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Abstract

We investigate the quantitative implications of precautionary demand for money

for business cycle dynamics of velocity of money and other nominal aggregates.

There is a standing challenge in monetary macroeconomics to account for such

dynamics, as previous business cycle models that have tried to incorporate

demand for money have failed to generate realistic predictions in this regard.

Our stance is that part of this failure results from the fact that demand for

money in those previous models is deterministic, since agents in them face only

aggregate risk, whereas we believe idiosyncratic risk to be important as well.

We conduct the exercise inside a monetary search model, as our additional goal

is to put to the test a recent generation of such frictional models to examine

whether their quantitative predictions are realistic, and whether they generate

additional insight into business cycle data that non-search models of money

cannot generate. On the first question, we find that precautionary demand

for money plays a substantial role in accounting for business cycle behavior of

velocity of money and other nominal variables such as inflation and nominal

interest rates. On the second question, preliminary results indicate that the

search frictions generate discernible, though small, quantitative effects, helping

the model account for relevant properties of the data, but not very significantly.

The biggest quantitative potential for search frictions in this setting appears to

be in the dynamic implications they generate for inventories and markups in

the retail sector. Assessment of this potential is in progress.
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ong Shi, and Henry Siu, as well as seminar participants at the IHS Vienna, NES Moscow, The

Chicago Fed Summer Workshop on Money, Banking and Payments, CMSG Annual Meetings 2008,

UBC, SFU, University of Chicago, Universidad Carlos III de Madrid, and the LAEF Payments and

Networks Conference at UC Santa Barbara.
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1 Introduction

In this paper, we study, theoretically and quantitatively, aggregate business cycle

implications of precautionary demand for money. It is an outstanding challenge in

the literature to account for business cycle behavior of nominal aggregates, their

interaction with real aggregates, as well as to account for seemingly substantial real

effects of monetary policy. Business cycle models that have tried to incorporate

money through, for example, cash-in-advance constraints, have done so by assuming

that agents face only aggregate risk, which has resulted in deterministic demand for

money, and found little interaction between real and nominal variables (see, e.g.,

Cooley and Hansen, 1995). Yet precautionary motive for holding liquidity seems to

be strong in the data (Telyukova, 2008), implying that idiosyncratic risk may play a

key role for money demand, and thus that its aggregate implications are important

to investigate. The first goal of this paper is to test this hypothesis. Thus the

first set of questions we want to answer is: (a) What are the aggregate implications

of precautionary demand for money? (b) Can it help account for business cycle

dynamics of velocity of money, interest rates and inflation? (c) Can it help to

account for real effects of monetary policy?

Moreover, we conduct our investigation in a microfounded monetary search

model with a productive real sector. While it is not the minimal needed model

in which we could address the questions we outlined above, in that a stochastic ver-

sion of a cash-credit good model could get us some of the answers, it is a natural way

in which to incorporate both real and nominal activity. Search models of money in

the style of Lagos and Wright (2005) combine frictionless and frictional trade in the

same economy, thus allowing for a natural incorporation of both idiosyncratic risk

and business cycles. However, quantitative implications of monetary search models,

including those that incorporate a real sector and business cycle fluctuations are not

yet well known. Our second goal is to expand the knowledge of the quantitative

properties of these models by investigating ours in a disciplined calibration exercise.

The second set of questions that we seek to answer is: (d) Is our monetary search

model capable of generating realistic aggregate dynamics? (e) What does the ex-

plicit modeling of frictions in trade add to our understanding of the data, relative

to reduced-form models of money?

Starting with a model that combines a productive real sector with a competitive-

search monetary retail sector, we incorporate uninsurable idiosyncratic preference

risk which creates a precautionary motive for holding liquidity. Telyukova (2008)

demonstrates that this idiosyncratic uncertainty appears significant in the data, and

in turn creates sizeable observed precautionary balance holdings, absent in most

standard models. In a standard deterministic-demand setting, cash-credit good

models, for example, calibrated to aggregate data cannot account for aggregate facts

such as variability of velocity of money, correlation of velocity with output growth
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or money growth, correlation of inflation with nominal interest rates, and others,

as Hodrick, Kocherlakota and Lucas (1991) have shown. The reason is that in such

models, agents’ money demand is almost entirely deterministic, because the only

type of uncertainty the households face in these models is aggregate uncertainty,

and the amount of aggregate uncertainty in the data is not large enough to generate

significant precautionary motives for holding money in the model. Then, the cash-

in-advance constraint almost always binds and money demand is made equivalent

to cash-good consumption. This also implies that volatility of money demand is

tightly linked to volatility of aggregate consumption. Aggregate consumption is not

volatile enough in the data to generate enough volatility of money demand or other

nominal aggregates.

We show that incorporating precautionary demand for money generated by un-

predictable idiosyncratic variation, in combination with aggregate uncertainty, can

help account for monetary issues mentioned above, by breaking the link between

money demand and aggregate consumption. Agents generally hold more money

than they spend, and money demand is no longer linked to average aggregate con-

sumption, but rather to consumption of agents whose preference shock realizations

make them constrained (i.e. they spend all of their balances) in trade. We show that

velocity of money can be significantly more volatile in this heterogeneous-agent set-

ting, thanks to the unconstrained agents, who are absent in standard deterministic

cash-in-advance models.

We study this link qualitatively and quantitatively in a model that combines, in

each period, both centralized and decentralized trade in a sequential manner, as in,

for example, Lagos and Wright (2005). Agents’ utility function in the centralized

market features linear preferences on labor, which allows us to simplify the model

by not having to keep track of the distribution of agents, but other features of the

model will still render the model analytically intractable, which leads us to rely on

computational methods to solve the model. The centralized market is otherwise

much like a standard real business cycle model, except that trade in this market

can be conducted using either money or credit, and agents have to decide how much

money to carry out of the market. The production function in this market is subject

to aggregate productivity shocks.

Like in Rocheteau and Wright (2005), instead of modeling bilateral trade in

the decentralized market via bargaining, we focus on a competitive search setting,

where the terms of trade in bilateral meetings are posted on “islands” ahead of

the decentralized market, and agents choose which island to go to. At the start of

the decentralized market, agents are subject to preference shocks which determine

how much they want to consume during the subperiod, but the realization of the

shock is not known at the time that agents make their portfolio decisions. This

generates precautionary motive for holding liquidity. One additional feature of our

model that is not standard in search models of money is that we allow capital, which
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exists in the centralized market, to be (indirectly) productive for the decentralized

market, in the following way: we assume that the goods that are sold in decentralized

trade are made out of goods produced, using capital and labor, in the centralized

markets. This introduces an explicit link between the real and monetary sectors of

the economy.

One of the contributions of our work is the calibration of the model. Relatively

few models in monetary search literature have been calibrated, and those that have

(e.g. Aruoba, Waller and Wright 2008, Shi 1999, Menner 2006, and Wang and

Shi 2006) have been calibrated to aggregate targets. We use micro data on liquid

consumption from the Consumption Expenditure Survey, like in Telyukova (2008),

to calibrate idiosyncratic preference risk in the decentralized market. Using these

data we are able to constrain our calibration further than is commonly the case.

Models calibrated only to aggregate data tend to suffer from the problem of free

parameters, such as bargaining weights, which are hard to pin down using aggregate

data. The structure of our model, which is frictional but avoids inefficiencies that

bargaining creates, helps us discipline it with the use of survey data in addition to

aggregate targets. For example, the search setting will give us predictions about

inventories and markups in the retail sector, which we can use as additional steady-

state calibration targets; inventories and markups would not exist in a non-search

setting.

Moreover, incorporating idiosyncratic preference uncertainty based on micro ev-

idence appears to improve significantly the quantitative performance of the model

along a number of dimensions. Once calibrated, we solve the model computationally

to investigate the effects of real productivity shocks and monetary policy shocks. On

our first set of questions, we find that precautionary demand for money alone makes

a dramatic difference for the model in terms of helping it account for a variety of

dynamic moments related to nominal aggregates in the data. We test these results

by also computing a version of the model where we shut down the idiosyncratic risk,

and find that without it, the model is incapable of reproducing any of the key mo-

ments in the data. On the second set of questions pertaining to the implications of

search frictions, our preliminary findings are that they have discernible, but small,

effects in helping the model account for the properties of the data in question, as

well as in amplifying the real response of the economy to monetary policy. Qualita-

tively, search frictions do add wedges relative to a non-search model, but these do

not seem quantitatively large, given our current calibration. The most significant

potential for the search frictions seems to be in terms of the predictions that they

generate for markups and inventories in the retail sector – these would be absent in

a non-search model – in terms of their size and dynamic behavior. The quantitative

investigation of these implications is currently work in progress, as we complete our

calibration.

This paper is related to several strands of literature. On the topic of precau-
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tionary demand for liquidity, this paper is close to Faig and Jerez (2007), Telyukova

(2008) and Telyukova and Wright (2008). In Telyukova (2008), the idiosyncratic

uncertainty about the need for liquid consumptions in the data is documented to be

significant and shown to be quantitatively relevant for the household portfolio de-

cisions with respect to credit card debt, in a calibrated heterogeneous-agent model.

In Telyukova and Wright (2008), preference shocks for liquidity are embedded in

a Lagos-Wright type of model to study the impact of these shocks on the role of

money and credit in a general equilibrium setting. Faig and Jerez (2007) look at the

behavior of velocity and nominal interest rates over the long run. They find that the

estimated time series of velocity over the last century, interpreted as the outcome of

a sequence of steady states, each conditioned by the nominal interest rate, fits the

empirical series well. We share with Faig and Jerez the interest in aggregate quan-

titative implications of precautionary demand for money. However, we concentrate

on business cycle fluctuations and do so in an full-fledged business-cycle economy

with capital and the other standard ingredients, such as technology and monetary

shocks. Moreover, their estimation is based on aggregate level observations and does

not constrain the parameterization of the preference shocks, which naturally are an

important determinant of the nature of precautionary liquidity demand, to fit the

data. It is worth emphasizing, though, that the mechanisms in Faig and Jerez (2007)

are closely related to our model, and their empirical insights are complementary to

those in our model.1

Several papers have looked at quantitative implications of monetary search mod-

els in various settings, among them Shi (1999), Menner (2006), Wang and Shi (2006),

Chiu and Molico (2008), Aruoba, Waller and Wright (2008), Aruoba and Schorfheide

(2008). Wang and Shi (2006) investigate the business cycle properties of velocity of

money in a monetary search model, but the main mechanism in their model that

generates the fluctuations is connected to search intensity, rather than to precaution-

ary liquidity demand. Chiu and Molico (2008) are studying aggregate properties of a

monetary search model with both aggregate and idiosyncratic risk. However, their

focus is on studying distributional properties of inflation and monetary policy as

well as on optimal monetary policy rules in a setting where shocks propagate slowly

through the heterogeneous households. Naturally, they do not have a degenerate dis-

tribution of money holdings. Aruoba, Waller and Wright (2008) have capital in the

model, like we do, but no significant precautionary motive for money holding, and

no aggregate productivity risk. Aruoba and Schorfheide (2007) introduce nominal

1Hagedorn (2008) also has looked at aggregate implications of precautionary demand for money.

He demonstrates that strong liquidity effects that translate into significant aggregate effects can

arise when precautionary demand for money is taken into account in an otherwise standard cash-

credit good model. His setting is quite different from ours, in that he generates the liquidity effects

using banks, which we abstract from; on the other hand, his model has no real sector and no

aggregate uncertainty.
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rigidities in a search-based monetary model and estimate it using Bayesian meth-

ods to study the properties of the model relative to money-in-the-utility-function

specifications.

