotes cumulative forecast horizon in months. 
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Table 7: Out of Sample Forecast Evaluation of Predictive Regressions  

for the Economic Factor 

 

 
�BI A�5A�5 

f 
Best 

Model 

Relative 

Loss 

RC p-

value 

Best 

Model 

Relative 

Loss 

RC p-

value 

1 �ehi  89.68% 0.216 �ehi  96.03% 0.358 

3 �ehi  73.77% 0.090 �ehi  88.61% 0.160 

6 �ehi  73.76% 0.094 �ehi  91.03% 0.240 

12 �ehi  92.38% 0.164 ��hi  100% 1.000 
 

The estimation period is from 1971:9 to 2004:9. The out of sample period consists of the 

remaining 5 years in the sample, from 2004:10 to 2009:09. ��hi is the benchmark regression 

model using lags of economic growth. Models ��hi - �ehi include lags of �� based predictors 

besides lagged economic growth. Relative minimum loss and White’s reality check (RC) p-

value are reported under �BI and A�5A�5 loss functions. f denotes cumulative forecast 

horizon in months. 

 

 

Table 8: Full Sample Evaluation of Probit Predictions for NBER 

Using IP and Volatility Variables 
 

f Best Model 
Relative 

�BI Loss 

1 �Z[,�nohp 81.97% 

3 �Z[,�nohp 93.06% 

6 �Z[,enohp 94.42% 

12 �Z[,qnohp 98.91% 
 

The sample is from 1971:9 to 2009:9. �Z[,�nohp is the benchmark probit model using 

lagged �@ growth. Models �Z[,�nohp - �Z[,enohp include the �� based predictor besides 

lagged �@ growth. We assess predictive power by comparing probit probabilities with 

NBER recessions. f denotes forecast horizon in months.  
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Table 9: Out-of-Sample Evaluation of Probit Predictions for NBER 

Using IP and Volatility Variables 
 

 
�BI A�5A�5 

f 
Best 

Model 

Relative 

Loss 

RC p-

value 

Best 

Model 

Relative 

Loss 

RC p-

value 

1 �Z[,enohp 66.55% 0.002 �Z[,enohp 73.29% 0.004 

3 �Z[,enohp 80.98% 0.036 �Z[,enohp 80.06% 0.010 

6 �Z[,enohp 87.72% 0.082 �Z[,enohp 87.75% 0.016 

12 �Z[,enohp 98.74% 0.566 �Z[,enohp 99.11% 0.456 

 

The estimation period is from 1971:9 to 2004:9. The out of sample period consists of the 

remaining 5 years in the sample, from 2004:10 to 2009:09. �Z[,�nohp is the benchmark probit 

model using lagged �@ growth. Models �Z[,�nohp - �Z[,enohp include the �� based predictor 

besides lagged �@ growth. We assess predictive power by comparing probit probabilities with 

NBER recessions. Relative minimum loss and White’s reality check (RC) p-value are reported 

under �BI and A�5A�5 loss functions. f denotes forecast horizon in months. 

 

 

Table 10: Full Sample Evaluation of Probit Predictions for NBER with  

using the Economic Factor and Volatility Variables  

f Best Model 
Relative 

�BI Loss 

1 �hi,�nohp 83.15% 

3 �hi,�nohp 95.77% 

6 �hi,enohp 95.61% 

12 �hi,qnohp 98.90% 

 

The sample is from 1971:9 to 2009:9. �hi,�nohp is the benchmark probit model using 

lags of economic growth. Models �hi,�nohp - �hi,enohp include the �� based predictor 

besides lagged economic growth. We assess predictive power by comparing probit 

probabilities with NBER recessions. f denotes forecast horizon in months. 
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Table 11: Out-of-Sample Evaluation of Probit Forecasts for NBER Using  

the Economic Factor and Additional Volatility Variables 

 
�BI A�5A�5 

f 
Best 

Model 

Relative 

Loss 

RC p-

value 

Best 

Model 

Relative 

Loss 

RC p-

value 

1 �hi,enohp 74.21% 0.012 �hi,enohp 78.41% 0.000 

3 �hi,enohp 88.15% 0.080 �hi,enohp 84.26% 0.002 

6 �hi,enohp 90.67% 0.084 �hi,enohp 89.10% 0.018 

12 �hi,qnohp 98.70% 0.540 �hi,enohp 99.17% 0.484 

 