The paper is organized as follows. Section 2 describes the model, characterizes

the equilibrium, and highlights analytically the impact of precautionary demand for

money, as well as search frictions, on the dynamic behavior of money, velocity and

interest rates. Section 3 describes our preliminary calibration strategy, and section

4 details the solution algorithm. Section 5 presents our quantitative results and

discusses the quantitative role of the frictions that we model. Section 6 concludes.

Many of the proofs, and some computation details, are relegated to the appendix.

2 Model

The economy is populated by a measure 1 of households, who live infinitely in

discrete time. The households rent labor and capital to firms, consume goods bought

from the firms, and save. There are two types of markets: a Walrasian centralized

market, and a decentralized market, characterized by search frictions. There are

also two types of firms in the economy. Production firms use capital and labor as

inputs in production, and sell their output in the centralized market. This output

is used for centralized-market consumption and capital investment, but also bought

up by retailers, who bring it into the decentralized market and sell these retail goods

there.

In the centralized market, all parties involved in transactions are known and all

trades can be enforced; intertemporal trade and asset trading are possible. In the

decentralized market, on the other hand, agents are anonymous. In addition, in

our setup there is no scope for barter in the decentralized market – the buyers have

no goods to offer. As a result, no retail trade at all would occur in the absence of

money, so that a medium of exchange – here, fiat money – is essential.

We model the two markets as occurring sequentially within each period. First,

the centralized market opens in the first subperiod, closes, and the decentralized

market opens in the second subperiod. As mentioned above, we model the latter as

a market where search frictions prevent buyers and sellers from meeting at a cen-

tralized point; instead, buyers and sellers either succeed in meeting in pairs, or they

fail to meet at all. The setup of the decentralized market is as a competitive search

market (see Moen 1997, Shimer 1996). In this setup, price-quantity combinations

(q, d) are posted in advance in a submarket, and have to be honored by all those,

buyers and sellers, who choose to come to the submarket. The buyers and sellers

who come are matched according to a matching function, which relates the match-

ing probability matching for either party to the ratio of buyers and sellers that have

shown up. Let us denote the seller-buyer ratio as s/b ≡ n. The matching function

exhibits constant returns to scale, and thus we can write the buyer matching rate,
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a(n), and the seller matching rate, a(n)/n, as a function of n only. Let η denote the

elasticity of the buyer matching rate with respect to n; thus, a(n) = nη. We assume,

for the purposes of the theoretical exposition, that this elasticity is constant.

For each submarket, we assume that it is buyers who post price-quantity vectors

in advance; formulating the problem such that sellers post prices will lead to identical

equilibrium outcomes, but this formulation will give us a cleaner way of dealing with

deviations off the equilibrium path.2

2.1 Households

Households maximize lifetime expected discounted utility,

E0

∞∑

t=0

βtvt(ct, qt, ht, ϑt), (1)

where 0 < β < 1. vt, the utility achieved in each period, depends on consumption

in the centralized market, ct, and consumption in the decentralized market, qt,

time spent working ht, and the consumption preference shock ϑt. Subscripting our

variables by t is an abuse of notation, as we mean that each variable at time t is

actually chosen conditional on the entire history the household has experienced up

to that period, in principle. Moreover, the expectation is taken with respect to all

possible histories.

In the first subperiod, utility follows the Hansen-Rogerson specification of indi-

visible labor with lotteries, and is given in reduced form by

U(ct) −Aht. (2)

Conditional on matching and receiving qt, which is consumed instantly, second-

subperiod utility is

ϑtu(qt). (3)

The taste shock ϑt realizes when the centralized market is already closed and money

holdings can no longer be adjusted, as described below. This will lead to precau-

tionary demand for money. The taste shock comes from a distribution with finite

support. In this section, the probability of a realization ϑ is implied by the ex-

pectation operator, but in later sections we refer to it by P(ϑ). The choice of dt

together with qt imply a probability a(n(qt, dt)) of meeting. We assume the usual

2Moreover, we assume that these price-quantity combinations are posted when the centralized

market is still open. This assumption helps avoid complications due to coordination failures. For

example, retail firms might take only a few goods to the market, expecting only low quantities to

be posted, while buyers bring only low amounts of money, expecting only to be able to secure low

amounts of goods; both parties would rather buy and sell more, if more goods and money were

available.
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properties on the U(ct) and u(qt) components of the utility function: they are con-

tinuous, strictly increasing, strictly concave, limct↓0 U
′(ct) = ∞, limqt↓0 u

′(qt) = ∞.

We also assume these functions are bounded.3 Note that it is uncertain whether the

household succeeds in acquiring qt because of the meeting frictions.

Households own capital kt, hold money m̂ for future trade, which they may

spend in the decentralized market if they meet a firm, and own nominal and real

bonds, bn and br, which they acquire from retail firms, as described below.4 We

normalize the price of the centralized good to one. We also normalize the household’s

money holdings by the aggregate money holdings. Given a measure 1 of households,

m is then this normalized measure of money holdings, with m̃ as the normalized

counterpart of m̂ above. Let wage, capital rent (net of depreciation), value of one

unit of normalized money, and share prices for the nominal and real bonds be,

respectively, wt, rt, φt, Pbn,t, Pbr,t. The resulting budget constraint is

φtmt + (1 + rt)kt + wtht + bn,t + br,t =

ct + φtm̃t + kt+1 + Pbn,tbn,t+1 + Pbr,tbr,t+1. (4)

Moreover, the household chooses its money holdings m̃ in the centralized market

before ϑ realizes, and needs to bring at least d of it to complete a transaction in the

market with posted (q, d), so that

dt ≤ m̃t. (5)

Finally, hours worked are constrained,

h ∈ [0, 1]. (6)

The full household problem is thus specified as

max E0

[
∞∑

t=0

βt

(
U(ct) −Aht + ϑta(nt(qt, dt))u(qt)

)]
(7)

with respect to (ct, ht, {qt(ϑt), dt(ϑt)}, kt+1, m̃t, bn,t+1, br,t+1), taking as given (wt,

rt, Pbr,t, Pbn,t, φt, nt(qt, dt)), and subject to constraints (4)-(6) and the evolution of

money holdings

mt+1 = m̃t − dt(ϑ) +$tMt if matched at (qt(ϑ), dt(ϑ)),

mt+1 = m̃t +$tMt if not matched, (8)

3If storage would depreciate, this is without loss of generality.
4In principle, households can hold shares of firms as well. We will see that in our formulation all

firms make zero profits, so share holding is irrelevant. Alternatively, we can formulate the economy

with firms selling shares instead of bonds; this leads to equivalent allocations of resources, but

involves more notation.
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where $Mt refers to injections of money by the monetary authority, consistent

with the rate of growth of money supply, to be discussed in more detail below. The

terms of trade that households post, (qt, dt), imply a seller-buyer ratio nt and a

meeting rate with firms a(nt), with 0 ≤ nt(qt, dt) ≤ 1. In the sequential household’s

problem nt(qt, dt), just as the sequence of prices, is taken as given.5

Each period, the amount of utility that can be achieved is bounded from above

by supx U(x) + supq u(q). The value (supremum) of the household’s problem in the

sequential formulation is finite. Bellman’s Principle of Optimality holds, and we can

equivalently formulate the problem recursively, which we will do below.

2.2 Production Firms

The problem of the production firm is static and completely standard – to maximize

its profits in each period. Given a constant returns to scale production function

yt = eztf(kt, ht)

, where zt is the stochastic productivity level described in more detail below, the

problem is

max
kt,ht

eztf(kt, ht) − wtht − rtkt − δkt,

and the solution is characterized by the usual first order conditions

rt = eztfk(kt, ht) − δ (9)

wt = eztfh(kt, ht) (10)

Given constant returns to scale, these firms make zero profit. This implies that their

shares will not constitute any wealth for households; the only share price consistent

with zero profits is zero.

2.3 Retail Firms

The retail firms face a more complicated problem. They decide in the first subperiod

to buy q, to bring into an island of their choice in the second subperiod. Then for

any amount q that is taken to an island, they might match with probability a(n)/n,

in which case they will get d units of money. Or, with probability (1 − (a(n)/n))

they do not match, in which case they sell the q units in the next centralized market.

We assume that retail firms sell nominal and real bonds, bn and br, to be paid out

next period, to raise the financial means to pay for q. When firms either have a large

enough portfolio of q’s or they are able to pool the matching risk among themselves,

5Below, we will employ the assumption that the household knows the equilibrium zero-

profit/free-entry condition, so it can predict nt.
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they can sell (1 − (a(n)/n))q worth of real bonds, and (a(n)/n)d of nominal bonds.

The retail firm’s maximization problem for period t becomes

Πrt = max
(qt,dt,nt)

[
Pbnt

a(nt)

nt
dt + Pbr

(
1 −

a(nt)

nt

)
qt − qt

]
. (11)

The retail firms’ choice variables denote that they choose the island to go to, with

terms of trade having been posted by households. Notice that once again, this

maximization problem is essentially static: retail firms try to make a profit at time

t, by buying qt and, simultaneously, selling claims (bonds) to next period’s money

and goods, left over from decentralized trade. Moreover, free entry of retail firms

implies that nt will increase until no economic profit is left: Πrt = 0. Households

posting (qt, dt)-vectors will anticipate the free entry, and use (11) to predict their

chance of matching on their island.6

2.4 Monetary Policy and Aggregate Shocks

The monetary authority follows an interest rate feedback rule

1 + it+1

1 + ī
=

(
1 + it
1 + ī

)ρi
(

1 + πt

1 + π̄

)ρπ
(
yt

ȳ

)ρy

exp(εmp
t+1). (12)

The term εmp denotes a stochastic monetary policy shock which realizes at the

beginning of the period. Consistent with the movement in interest rates, the rate of

money supply growth $t adjusts, and the changes in money supply are transferred

to households via lump-sum injections $tMt, where $t thus refers to money supply

growth from period t to t+ 1.

In addition, we will assume that the monetary policy shock εmp and the stochastic

productivity shock z are correlated, so that the interest rate responds to changes

in the productivity levels and vice versa. We will let the aggregate shock processes

follow a finite-state Markov process.

2.5 Recursive Formulation of the Household Problem

We focus on Markov (payoff-relevant) decision strategies. The constraint set of the

household depends only on the state variables discussed below, and we assume (and

later prove) that all prices only depend on the aggregate state variables.

From now on, we will conserve notation by omitting time subscripts, and using

primes to denote t + 1. There are the following aggregate state variables in this

economy: the aggregate capital stock, K, the total amount of unsold retail goods

6As we mentioned above, it is outcome-equivalent to let sellers post. It is commonly assumed

that the set of markets is complete: it is not possible to post a different price-quantity vector such

that households get a higher expected utility than before, while the retailers make at least as much

profit. With buyer posting, this is directly implied.
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carried over from the second subperiod due to matching frictions, which we denote

as G, the technology shock z, the previous interest rate in the economy i−1, and the

term (1 +$−1)φ−1, which denotes the previous period’s post-injection real value of

money, and which households need to know in order to determine the current rate

of inflation in the economy.