The estimation period is from 1971:9 to 2004:9. The out of sample period consists of the 

remaining 5 years in the sample, from 2004:10 to 2009:09. �hi,�nohp is the benchmark probit 

model using lagged economic growth. Models �Z[,�nohp - �Z[,enohp include the �� based predictor 

besides lagged economic growth. We assess predictive power by comparing probit probabilities 

with NBER recessions. Relative minimum loss and White’s reality check (RC) p-value are 

reported under �BI and A�5A�5 loss functions. f denotes forecast horizon in months. 
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Table 12: Maximum Likelihood Estimates of the Nonlinear Dynamic 

Factor Volatility Model 

 

Parameter Estimate Parameter Estimate 

<� 0.239 8� 0.191 

 (0.06)  (0.03) 

<_ 
0.146 8_ 0.072 

 (0.04)  (0.01) 

g�� 
0.915 89{ 0.332 

 (0.04)  (0.01) 

g__ 
0.965 89| 0.145 

 (0.02)  (0.01) 

= 0.874 89} 0.489 

 (0.03)  (0.02) 

0� 0.925   

 (0.01)   

0z 0.642   

 (0.02)   

Log-L 851.36   

    

The monthly sample runs from 1971:9 to 2009:9. Asymptotic standard errors in parentheses 

correspond to the diagonal elements of the inverse hessian obtained through numerical 

calculation. The factor loading of aggregate stock market volatility (0�) is normalized to 

one for identification.  
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Table 13: Maximum Likelihood Estimates of the Nonlinear Dynamic 

Economic Factor Model 

 

Parameter Estimate Parameter Estimate 

<� -1.273 M� -0.160 

          (0.32)  (0.06) 

<_ 
0.815 M� -0.168 

 (0.14)  (0.05) 

g�� 
0.895 Mz -0.300 

 (0.05)  (0.05) 

g__ 
0.981 Mq 0.949 

 (0.01)  (0.02) 

= 0.189 8O{ 0.539 

 (0.07)  (0.02) 

0� 0.389 8O| 0.564 

 (0.03)  (0.02) 

0� 0.209 8O} 0.855 

 (0.02)  (0.03) 

0z 0.370 8O~ 0.038 

 (0.03)  (0.01) 

0q 0.130   

 (0.01)   

Log-L 517.26   

    

The sample runs from 1971:9 to 2009:9. Asymptotic standard errors in parentheses 

correspond to the diagonal elements of the inverse hessian obtained through numerical 

calculation. The variance of the common factor (8K�) is set to one for identification in 

each model.  
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Table 14: Business Cycle Turning Point Signals 

of the Volatility Factor 

 

NBER peaks �1 I1 peaks �1 

1973:11 -2 1974:04 -8 

1980:01 -5 1980:03 -7 

1981:07 -4 1981:09 -6 

1990:07 0 1990:07 0 

2001:03 -36 2001:01 -34 

 2007:12
*
 -6 2007:12 -6 

 

The minus sign refers to the lead in which the models anticipate the recession 

dates. 

(*) For the real time out of sample analysis we use vintages of the coincident 

series, corresponding to their values as they would have appeared at the end 

of each month from October 2004 to September 2009.  For each vintage, the 

sample collected begins in September 1971 and ends with the most recent 

data available for that vintage.  
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Figure 1: Logarithm of Realized Volatility Measures and NBER dated Recessions 

 

 

Figure 2: Common Linear Realized Volatility Factor and NBER Recessions 
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Figure 3: Common Volatility Factor, Economic Factor, and NBER Recessions 

    
 

Figure 4:  Smoothed Probabilities of the Volatility Factor (---) and of the Economic Factor (
__

), 

and NBER Recessions (Shaded Areas) 

 
 

 

-8

-6

-4

-2

0

2

4

6

8

4

6

8

10

12

14

16

18

20

75 80 85 90 95 00 05

Volatility Factor Economic Factor

0.0

0.2

0.4

0.6

0.8

1.0

1975 1980 1985 1990 1995 2000 2005



36 

  

Figure 5: Out of sample Recursive Predictive Probabilities of High Volatility State  

in the 2007-2009 Recession 
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