In this economy, retail firms are subject to idiosyncratic matching risk. House-

holds are subject to the matching risk, as well as idiosyncratic preference risk. The

individual state variables at the beginning of the centralized market are normalized

money holdings m, goods g, and capital holdings k, where the money and goods

holdings are measured after the nominal and real bonds are paid out. Recall that

individual money holdings m are defined relative to total money stock M : if a

household holds the average stock of money, then m = 1. This renders the money

holdings stationary. We define φ as the value of one unit of normalized money, which

implies φ = M/P , the real value of the total money stock. At the beginning of the

centralized market in the next period, the monetary policy shock realizes, and each

household receives an injection of $M units of money accordingly. If a household

has m̃ units of normalized money left at the end of the decentralized subperiod, its

money holdings at the beginning of the next period, before the bonds are paid out,

and normalized by next period’s money stock M ′ are given by

m′ =
m̃

1 +$
+

$

1 +$
.

Instead of writing this as a problem with separate value functions for centralized

and decentralized subperiods, we can rewrite the household’s problem as a more

transparent full-period problem. This means that in the first subperiod the house-

hold can make the choices for the second subperiod, contingent on its information

at the start of the second subperiod. In our environment, the information that does

not become known until the second subperiod is the realization of the preference

shock ϑt specific to each household, and what (qt, dt) vectors are posted in islands.

As mentioned before, the households can infer the buyer-seller ratio nt(qt, dt) from

the zero-profit condition for the firms; instead of defining an equilibrium functional

for this relationship, we carry the retail firms’ zero-profit condition as an additional

constraint, and consider n to be part of the posted vector, (q, d, n). We allow house-

holds to post this set of {(q(ϑ), d(ϑ), n(ϑ))} themselves, so that they can decide

which island to go to after the realization of ϑ. To conserve notation, we will ab-

breviate the vector of posted quantities as {q, d, n}, and an element of this vector

(qϑ, dϑ, nϑ), where it should not be forgotten that these quantities also depend on

the aggregate states of the economy, and possibly on the individual state variables

of the household.

Thus we can write all choices to be made within the two subperiods as occurring

in the first subperiod, when the household chooses m′ and a vector {q, d, n} to post
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in the decentralized market, given the state variables. In the second subperiod, all

decentralized purchases are subject to dϑ ≤ m′ for each ϑ. In sum, we have the

following recursive maximization problem:

V (k,m, g,K,G, z, i, (1 +$−1)φ−1) = max
{c,h,m̃,k′,b′n,b′r,{q,d,n}}{

U(c) −Ah+ Eϑ

[
a(nϑ)

(
ϑu(qϑ) + βE[V (k′,m′ −

dϑ

1 +$
, g′,K ′, G′, z′, i′, (1 +$)φ)]

)

+ (1 − a(nϑ))βE[V (k′,m′, g′,K ′, G′, z′, i′, (1 +$)φ)]

]}

(13)

subject to

φm+ g + (1 + r)k + wh = c+ φm̃+ k′ + Pbnb
′
n + Pbrb

′
r (14)

dϑ ≤ m̃ ∀ ϑ (15)

qϑ =

(
a(nϑ)

nϑ

)
Pbndϑ +

(
1 −

a(nϑ)

nϑ

)
Pbrqϑ, ∀(qϑ, dϑ, nϑ), ϑ (16)

m′ =
m̃

1 +$′
+

$′

1 +$′
+

b′n
1 +$′

(17)

g′ = b′r (18)

K ′(K,G, z, i, (1 +$−1)φ−1), G
′(K,G, z, i, (1 +$−1)φ−1) (19)

[z′, i′] = Ξ[z, i, π, y] + [ε′1, ε
′
2] (20)

h ∈ [0, 1] (21)

Note that we have defined b′n to be the payoff tomorrow in today’s normalized units.

As a result the nonnormalized units of money (i.e. money in the conventional sense)

paid out tomorrow is known today, however, its value is not. The shock processes

in (20) are not necessarily independent, i.e. corr(ε1, ε2) can be different from zero.

The shocks are defined on a finite set of states. The term Ξ refers to a 2× 4 matrix.

Proposition 1. The household problem, taking as given prices and aggregate laws

of motion that only depend on the aggregate states, can be solved recursively, with

(13) as the value function, which is strictly increasing the individual state variables,

and concave in k and g.

The proof is in the appendix.

From now on, we denote the aggregate state variables by S, where S = (K,G, z, i, (1+

$−1)φ−1), and the individual variables by s = (k,m, g). Further, denote the policy

functions of the household’s problem by α(s, S), with αx(.) as the policy function

for the choice variable x.
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2.6 Equilibrium

Definition 1. A Symmetric Stationary Monetary Equilibrium is a set of pricing

functions φ(S), w(S), r(S), Pbr(S), Pbn(S), bn(S), br(S); a set of laws of motions

K ′(S), G′(S), value function V (s, S) and policy functions c(s, S), h(s, S), k(s, S),

g(s, S), bn(s, S), br(s, S), m(s, S), {nϑ(s, S), qϑ(s, S), dϑ(s, S)}, all ϑ, such that:

1. The value function solves the household optimization, in (13), with associated

policy functions, given prices and laws of motion;

2. Production and retail firm optimize, given prices and laws of motion, as in

sections 2.2 and 2.3.

3. Free entry of retailers: Πrt = 0.

4. Consistent expectations: aggregate laws of motion follow from the sum of all

individual decisions (index individual households by i) –

K ′(S) =

∫ 1

0
ki(s, S)di

G′(S) =

∫ 1

0

[
∑

ϑ

P(ϑ)(1 − a(ni
ϑ(s, S)))qi

ϑ(s, S)

]
di.

5. Market clears in all centralized markets (capital, labor, general goods, money,

financial markets):

∫ 1

0
mi(s, S)di = 1

∫ 1

0
bir(s, S)di = g =

∫ 1

0

[
∑

ϑ

P(ϑ)(1 − a(ni
ϑ(s, S)))qi

ϑ(s, S)

]
di

∫ 1

0
bin(s, S)di =

∫ 1

0

[
∑

ϑ

P(ϑ)a(ni
ϑ(s, S))di

ϑ(s, S)

]
di

∫ 1

0
hi(s, S)di = H

(1 − δ)K +G+ ezf(H,K) = C +K ′ +

∫ 1

0

[∑
P(ϑ)ni

ϑ(s, S)qi
ϑ

]
di (22)

2.7 Optimization and Market Clearing in Centralized Markets

In this section, we study the household decisions in equilibrium in more detail, and

put these together with market clearing and equilibrium prices, to work towards a

set of equations that will characterize the equilibrium allocation.
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2.7.1 Centralized Market creates Homogeneity

For general utility functions, different realizations of the idiosyncratic matching and

preference risks could lead to a nontrivial distribution of wealth (with, for example,

those who have recently matched with high ϑ’s being poorer).7 In turn, households

with different wealth could make different portfolio decisions, and hence the dis-

tribution of individual state variables would likely be relevant for the equilibrium

prices.

However, the quasi-linear specification of the problem allows equilibria in which

all heterogeneity created in the second subperiod washes out in the centralized mar-

ket.8 This occurs if the boundary conditions of h are never hit. Our strategy is to

solve the problem assuming that optimal choices of h are interior, and check (in our

calibrated equilibrium) whether this is indeed the case.

Let us substitute the budget constraint for h into the household’s value function:

V (s, S) = max
c,h,m̃,k′,b′n,b′r ,{q,d,n}{
U(c) −A

(
c+ φm̃+ k′ + Pbrb

′
r + Pbnb

′
n − φm− g − (1 + r)k

w

)

+ Eϑ

[
a(nϑ)

(
ϑu(qϑ) + βE[V (s′, S′)]

)

+ (1 − a(nϑ))βE[V (s′, S′)]

]}
, (23)

given all price and expectation functions that were written down in system (13).

Note that we can split the value function into two parts

V (s, S) =

A

(
φm+ (1 + r)k + g

w

)

+ max
...

{
U(c) −A

(
c+ φm̃+ k′ + Pbnb

′
n + Pbrb

′
r

w

)
+ Eϑ

[
a(nϑ)

(
ϑu(qϑ)

+ βE[V (s′, S′)]
)

+ (1 − a(nϑ))βE[V (s′, S′)]

]}
, (24)

where the first term on the right-hand side gives the assets of the household car-

ried over from the previous period. Note that the maximization is not affected

7See Molico (2005) and Chiu and Molico (2008), who investigate the distributional impact of

heterogeneity on e.g. the welfare effects of monetary policy when markets have search frictions.
8This result arises in other models that combine centralized and decentralized trade, such as

Lagos and Wright (2005) and Rocheteau and Wright (2005). An alternative achieving homogeneity

is ‘families’ who pool their resources (Shi 1997).
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by this term, which is why we could take it outside the expression that is to

be maximized. Consequently, the choices over which the objective is maximized,

(c, h, m̃, k′, b′n, b
′
r, {q, d, n}), do not depend on s = (m,k, g) as long as the implied h

is interior, which we assumed.

Moreover, in an equilibrium with a finite H, there exists an allocation of capital

investment that maximizes all households’ utility, while all households invest the

same in k′, buy the same number of bonds, and for a value function strictly concave

in m̃ (to be investigated below), take out the same amount of cash.

Denoting the maximizing choices of the controls, given the aggregate state vari-

ables, as (c∗, h∗, m̃∗, k∗′, b′n
∗, b′r

∗, {q∗, d∗, n∗}), we can rewrite the value function

as

V (s, S) =W ∗(S) +A

(
φm+ (1 + r)k + g

w

)
(25)

where

W ∗(S) = U(c∗) −A

(
c∗ + φm̃∗ + k∗′ + Pbrb

′
r + Pbnb

′
n

w

)

+ Eϑ

[
a(n∗(ϑ))

(
ϑu(q∗(ϑ)) + βE[V (s∗′, S′)]

)

+ (1 − a(nϑ))βE[V (s∗′, S′)]

]
, (26)

The value function V (.) is differentiable in k,m, g (Benveniste-Scheinkman applies

trivially). The envelope conditions are, then,

Vm(s, S) =
Aφ

w(S)
(27)

Vk(s, S) =
A(1 + r(S))

w(S)
(28)

Vq(s, S) =
A

w(S)
(29)

At this stage, we can write down the Euler equation with respect to capital and

the first-order condition with respect to labor (the problem is weakly concave in

these variables, and the solution is interior, as we assumed that (21) is not binding);

we will discuss the other choice variables below.

U ′(c∗(S)) = βE[U ′(c∗(S′))(1 + r(S′))] (30)

U ′(c∗(S)) =
A

w(S)
(31)

Consumption is a function only of aggregate state variables, because of the quasi-

linearity, as discussed in the section above.
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2.7.2 Equilibrium price of bonds

Let us reiterate that all financial instruments can be traded between centralized

markets. In our model, a nontrivial amount of bonds will be traded, and households

will hold positive amounts of both nominal and real bonds in every period. The

Euler equation for nominal bonds is given by

U ′(c∗(S))Pbn(S) = βE[U ′(c∗(S′))
φ′(S′)

1 +$′
] (32)

⇐⇒ Pbn(S) = βE

[
φ′(S′)

1 +$′

w(S)

w(S′)

]
=

φ

1 + i
, (33)

where we used the fact that dm′/dbn = (1+$′)−1. This condition must hold in order

for the choice of nominal bond holdings to be in the interior. The quasi-linearity

implies that when this condition is satisfied at one particular interior bn, it is satisfied

at all interior bn, as long as h is not at a corner. Moreover, as the choice of bn, br does

not depend on individual states, we assume that every household chooses exactly

the same bond portfolio. This, incidentally, will greatly facilitate our computation.

Market clearing then implies that, at this price, bn =
∑

ϑ P(ϑ)a(nϑ)dϑ. A similar

exercise with real bonds yields the Euler equation for real bonds, and the implied

market-clearing price,

U ′(c∗(S))Pbr(S) = βE[U ′(c∗(S′))] (34)

⇐⇒ Pbr(S) = βE

[
w(S)

w(S′)

]
. (35)

At this price, the bond market clears: br = g =
∑

ϑ P(ϑ)(1−a(nϑ))qϑ. To abbreviate

notation, we will denote

E

[
φ′(S′)

1 +$′

w(S)

w(S′)

]
≡ Ẽφ′, E

[
w(S)

w(S′)

]
≡ Ẽ.

The free-entry condition for retail firms, which the household takes into account

when deciding to post (qϑ, dϑ), which implicitly will return the seller/buyer ratio

nϑ, thus can be written as

qϑ =
a(nϑ)

nϑ
βẼφ′dϑ +

(
1 −

a(nϑ)

nϑ

)
βẼqϑ (36)

2.7.3 Market Clearing

Household i’s labor decision hi is given by their initial holdings mi, ki, gi at the

beginning of the period, which differ among households only in mi (so that we

drop the i-index for k, g). In addition, the decisions c, m̃, {qϑ, dϑ, nϑ}, k
′, b′n, b

′
r are

identical across all households, such that

hi = (1/w)(φmi + g + (1 + r)k − φm̃− k′ − b′n − b′r).
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In the aggregate
∫
I
h(i) = H. It must then follow that

∫

I

hi = H = (1/w)

(
φ

(∫

I

mi

)
+ g + (1 + r)k − φm̃− k′ − b′n − b′r

)
.

Factor market clearing implies the usual,

w(S) = ezfH(K,H); r(S) = ezfK(K,H) − δ.

Market clearing dictates m̃ = 1, and therefore
∫
mi =

∑
ϑ P(ϑ)

(
a(nϑ)(m̃ − dϑ) +

a(nϑ)dϑ

)
= 1, while b′n + b′r =

∑
ϑ P(ϑ)nϑqϑ. By Walras Law we then have that the

last remaining market - the goods market - clears as well:

G+ ezf(K,H) + (1 − δ)K = C +K ′ +
∑

ϑ

P(ϑ)qϑnϑ

Finally, we have to check whether our ‘working’ assumption that hi ∈ [0, 1] is

correct for each i. We can do so for each type of the household individually in our

calibrated model. However, a weak sufficient condition for this that only employs

aggregate information is

H −
φ

w
> 0,

while an upper bound is given by H − hi < (1/w)φm̃.

2.8 Properties of Decentralized Market Trade

Above we have discussed the Euler equations that link consumption, capital invest-

ment and bond investment between periods. What remains is to study the decisions

that are made for decentralized market trade. Importantly, in general equilibrium,

the monetary and real sectors do not dichotomize, as the marginal utility of con-

suming (or working) in the centralized market still enters the decentralized market

problem. However, it enter in a way that allows us to study the decentralized prob-

lem in relative isolation.

Households are subjected to a draw of a preference shock ϑ from a non-trivial

distribution. As a result, there will be submarkets for households with different

realized shocks in the decentralized subperiod, as households with different shocks ϑ

prefer different vectors (qϑ, dϑ, nϑ). The previous analysis concluded, without loss of

generality, that all households who have the same ϑ realization will choose the same

(qϑ, dϑ, nϑ), if the problem is concave. The maximization problem thus involves

choosing, along with money holdings m̃, the right (qϑ, dϑ, nϑ) for each realization ϑ.
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We rewrite the household problem to isolate these decisions:

V (s, S) = A

(
φm+ (1 + r)k + g

w

)

+ max
k′,b′n,b′r,c

{
−A

(
c+ k′ + Pbnb

′
n + Pbrb

′
r

w

)
+ u(c) + βE

[
A
k′(1 + r′) + b′r + φ′

1+$′ b
′
n

w′(S′)

]}

+ max
m̃,{qϑ,dϑ,nϑ}

{
−
Aφm̃

w
+ Eϑ

[
a(nϑ)

(
ϑu(qϑ) + βE

[
A
φ′(S′)(m̃− dϑ +$′)

w′(S′)(1 +$′)
]

]

+ (1 − a(nϑ))βE

[
A
φ′(S′)(m̃+$′)

w′(S′)(1 +$′)

]}
+ βE[W ∗(S′)] (37)

Given prices, we can separate the decisions pertinent to the decentralized market

(qϑ, dϑ, nϑ), m̃ from the decisions about centralized market assets k′, b′n, b
′
r and cur-

rent consumption c. The labor supply h will be chosen to balance the budget, given

decisions c∗, bn, br, (qϑ, dϑ, nϑ), m̃ and k′, as long as these choices imply that the

bounds on h are not hit.

2.8.1 Solving the Decentralized Market Maximization Problem

Thus for the decentralized market, it is only relevant to concentrate on the second

maximization problem in (37). Without loss of generality, we can premultiply the

maximization by the constant w(S)
A

(= (U ′(c))−1), which does not affect the maxi-

mization, to get

max
(qϑ,dϑ,nϑ),m̃

− φm̃+
∑

ϑ

P(ϑ)

(
a(nϑ)

(ϑu(qϑ)

U ′(c)
− βẼφ′dϑ

))
+ βẼφ′m̃ (38)

subject to

− qϑ +

(
a(nϑ)

nϑ
βẼφ′dϑ +

(
1 −

a(nϑ)

nϑ

)
βẼqϑ

)
= 0 ∀ ϑ (39)

dϑ ≤ m̃ ∀ ϑ (40)

Denote νϑ, µϑ as the multipliers of (39) and (40), for each ϑ.

Proposition 2. If η < 0.5 and the coefficient of relative risk aversion (at the q∗ϑ
satisfying the equations below) is larger than some number ς, where ς is close enough

to, but below, 1, the necessary and sufficient conditions for the globally optimal
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interior choice in the problem (38)-(40) are given by

η

(
ϑ
u(qϑ)

U ′(c)
− βẼφ′dϑ

)
βẼφ′dϑ − (1 − η)β

(
Ẽφ′dϑ − Ẽqϑ

) ϑu′(qϑ)qϑ
U ′(c)

= 0 ∀ϑ. (41)

∑

ϑ

(
P(ϑ)a(nϑ)

ϑu′(qϑ)qϑ
U ′(c)dϑ

− P(ϑ)a(nϑ)βẼφ′
)

+ βẼφ′ − φ = 0 (42)

(
ϑu′(qϑ)qϑ
U ′(c)dϑ

− βẼφ′
)

(m̃− dϑ) = 0,
ϑu′(qϑ)qϑ
U ′(c)dϑ

≥ βẼφ′, and dϑ ≤ m̃. ∀ ϑ, (43)

Very loosely, we can call equation (41) a “bargaining condition”, (42) a “money

demand equation”, and (43) the complementary slackness condition.

As far as we know, sufficient conditions to locate the optimal choices in money

search setting (in particular settings based on Lagos and Wright 2005) have been

restrictive, while the sufficiency established above provides the result under relatively

weak conditions.9 In Lagos and Wright, for example, this is derived for a bargaining

power of 1, or close to 1, for the buyer. Alternatively, utility exhibiting increasing

absolute risk aversion, the value function is concave and the first order conditions

therefore locate the maximum. While the proposition finds sufficiency under weaker

conditions, it is specific to the setting of our model,with retailers moving products

to the decentralized markets. However, it is indicative of generalizations that are

possible with respect to sufficiency in the Lagos-Wright setting. (See Visschers 2008

for a proof of sufficiency in Lagos-Wright itself, under similar conditions (η being the

bargaining power in that particular case). To show sufficiency, the proof establishes

the pseudo-concavity of the problem (i.e. when the first order conditions equal

zero at a certain point, the objective function is concave at that point), not global

concavity.

Intuitively, having a high enough relative risk aversion (RRA) implies that utility

is ‘very concave’, and the concavity of the instantaneous utility function then helps

with the pseudo-concavity of the problem in general. This intuition is, however, not

everything: one of the derived comparative statics in Nash Bargaining10 is that the

person with a lower absolute risk aversion gets relatively more out of the bargaining,

9This stands in contrast, e.g. to the existence proof for monetary steady states in the determin-

istic case. Wright (2008) finds that generically, there is a unique monetary steady state. However,

the generality of the proof provides no guarantee that steady state variables are continuous in pa-

rameters in this proof, something that could create some trouble for our setting. Moreover, the

equivalence of the first-order conditions in his setting by themselves do not always isolate the op-

timal choice of the agents: they could isolate local maxima and minima instead. While issues of

existence and uniqueness are settled for the deterministic case, the proof does not spell out a con-

structive way to isolate the global maximum (as a function of Ẽφ′ (or i, in his setting)) in a system

of equations. For purposes of comparison, we can state our result in Wright (2008) language: our

conditions guarantee a decreasing `(i).
10The competitive search allocation is equivalent to a bargaining solution with constrained-

efficient bargaining power.

19



all other things equal. A constant relative risk aversion means that absolute risk

aversion is decreasing in c, so as the buyer brings more money, he improves his

bargaining position as he becomes less risk-averse in the absolute sense. Without

looking in more detail, we cannot rule out that the improvement in the bargaining

from less risk-aversion outdoes the decrease of marginal utility as more goods are

being transacted. We avoid this issue with the increasing absolute risk aversion,

or alternatively put log-concavity on u′, condition in Lagos and Wright (and when

the bargaining power is 1 or close to 1, the gains of improving one’s ‘position’ in

bargaining are small–hence the other condition). In the proof of sufficiency, which is

in the appendix, it is shown however, that whenever we restrict ourselves to points

at which the first order conditions hold, the objective function is locally concave,

under the above conditions.

Under the assumptions of the proposition we derive that the first order conditions

of the maximization are in fact sufficient to find the global maximizers {q, d, n}, given

any φ and βẼφ′, φ > βẼφ′. Moreover, decentralized quantities, meeting rates and

most importantly, today’s value of money depend continuously on the expected value

of money tomorrow.

Lemma 1. Given RRA > 1, (16), (41)-(43) pin down uniquely φ, {q, d, n} as

continuous functions of βẼφ′.

The proof is in the appendix.

This lemma has important implications not only for the theoretical investigation

here, but also for our computational model. As we will discuss later, our chosen

computation method relies on approximating the expectation terms in the charac-

terizing equations of the problem with polynomials. The continuity shown above is

essential to claim that our approximating functions are appropriate. Moreover, our

result is that the first order conditions find uniquely the global maximum for the en-

tire range of relevant values of parameters and also the relative range of tomorrow’s

values (co-states), e.g. of money. This means that we also avoid complications with

local maxima that cease to be global maxima for certain ranges of parameter and

co-state values. Since our model is stochastic, a non-trivial range of these values

will occur at different points in time, making this an issue of practical relevance.

Let us now derive the first order conditions, and complementary slackness of the
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problem (38)–(40) as

−µϑ − P(ϑ)a(nϑ)βẼφ′ + νϑ
a(nϑ)

nϑ
βẼφ′ = 0 (44)

P(ϑ)(a(nϑ)
u′(qϑ)

U ′(c)
) + νϑ(−1 + βẼ − β

a(nϑ)

nϑ

Ẽ) = 0 (45)

P(ϑ)a′(nϑ)(
ϑu(qϑ)

U ′(c)
− βẼφ′dϑ) + νϑ

a′(nϑ)nϑ − a(nϑ)

n2
ϑ

β(Ẽφ′dϑ − Ẽqϑ) = 0 (46)

∑

ϑ

µϑ + βẼφ′ − φ = 0 (47)

µϑ(m̃− dϑ) = 0, d ≤ m̃, µϑ ≥ 0 ∀ ϑ (48)

Given Ẽφ′, Ẽ, we can solve this system of equations. Substituting out the νϑ in (44)

and (45), we find a system with (47), (48), and

P(ϑ)

(
a(nϑ)

ϑu′(qϑ)qϑ
U ′(c)dϑ

)
− P(ϑ)a(nϑ)βẼφ′ − µϑ = 0 ∀ϑ (49)

η

(
ϑ
u(qϑ)

U ′(c)
− βẼφ′dϑ

)
βẼφ′dϑ − (1 − η)β

(
Ẽφ′dϑ − Ẽqϑ

) ϑu′(qϑ)qϑ
U ′(c)

= 0 ∀ϑ. (50)

Result 1. As long as the money constraint is not binding for a realization of ϑ, qϑ
and nϑ are independent of βẼφ′.

If the money constraint does not bind, then µϑ = 0, and from (44) and (45) it

follows that
ϑu′(qϑ)qϑ
U ′(c)

= βẼφ′dϑ (51)

and using (51) with (50) one more time, yields

η

(
ϑ
u(qϑ)

U ′(c)
− ϑ

u′(qϑ)

U ′(c)
qϑ

)
− (1 − η)

(
ϑ
u′(qϑ)

U ′(c)
qϑ − βẼqϑ

)
= 0, (52)

Solving (50) for qϑ and plugging it into (51), we find qϑ, dϑ for the unconstrained

case. Moreover, from (51) substituted into the free entry condition, we find that

the latter only depends on the unchanged qϑ (keeping Ẽ constant), hence nϑ is

unchanged as well. Note, however, that a change in the real interest will change

both qϑ and nϑ.

In case all dϑ ≤ m̃ ∀ ϑ from the solution of (50) in (51), the second-subperiod

money holding constraint is not binding in equilibrium. Moreover, we can then

conclude that φ = βẼφ′, from (47). For dϑ > m̃ in the unconstrained case, the

constraint d ≤ m̃(= 1) is actually binding, and instead we solve

η

(
ϑ
u(qϑ)

U ′(c)
− βẼφ′

)
βẼφ′ − (1 − η)β

(
Ẽφ′ − Ẽqϑ

)
ϑ
u′(qϑ)

U ′(c)
qϑ = 0, (53)
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and from (49), we find µϑ = P(ϑ)a(n)ϑu′(q)
U ′(c) −P(ϑ)a(n)βẼφ′

q
. The price of money φ is

then given by βẼφ′ +
∑

ϑ µϑ. The total amount of goods taken to the decentralized

market (nq in the resource constraint) is
∑

ϑ P(ϑ)nϑqϑ, as the total number of buyers

with preference shock ϑ is P(ϑ), and the total number of sellers serving these buyers

is P(ϑ), each bringing qϑ to the decentralized market.

2.8.2 Precautionary Demand for Money under Multiplicative Prefer-

ence Uncertainty

In this section, we study the effect of idiosyncratic preference shocks, ϑ, premultiply-

ing decentralized utility u(q). Buyers post (qϑ, dϑ, nϑ) for each possible realization

of ϑ before the actual ϑ realizes, and subsequently visit the appropriate market. We

show that for sufficient risk aversion, multiplicative preference shocks imply ‘mono-

tone’ behavior: higher preference shocks raise buyer meeting rates, quantity bought

and money paid across the board, for nonbinding shocks. If a shock implies a bind-

ing cash constraint, the cash constraint is binding for all shocks that are even higher.

Moreover, the value of money (on top of βẼφ′) is determined by marginal value of

consumption for binding shocks, where higher shocks contribute more to the value

of money (per unit of probability). This both facilitates the understanding of the

behavior of the agents in the model, and helps us by setting up an efficient solution

algorithm in the computational exercise.

In this analysis we use the notation βφ′ for βẼφ′, and β for βẼ, as we keep these

future variables constant, while varying the realization of ϑ.

Lemma 2. When the money constraint does not bind, qϑ,dϑ and nϑ (and dϑ/qϑ)

are increasing in ϑ if RRA > (1 − η).

The proof is in the appendix.

Given these results, in particular dϑ (weakly) increasing in ϑ, it is now straight-

forward to deduce the following result,

Corollary 1. If RRA > 1− η, and if a shock ϑ leads to dϑ = 1, then for all shocks

ϑi > ϑ, dϑi
= 1.

Finally, if more than one shock is binding, it will not necessarily be the case that

qϑ is increasing in ϑ among all shocks that result in bind constraints. Intuitively, if

for a lower ϑ it comes out of the competitive search solution that the buyer surrenders

all his money in exchange for qϑ, then the more desperate buyer cannot do more

then surrendering all his money; he can either increase qϑ at the cost of nϑ or the

other way around. Below we show that for larger degrees of relative risk aversion,

those with high ϑ prefer a higher matching probability.
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Lemma 3. If two or more shocks ϑl, . . . , ϑh result in binding cash constraints, nϑ

is increasing in ϑ, but qϑ is decreasing in ϑ, if RRA > 1. Furthermore,

µϑh

P(ϑh)
>

µϑl

P(ϑl)
.

The proof is in the appendix.

2.8.3 Efficiency

Let us solve the efficient allocation of resources that maximizes the ex ante expected

utility of each individual in the centralized market. We assume that everybody is

identical in the first centralized market, and solve for the equally weighted Pareto

problem; however, as utility is linear in hours, utility is transferable as long as we

don’t hit the bounds on h, and the allocation is not affected by any chance in the

distribution of Pareto weights (except for different distribution h’s adding up to the

same H).

The planner’s maximization problem can be formulated recursively, along the

same lines as above.

V (S) = max
C,H,K ′,{qϑ,nϑ}

u(C) −AH +
∑

ϑ

P(ϑ)a(nϑ)(ϑu(qϑ)) + βE[V (S′)] (54)

subject to

G+ f(K,H) + (1 − δ)K = C +K ′ +
∑

ϑ

P(ϑ)nϑqϑ

G′ =
∑

ϑ

P(ϑ)
(
nϑ − a(nϑ)

)
qϑ

It follows that

u′(c) = βEz′ [u
′(c′)(1 + ez

′

fK(K ′,H ′) − δ)] (55)

u′(c) =
A

ezfH(K,H)
(56)

With respect to qϑ, we derive

0 = − u′(c) +
a(nϑ)

nϑ
(ϑu′(qϑ) − βEz′ [u

′(c′)]) + βEz′ [u
′(c′)] (57)

⇐⇒
a(nϑ)

nϑ
(ϑu′(qϑ) − βE[u′(c′)]) = βE[(ezfk(K

′,H ′) − δ)u′(c′)] (58)

Substituting (57) into the first order condition with respect to nϑ, we find,

η(ϑu(qϑ) − ϑu′(qϑ)qϑ) − (1 − η)(ϑu′(qϑ)qϑ − βE[u′(c′)]qϑ) = 0, (59)

Condition (58) is very intuitive, it says that the return on a unit invested in the

decentralized market should equal the return when it is invested as capital.
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From the proof of Lemma 1, we know that nonbinding qϑ can be chosen by a high

enough Ẽφ′ or low enough 1+$. Choosing 1+$′ such that the cash constraint will

not bind when the money market clears at m̃ = 1 and dϑh
= 1 for the highest shock

ϑh, is our version of the Friedman rule11 What we want to show is that this indeed

yields the same allocation as the social planner’s problem solved above. Thus, the

Friedman rule in our model dictates

ϑu′(qϑh
)qϑh

= βE

[
φ′

1 +$′
u′(c′)

]
dϑh

= βE

[
φ′

1 +$′
u′(c′)

]
,

where qϑh
follows from (52). Equations (52) and (107) are equivalent by construction.

Note that φu′(c) = βE

[
φ′

1+$′u′(c′)
]
. What is left to show is that (57) is equivalent

to the zero profit condition of retail firms, which follows from dividing (57) by u′(c).

Result 2. Constrained-efficiency is reached at the Friedman rule.

Result 3. (qϑ, nϑ) is constrained-efficient for all non-binding shocks ϑ

This result, a strengthening of result 1, states that as long as the cash constraint

does not bind for a shock ϑ, in equilibrium qϑ, nϑ are constrained-efficient; they are

not affected by the value of βẼφ′ as long as the cash constraint stays non-binding.

Any change in βẼφ′ is offset by a proportional change in dϑ. The result follows from

the fact that equation (107) holds for every non-binding shock.

2.8.4 Nominal Wedge and Search Wedge: Differences from First-Best

Two types of frictions in the model create wedges relative to the unconstrained

first-best allocation: the binding cash constraint that stems from the idiosyncratic

shocks to liquidity need, and the search frictions. Search frictions imply that there is

a chance that goods will not be sold in the decentralized market, but only in the next

centralized market. The expected value today of a good in the centralized market

tomorrow is 1/(1 + rt). The constrained-efficient allocation takes into account this

possibility of not matching.

Rewriting (57) in terms of (expected) interest rates, we find in the constrained-

efficient case:

ϑu′(qϑ)

u′(c)
=

1

1 + r
+

nϑ

a(nϑ)

r

1 + r
(60)

11Choosing consistently a level of 1+$ even lower than the one dictated here is inconsistent with

equilibrium, as the value of money will explode and exceed feasibility at some point. This situation

is avoided if we choose $′ such that the highest shock is not binding (in the sense that if an agent

had more money he would not spend one bit more), but dϑh
= 1.
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We call the right-hand side of this expression the search wedge. The term nϑ
a(nϑ)

is 1, when the retail firms are certain to match12 . In this case, ϑu′(qϑ) = u′(c),

and the constrained-efficient allocation coincides with the first-best allocation (in

the absence of frictions). The lower the probability of matching for retail firms, the

higher nϑ
a(nϑ) , the inverse of the firm’s matching rate, and the higher the ratio ϑu(qϑ)

qϑ
.

Now, consider the case of positive nominal interest rates. From the firm’s zero

profit condition, we derive

dϑ

qϑ
=

(
1 + i

φ

)(
nϑ

a(nϑ)

r

1 + r
+

1

1 + r

)
. (61)

Here, the price paid per decentralized market product equals the price per product

paid in the centralized market times the nominal interest rate – which is the nominal

wedge created by the possibility of binding liquidity shocks – times the search wedge.

(Notice that if 1 + i = 1, then the only remaining wedge is the search wedge.) If we

now substitute this condition into (42) and (43), we see first, for nonbinding shocks

that qϑ is such that

ϑ
u(qϑ)qϑ
u′(c)

= βẼφ′dϑ =
φdϑ

1 + i
,

which leads to

ϑu′(qϑ)

u′(c)
=

1

1 + r
+

nϑ

a(nϑ)

r

1 + r
, (62)

hence the wedge equals the constrained efficient wedge for nonbinding shocks. Notice

that for non-binding shocks, the nominal wedge does not play a role. For binding

shocks, from (42), we get, in the case of one binding shock,13

ϑu(qϑ)

u′(c)
=

(
1 +

i

P(ϑ)a(nϑ)

)(
nϑ

a(nϑ)

r

1 + r
+

1

1 + r

)
. (63)

2.8.5 Precautionary Demand for Money and Dynamic Behavior

In this section we discuss the impact of precautionary demand for liquidity on dy-

namic responses in the value of money, velocity and interest rates.

12Faig and Jerez (2005) study trade in which goods sold in a decentralized sector are produced

beforehand. Their model, however, assumes that upon sale goods are taken from a centralized pile

in the household. Applying the law of large numbers and without aggregate uncertainty, the size

of the pile will exactly match the number of goods sold. In this case, there is no search wedge,

and therefore no dependence of decentralized consumption on the real interest rate (given also the

quasi-linear utility)
13This maps directly into predictions one would get for a non-search version of this model, i.e.

for a stochastic cash-credit good model, where for a non-binding shock, the MRS between cash and

credit goods would be 1, and for binding shocks the MRS would be 1 + i/P(ϑ).
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Dynamic Behavior of the Value of Money An important dimension of a

monetary model, even more so in a model with fiat money, is how the value of money

today is affected by the value of money in the future. Empirically, the pattern is

that expectations of future inflation lead to (weakly) higher prices in the present.

In monetary models, this monotonicity is not a guaranteed outcome; indeed, it is

relatively easy to construct models where higher value of money tomorrow lead to

a higher value today, which in turn would lead to a lower value of money yesterday

etc.14 In this section we investigate the impact of changes in next period’s value of

money on today’s value of money.

Lemma 4. If RRA is close to or greater than 1, for realizations of ϑ where the cash

constraint binds, the elasticity of qϑ with respect to small changes in tomorrow’s

value of money Ẽφ′, ε
qϑ,βẼφ′

, lies between 0 and 1.

The proof is in the appendix.

Let us look further at the effect of an increase in the value of money tomorrow on

the value of money today. This is given by

φ =
∑

{ϑ}b

(
P(ϑ)a(nϑ)

(
ϑu′(qϑ)qϑ − βEφ′

))
+ βφ′, (64)

for binding ϑ’s, ϑ ∈ {ϑ}b, from (42). A look at this equation tells us that the

behavior of φ in response to βφ′ will depend on the effect of the latter on u′(qϑ)qϑ.

Now, εu′(q)q,q = 1 −RRA(q), and since εq,βφ′ > 0, it follows that

εu′(qϑ)qϑ,βφ′ < 0, if RRA(qϑ) > 1.

This means that for utility functions with RRA > 1, if there was certainty about

matching, and about facing a shock leading to a binding constraint, the value of

today’s money would fall in response to a rise in the value of money tomorrow. The

reason is that decreasing marginal utility is strong enough to outdo the fact that one

unit of money will buy more consumption (where all inframarginal units of money

buy more consumption as well). However, because of both the match uncertainty and

the idiosyncratic preference uncertainty, money is not used with a given probability,

in which case an increase in tomorrow’s value directly translates into an increase in

value today. Thus, we have two opposing forces here: the marginal value of money

when used decreases, but the value of money when not used increases.

14This can give rise to a high volatility of velocity, but yields unrealistic time series of inflation

and nominal interest rates (see e.g. Hodrick et al. 1991). Therefore a theory which aims to account,

for example, for the volatility of velocity in the data should not be built on this non-monotonicity.
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Precautionary Demand and Velocity With idiosyncratic preference shocks

the marginal dollar will in many cases not be spent. From the previous theoretical

analysis, we know that for a non-binding shock ϑ the transacted quantities of goods

in the decentralized market will not be affected by changes in the value of money in

the next centralized market, or by the changes in the nominal interest rate between

today’s and tomorrow’s centralized market. What will adjust is the price, however.

From (51), we find that

dϑ =
ϑu′(qϑ)qϑ
U ′(c)

1

βẼφ′
,

which means that the amount of money spent in the decentralized market in the

case of a nonbinding shock is directly proportional to the expected price of goods in

the next centralized market.

Note that dϑ also measures the contribution towards velocity of money spent in

decentralized trade by households with shock realization ϑ. Velocity in our model

is defined as follows:

Vy =
y

φ
+

5∑

i=1

P(ϑi)a(nϑi
)(dϑi

−
qϑi

φ
) (65)

Vc =
c

φ
+

5∑

i=1

P(ϑi)a(nϑi
)dϑi

(66)

These measures of output and consumption velocity take into account production

and value added, as well as consumption, in both centralized and decentralized

markets. From these definitions, it is clear that a lower expected future price of

money βEφ′ also increases velocity. Figure 1 illustrates the effect of a decrease in

βEφ′ on spending for three hypothetical realizations of the ϑ shock, where the top

shock ϑ3 results in a binding cash constraint.

m = 1

ϑ3ϑ1 ϑ2

dϑ1
(βEφ)

dϑ1
(βEφ′) dϑ2

(βEφ)

dϑ2
(βEφ′)

dϑ3
(βEφ) = dϑ3

(βEφ′) = 1

βEφ > βEφ′

Figure 1: Money spent in decentralized market

27



Precautionary Demand and Nominal Interest Rates In equilibrium, the

nominal interest rate equals φ

βẼφ′
, and thus is a function of today’s value of money as

well. Today’s value, in turn, equals tomorrow’s discounted expected value of money

if the marginal dollar is not used (which happens with probability 1 − P(ϑh)a(nh
ϑ),

where ϑh is taken to be the highest preference shock which is assumed here to

lead to the only binding constraint), plus the value of bringing one more dollar

to a successful ϑh match (which happens with probability a(ϑh)P(ϑh)). Thus the

response of today’s value of money to a change in tomorrow’s value of money depends

on the probability of having a ‘binding’ preference shock and matching. How strongly

interest rates respond to money injections and other shocks is thus a function of these

probabilities: the less likely matching is in the case of a ϑh realization, the closer the

response of the equilibrium price of money today is to price changes tomorrow. As a

result, nominal interest rate move less in response to one-time unexpected changes

in the value of money, ceteris paribus.15

2.9 Equilibrium System of Equations

To summarize the above discussion, the system of equations that characterizes the

equilibrium of this model is given by (41), (42), (43), together with (31),(30), the free

entry condition for retail firms (16), the law of motion forG, and the exogenous shock

process (19), while the aggregate feasibility constraint (22) holds, and all individual

hi’s are feasible. In equilibrium, aggregate variables, which we capitalized before,

equal many of the individual variables; we proceed to use the lower case for them.

We also now use the last equality in the bond pricing equation (33) to simplify the

system further, by replacing the stochastic pricing kernel of nominal bonds, βẼφ′,

with φ/(1 + i). Finally, we abbreviate notation by making implicit the dependence

of all endogenous variables on the states of the model.

15When comparing steady states, the lower the probability of facing a binding cash constraint,

the more decentralized quantities in the binding case and steady state φ∗ will respond to changes

in money growth, ceteris paribus. In steady state, nominal interest rates will move one-for-one with

the money growth rate, equalling (1 + $) 1−β
β

.
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The system of equations to be solved is thus:

U ′(c) = βE[U ′(c′)(1 + ez
′

fk(k
′, h′) − δ)] (67)

U ′(c) =
A

ezfh(k, h)
(68)

η

(
ϑ
u(qϑ)

U ′(c)
−

φ

1 + i
dϑ

)
φ

1 + i
dϑ − (1 − η)

(
φ

1 + i
dϑ − βẼqϑ

)
ϑu′(qϑ)qϑ
U ′(c)

= 0 ∀ϑ

(69)

∑

ϑ

(
P(ϑ)a(nϑ)

ϑu′(qϑ)qϑ
U ′(c)dϑ

− P(ϑ)a(nϑ)
φ

1 + i

)
+

φ

1 + i
− φ = 0 (70)

(
ϑu′(qϑ)qϑ
U ′(c)dϑ

−
φ

1 + i

)
(m̃− dϑ) = 0,

ϑu′(qϑ)qϑ
U ′(c)dϑ

≥
φ

1 + i
, and dϑ ≤ m̃, ∀ ϑ (71)

qϑ =

(
a(nϑ)

nϑ

)
φ

1 + i
dϑ +

(
1 −

a(nϑ)

nϑ

)
βẼqϑ, ∀(qϑ, dϑ, nϑ), (72)

g′ =
∑

ϑ

P(ϑ)(nϑ − a(nϑ)qϑ (73)

g + ezf(k, h) + (1 − δ)k = c+ k′ +
∑

ϑ

P(ϑ)nϑqϑ (74)

[z′, i′] = Ξ[z, i, π, y] + [ε′1, ε
′
2] (75)

3 Calibration

The model period is a quarter. The functional forms that we choose are as follows:

U(c) =
c1−σ

1 − σ

u(q) =
x1q

1−σ

1 − σ
+ x2

f(k, h) = kθh1−θ

m(s, b) =
sb

(sκ + bκ)
1
κ

Note that this choice of the matching function, due to Den Haan, Ramey and

Watson (2000), guarantees that matching probabilities cannot exceed 1, but at the

cost of a varying matching elasticity η.

In terms of parameterizing the model, the ultimate goal is to employ information

not only in aggregate data, but also in micro data, to calibrate the model. For

example, the model gives us predictions on retail markups and inventories - thanks

to the fact that we model the retail sector with explicit search frictions - that we

want to exploit in mapping it to the data. We will do this calibration by simulated

method of moments. As the full estimation exercise is in itself involved, we begin
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with a more basic calibration, where we target the steady state aggregate properties

of the economy as is standard in the RBC literature. The complication comes from

the addition of the nominal side, which requires taking some stands on parameters

as described below.

In total, we need to calibrate the following parameters, given our functional

form choices: on the real side, we have β, σ, A, θ, δ. On the nominal side, the

parameters to calibrate are x1, x2 and κ. We also have to calibrate the process for

the idiosyncratic shock ϑ. Finally, Ξ, which is a 2×4 matrix, the standard deviations

σε1 and σε2, as well as the covariance of the two shocks, σε1,ε2 have to be calibrated

to parameterize the real and monetary aggregate shock processes.

We parameterize the model as follows. β = 0.9901 matches the annual capital-

output ratio of 3. σ = 2 is chosen within the standard range of 1.5-3 in the literature.

A = 34 is chosen to match aggregate labor supply of 0.3, given the other parameter

choices. θ = 0.36 is the capital share of output as measured in the data. δ = 0.02

gives quarterly depreciation rate of 2%, consistent with existing estimates in the

data.

The constant x1 = 6 is chosen to set the size of the retail market at 75% of

total consumption, consistent with the data, found in Telyukova(2008), that roughly

75% of consumer transactions, in terms of value, take place using liquid payments

methods - cash, checks, and debit cards. Parameters x2 and κ jointly influence the

buyer-seller ratio (and thus, the matching probabilities) in the decentralized market,

as well as the values of q and d, and hence the markups in the decentralized market.

We fix κ = 2.0 for now, and set x2 = 35. These give us steady-state markups of 3-8%

in the retail submarkets, which is on the low side of the 18-45% range that surveys of

retailers find (see, for example, Faig and Jerez (2006)). The understatement of the

size of the markups will dampen the results for the dynamics of nominal variables,

thus giving us the idea of the lower bound of what the model can do. In final

calibration (SMM), we will set the parameters to match micro estimates of markups

(and micro data properties of inventories) to pin down the parameters above.

To calibrate the process for the preference shock, as a first pass, we use micro-

data estimates from Telyukova (2008), which estimates a similar preference shock

process by matching time series properties of survey data on liquid household expen-

ditures. In that paper, liquid consumption is measured in the Consumer Expenditure

Survey (CEX). Its time series properties (average monthly autocorrelation and stan-

dard deviation across households) are computed in the data. These moments are

then used as a target for corresponding simulated moments in the model. We will

re-estimate the process within our own model later on. For now, we will assume

that the shocks are i.i.d., with the shock realizations and probabilities given by

the stationary distribution of shocks as calibrated in Telyukova(2008). The above

discussion is summarized in tables 1 and 2.

Finally, we calibrate technology and monetary policy shocks. We model these as
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Table 1: Calibration

β σ A θ δ x1 x2 κ

0.990 2 34 0.36 0.02 6 35 2

Table 2: Preference Shock Process

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 P(ϑ1) P(ϑ2) P(ϑ3) P(ϑ4) P(ϑ5)

0.34 0.58 1 1.73 2.98 0.07 0.24 0.38 0.24 0.07

a joint stochastic process, and parameterize it by estimating a VAR of the following

form:

zt = ξzzzt−1 + ξzi ln

(
1 + it−1

1 + ī

)
+ ξzπ ln

(
1 + πt−1

1 + π̄

)
+ ε1

ln

(
1 + it
1 + ī

)
= ξii ln

(
1 + it−1

1 + ī

)
+ ξiπ ln

(
1 + πt−1

1 + π̄

)
+ ξiy ln

(
y

ȳ

)
+ ε2

where the Solow residual is measured in the standard way, and we take out the

linear trend from both the Solow residual and the output series. The variables with

bars over them capture long-term averages of the respective variables in our sample

period, as is standard in estimating central banks’ targets in policy rules. The

sample of data on which we estimate this process is from 1984 until 2007, to capture

the period when the Federal Reserve is perceived to have begun using (implicit)

inflation targeting. Notice that our productivity process and the interest rate rule

both depend on endogenous variables. We use the Federal Funds rate as the measure

of choice of interest rates in the data. The resulting VAR coefficients are in table 3.

To conclude the discussion of our calibration, we want to highlight an additional

important reason to model precautionary demand for money, to complement the

discussion in section 2.8.5. It is standard in the monetary literature to calibrate

the model to the aggregate money demand equation. Our stance is that under

such calibration, omitting the precautionary motive for holding liquidity may have

misleading results. Idiosyncratic preference shocks for liquidity imply that in the

Table 3: VAR Estimates of the Aggregate Shock Process, 1984-2007

ξzz ξzi ξzπ ξii ξiπ ξiy σε1 σε2 σε1,ε2

0.937 -0.144 0.060 0.780 0.120 0.008 0.004 0.001 -0.0000002
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cases where a shock does not lead an agent to spend all of his money, the percentage

of the available money budget spent goes up in response to an increase in prices,

thus contributing to a higher velocity, as discussed at the end of the theory section.

If precautionary demand is empirically relevant and a model without precautionary

demand for money is calibrated to the empirical money demand equation, assigned

parameter values are affected, and the model may not be correctly mapped to data.

The reason is that in models such as the standard cash-good credit-good model there

are only two cases: either a good is sold as a credit good, or as a cash good with

a binding cash constraint.16 Hence such a model has no agents with non-binding

shock realizations who carry money over from period to period, contrary to the data.

The binding cash constraint means that the contribution to velocity (conditional on

matching in a search model) is always the same in the decentralized or cash market.

Thus, all action for velocity in models without precautionary money demand comes

from the centralized market.

With idiosyncratic preference shocks, velocity in the decentralized market is

affected by the interest rate, and hence part of the dynamics of velocity originates

in the decentralized market. If we choose parameters in a CGCG model to match

the money demand equation, we thus choose them such that all velocity movement

will occur in the centralized market, potentially leading to the wrong implications.17

One such implication is that the parameters that match the money demand equation

also govern the size of the decentralized market (see Lagos and Wright 2005, among

others), and forcing all velocity movement to originate in the centralized market

could make the decentralized market smaller than it should be, given data. It may

also decrease the assigned rate of relative risk aversion or matching probabilities.18

16We do not consider here the information structure where shocks realize such that in rare cases

the cash-constraint does not bind. Hodrick et al. 1991 argue that this channel is empirically

irrelevant.
17As demonstrated by Wang and Shi (2006), a search model with variable search intensity, as

opposed to one with fixed matching probabilities, similarly causes some of the velocity movement to

originate in the decentralized market, with similar implications for calibration. That is, a model with

fixed matching probabilities, calibrated to total money demand, may have misleading implications.
18This can be seen relatively straightforwardly in Lagos and Wright, with linear production

technology c(q) = q and assigning all bargaining power to the buyers. In this case, in the bargaining,

we find that q = φ (using equilibrium outcome m = 1, and noting that the discounting takes place

after the centralized period, unlike in this paper), and hence equation (22) becomes u′(φ) = 1 + i
σ
,

where σ is the matching probability as a buyer. In the centralized market U(X, h) = B ln X − h,

and since optimally, we have that X = B, velocity is given by V = B/φ + σ. Using u(x) = q1−η

1−η
,

we can derive steady-state velocity as V = B
(
1 + i

σ

)1/η
+ σ, and the elasticity of inverse velocity

with respect to i as −d ln V = B
ηV

(
1 + i

σ

) 1

η−1

(
1
σ

)
, where B

ηV

(
1 + i

σ

) 1

η−1 = B/φ
(B/φ)+σ

is the relative

size of the centralized market. If precautionary balances are empirically relevant, and we would

calibrate to the money demand equation, we would mistakenly assign the velocity fluctuations to

the centralized market, and as a result increase the size of the centralized market, decrease the

matching probability σ, or the coefficient of relative risk aversion η (or a combination of those

things).
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4 Computation

We employ the Parameterized Expectations Approach (PEA) to solve the model.

The main idea of the method is to approximate the expectations terms in our Euler

equation system (67)-(75) - two in total - by polynomial functions of the state vari-

ables. The coefficients of the polynomials form the basis of an iterative approach

pioneered by Den Haan and described in our context below. In order for the al-

gorithm to converge, we need a good first guess of these coefficients, which we will

derive by using a version of homotopy - that is, by first solving a second-order ap-

proximation of the model and deriving the first set of polynomial coefficients from

the solution.

In particular, let χt denote the state variables of the problem (known at time t

that help predict the expectations terms), ζt denote all the endogenous and exoge-

nous variables that appear inside the expectation terms, and ut denote the shocks

of the problem. We have

χt = {gt, kt, zt, it−1, φt−1(1 +$t−1)}

ζt = {kt, ht, nt, qt, dt, φt, gt, zt}

ut = zt, it.

Note that ct does not appear in ζt because it can be determined from the other vari-

ables and the budget constraint. The variables we are solving for are {ct, kt+1, ht, nt, qt, dt, φt, gt}.

The approximating functions for the expectation terms are always just functions

of xt. We choose the following forms:

E

[
(c′)−σ(1 + ez

′

θ(k′)θ−1(h′)1−θ − δ)
]

= ψ1(χ, ; γ1) (76)

E

[
1

w′

]
=

Ẽ

w
= ψ2(χ; γ2)

where, for example,

ψj(χ; γj) = γj
1 exp(γj

2 log g + γj
3 log k + γj

4z + γj
5 log i−1 + γj

6 log[φ−1(1 +$−1)])

The accuracy of approximation can be increased by raising the degree of ap-

proximating polynomials above. We now substitute the expressions in (76) into the

system of Euler equations, to obtain the system of equations that we use in solving

the model. The full iterative algorithm is described in the appendix.

5 Results

5.1 Contributions of Preference Shocks

In order to demonstrate what precautionary demand for money does for dynamics

of nominal variables in our model, we compute two versions of the model - the
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Table 4: Dynamic Properties of the Model - Comparison of Model With and Without

Preference Shocks

Moment Data No-Shock Model Full Model

E(Vy) 1.897 1.560 1.156

E(Vc) 1.120 1.210 0.882

σ(Vy) 0.017 0.009 0.015

σ(Vc) 0.014 0.0002 0.012

σ(y) 0.009 0.011 0.010

σ(1 + i) 0.003 0.001 0.002

corr(Vy, y) 0.638 0.997 0.595

corr(Vc, y) 0.447 -0.823 0.005

corr(Vy, gy) 0.059 0.260 0.106

corr(Vc, gy) -0.094 -0.288 -0.068

corr(Vy, 1 + i) 0.714 -0.072 0.821

corr(Vc, 1 + i) 0.688 -0.420 0.998

corr(1 + π, 1 + i) 0.529 0.778 0.760

All data logged and BP filtered. Data period: 1984-2007. Velocity

moments calculated based on M2. Interest rate is the Fed Funds

rate. Inflation measured based on GDP deflator. gy refers to out-

put growth. “No-Shock” model is the version of the model with

idiosyncratic preference shocks shut down.

one described above, and a version where we shut down the idiosyncratic shocks,

thus shutting down precautionary motive for holding money. We focus for now on

the dynamics of two measures of velocity of money - production and consumption

velocities. We measure both based on the M2 aggregate in the data, to follow the

previous literature on the subject. In the data, the measures are

Vy =
NGDP

M2

Vc =
PC

M2
,

where we measure NGDP and nominal consumption of nondurables and services

from NIPA data. In the model, the corresponding measures are given in (65) and

(66).

Table 4 summarizes the results concerning the dynamic properties of some key

nominal variables. It is important to emphasize that we are not targeting any of

these moments in choosing the parameters of the model. As is clear from the table,

introducing precautionary motive for holding money into our model makes an enor-

mous difference for the performance of the model: without it, the model is not able
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to capture any of the moments in the data, while introducing precautionary demand

makes the model align quite successfully on nearly all of the dimensions listed. We

over-predict correlation of consumption velocity with gross nominal interest rates,

and, on a related note, underpredict volatility of nominal interest rates, but we do

better on these moments with the preference shocks than we would without, and

aside from these moments, our model is at least in the ballpark of the data numbers.

This is encouraging, as our calibration is not complete, so we do not expect to be

capturing all of the moments yet.

The main contribution of the preference shocks in the model - that is, of intro-

ducing the precautionary motive for holding money - is that it adds dynamics to

velocity of money that would not be there otherwise. This is what leads to the vast

difference in the results of the two models in the table above, especially in moments

like volatility of velocity and correlation of velocity with interest rates. This is fur-

ther clarified by the impulse response functions generated by the model, shown in

figures 1 through 4 below. These figures show the response of market tightness, con-

sumption and money spent in the decentralized market, as well as of real variables

in the centralized market, to, respectively, an orthogonalized monetary policy shock

(figures 1,2) and an orthogonalized productivity shock (figure 3, 4). Notice that the

discussion that follows of impulse responses can be linked to our the discussion of

the nominal wedge in section 2.8.4, which only affects consumption of agents who

are constrained in their preference shock realization.

We have two types of agents in the model - those who face binding preference

shocks (ϑ5, with corresponding consumption levels q5 and money spending d5 in the

decentralized market), and those who face non-binding shocks (in the model, shocks

ϑ1 − ϑ4). Those whose shocks are binding always spend all of their money. Thus,

in response to a decrease in the value of money (through a positive nominal interest

rate shock, for example, figure 1), when prices of consumption goods increase, these

agents are constrained in terms of how much money they spend - they cannot respond

to increased prices by spending more money, so their consumption responds, just as

the nominal wedge would predict, while their money spending does not. Hence, the

fall in the impulse response for q5, with the flat line (not shown) for d5. In contrast,

those who are not constrained (all remaining shocks) always attain their optimal

consumption levels (they have no nominal wedge affecting their marginal rate of

substitution between centralized and decentralized market goods). Thus, even with

a price increase that results from a monetary policy shock, they can maintain their

consumption levels, but respond by spending more of their money. Hence, there is

no response on impact in q1 − q4, but a pronounced increase on impact in d1 − d4.

This response in d contributes to a response of velocity of money to a change in

interest rates that would not be there if there were no precautionary demand motive

in the model: in that case, everyone’s decentralized-market consumption would go

down, as q5 does, with no adjustment in money spent or velocity, upon the impact
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Figure 2: Decentralized Market Impulse Responses to a Monetary Policy Shock, %

of Steady State
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Figure 4: Decentralized Market Impulse Responses to a Productivity Shock, % of

Steady State
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of the shock.

The dynamics of the decentralized-market variables in the quarters after the

shock hits are due to the interaction of productivity and interest rates. Even though

the shocks themselves are orthogonalized, the laws of motion for both the productiv-

ity shock and the interest rate rule have endogenous components. For example, the

nominal interest rate enters the productivity process with a negative coefficient. So

once interest rates increase due to a monetary policy shock, the level of productivity

drops, which in turn has propagation effects similar to what a negative productivity

shock would do. Namely, once the productivity level drops in the quarters following

the monetary policy shock, it has negative effects on output, investment and con-

sumption in both centralized and decentralized markets (see figure 2). This is where

the subsequent drop in q1− q4 comes from in figure 1. As the interest rates decrease

and the productivity level starts to recover, prices in the decentralized market de-

crease, allowing both constrained and unconstrained individuals to increase their

consumption, while those who are unconstrained also decrease their spending.

Responses to the productivity shock, upon impact, are of similarly diverse nature

for those who are constrained and those who are not. When the productivity shock

hits, everyone wants to consume more, as prices of decentralized-market goods have

fallen. This is reflected in the fall on impact of d1 − d4 and the increase on impact

of q1 − q5. Again, notice that this creates a dynamic response of velocity of money

that would not occur if all the individuals were equally constrained: in that case,

only their consumption would respond. In the quarters following initial impact,

the increase in output that has resulted from the high productivity shock (figure 4)

feeds into the interest rate rule, causing prices to rise, which in turn means that con-

strained households decrease their decentralized-market consumption q5 much more

rapidly than the unconstrained households, while the unconstrained can continue to

increase their consumption optimally along with their spending. The hump-shaped

response in both the centralized- and decentralized-market consumption is standard

in the business cycle literature, in response to productivity shocks.

To sum up, the impulse response functions so far discussed highlight the role of

preference shocks in producing a dynamic response in velocity that would not be

present in the model had everyone’s demand for money been deterministic. This is

what gives the model the much-improved match to moments listed in table ??.

5.2 Contributions of Search Frictions

Just as in the above section, we can now discuss the contribution of search frictions

to the results in our model. To this end, we compute a version of our model where

we shut down the search frictions. Table 5 compares the moments from this model

to the full model. As is apparent, while the search frictions help the model account

for the moments in the data (that is, the no-search model does slightly worse on
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Table 5: Dynamic Properties of the Model - Comparison of Model With and Without

Search Frictions

Moment Data No-Search Model Full Model

E(Vy) 1.897 1.190 1.156

E(Vc) 1.120 0.907 0.882

σ(Vy) 0.017 0.013 0.015

σ(Vc) 0.014 0.011 0.012

σ(y) 0.009 0.008 0.010

σ(1 + i) 0.003 0.002 0.002

corr(Vy, y) 0.638 0.497 0.595

corr(Vc, y) 0.447 0.005 0.005

corr(Vy, gy) 0.059 0.105 0.106

corr(Vc, gy) -0.094 -0.044 -0.068

corr(Vy, 1 + i) 0.714 0.869 0.821

corr(Vc, 1 + i) 0.688 0.999 0.998

corr(1 + π, 1 + i) 0.529 0.768 0.760

All data logged and BP filtered. Data period: 1984-2007. Velocity

moments calculated based on M2. Interest rate is the Fed Funds

rate. Inflation measured based on GDP deflator. gy refers to out-

put growth. “No-Search” model is the version of the model with

the search frictions shut down.

most moments), this effect is not very dramatic quantitatively. It appears that

search frictions alone do not add very much to the dynamics of nominal variables in

question.

Figure 5 compares the impulse responses of the real variables to a monetary

policy shock in the models with and without search frictions. As is apparent from

these responses, the search model amplifies somewhat the impact of a monetary

policy shock on real variables. For example, the initial response of investment to a

monetary shock is six times larger in the model with search than without. Smaller

differences are observed in the responses of consumption, labor and output. However,

since in either of the models, the real responses to monetary policy shocks are small,

this amplification is also small in absolute terms. From this discussion and table 5,

these preliminary results seem to suggest that the search wedge discussed in section

2.8.4 does not seem to be very large quantitatively, given our current calibration.

The most interesting, and possibly quantitatively significant, potential contri-

bution of the search frictions is that they generate both retail markups (in the

prices that retail firms charge to households) and inventories (goods unsold by firms
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that did not manage to match). Figure 6 shows preliminary results on the impulse

responses of these variables, based on both orthogonalized productivity and orthogo-

nalized monetary policy shocks. For example, upon impact of a positive productivity

shock, inventories initially drop and then begin rising immediately. In the model,

this is explained as follows: as the productivity shock hits, output, investment in

capital and consumption all increase (as can be seen in figure 4), but consumption

and investment increase by significantly more than output (in the graphs, the im-

pulse responses are shown as percent of each variable’s steady state, so the numbers

are not comparable across series). This is because real interest rate also increases on

impact, making investment profitable, while making the opportunity cost of inven-

tory investment (participation in the decentralized market) more costly. In order

to finance the initial increase in investment, households deplete retail inventories

initially, but as marginal product of capital drops and investment begins to come

down, inventories build up. At the point where the real interest rate drops below

steady state level (near period 10), due to feedback effects of the interest rate rule,

inventories are built back up to steady state level and then overshoot, as the op-

portunity cost of inventory investment at this point is very low. The response of

inventories to the monetary policy shock can be analyzed similarly, and of markups

to either shock, can be analyzed similarly.

In terms of the direction of these impulse responses, a preliminary look at existing

research of cyclical behavior of inventories suggests that inventory investment is

countercyclical in the short run, and procyclical in the long run. Our model may

be confirming this finding, although we have to make decisions still on how to map

inventory investment in the data to retail inventories in our model. Our research on

markups is incomplete at this stage, and is work in progress. We can study markups

explicitly here, and use them in calibration as well (e.g. we plan to use sizes of

markups as a calibration target).

The analysis above also underscores a second point that is delivered to us by the

search setup: underlying all of the analysis is the fact that the real interest rate in

our model plays a role that it would not play in a reduced-form model. The real

interest rate here is the opportunity cost of participating in the decentralized market.

Namely, firms that decide to invest in goods to take to the decentralized market face

the tradeoff between doing so and investing in centralized-market capital instead,

thus earning the return r.

Finally, it is worth pointing out that this model, like most monetary models we

are aware of, cannot reproduce the short-term liquidity effect observed in the data:

a negative relationship between interest rates and money supply growth. In our

model this relationship is also positive.
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6 Conclusion

We study the aggregate implications of the significant precautionary demand for

money in the data, by incorporating it into a stochastic search model of money that

combines a real sector with a monetary sector in one economy. The presence of the

real sector allows us to incorporate a standard RBC setup with productive capital

and stochastic productivity shocks, while the monetary sector, which we model using

competitive search and view as a model of retail, allows explicit study of nominal

shocks.

Our first goal is to quantify how well precautionary demand for money does in

helping to answer a set of standing questions regarding dynamics of nominal vari-

ables. We focus in particular on dynamics of velocity of money, inflation and interest

rates. We find that relative to a model where demand for money is deterministic, the

precautionary motive has a dramatic impact on the ability of the model to replicate

facts in the data.

Our second goal is to understand how search models of money add to our under-

standing of the data relative to models of money that do not model search frictions

explicitly. We find that in our model, search frictions have discernible effects in help-

ing the model account for the moments of interest, and in amplifying real effects of

monetary policy, but these effects are not very large. The search frictions also give

additional implications that would not be present in a reduced-form model of money

- namely, implications for the cyclical behavior of retail inventories and markups.

Qualitatively, these seem important and interesting distinctions; the quantitative

evaluation of these implications is work in progress.
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APPENDIX

A Proofs

A.1 Proof of Household’s Value Function Properties, Prop. 1

The value of the problem is bounded by

supx U(x) + supq u(q)

1 − β
,

and hence we can find the finite supremum of the household’s problem. For any

history the constraint set is nonempty. Then, by Stokey and Lucas, section 4.1,

the solution(s) to the sequential formulation of the household’s problem and the

recursive formulation coincide, and the values of both problems coincide as well.

In the next paragraphs we show that the supremum is in fact attained, so we are

correct (if not a bit premature) to speak of a maximum, e.g. in (1).

We now want to derive the properties of the value function and characterize the

optimal policy function.

Define an operator T by

Tφ = max
{c,h,m̃,k′,sr,{(q,d,n)(ϑ)}}{
U(c) −Ah+ Eϑ

[
a(nϑ)

(
ϑu(qϑ) + βE[φ(k′,m′ − dϑ, g

′,K ′, G′, z′,$)]
)

+ (1 − a(nϑ))βE[φ(k′,m′, g′,K ′, G′, z′,$)]

]}
(77)

subject to

φm+ g + (1 + r)k + wh ≥ c+ φm̃+ k′ + srP
t
r (78)

dϑ ≤ m̃ ∀ ϑ (79)

qϑ =

(
a(nϑ)

nϑ

)
E
[
ρ(K ′, G′, z′,$)φ′(K ′, G′, z′,$)

]
dϑ

+

(
1 −

a(nϑ)

nϑ

)
E
[
ρ(K ′, G′, z′,$)

]
qϑ, ∀(q, d, n)(ϑ), ϑ, (80)

φ(K,G, z,$), w(K,G, z,$), r(K,G, z,$), ρ(K ′ , G′, z′|K,G, z) (81)

Pt
r(K,G, z,$),bq(K,G, z,$),bd(K,G, z,$),nr(K,G, z) (82)

m′ = m̃+ srnrbd (83)

g′ = srnrG (84)

K ′(K,G, z,$), G′(K,G, z,$)

z′ = ξz + ε′ (85)

h ∈ [0, 1] (86)
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Lemma A.1.1. T maps the space of continuous and bounded concave functions into

itself.

Proof. Given K,G, z, the fact that K ′, G′ in (19) are deterministic functions, and z

is a finite state Markov process, and the preference shock has a finite domain as well,

taking expectations with respect to K ′, G′, z′, ϑ over a continuous functions φ, a(n)

makes the expectation Eϑ[.] a continuous function as well.

The strictly increasing utility functions imply that the budget constraint holds

with equality. Moreover, from (80) d is a continuous function in q, n. The solution set

given k,m, g is nonempty (k′ = k, c = m+g, sr = 0, {(q, n)(ϑ)}Θ = {(0, 0)(ϑ)}Θ , h =

0 is feasible.) Given that we have transformed all constraints into equality constraint,

the upper bound on value of the portfolio P = {c, h, m̃, k′, sr, {(q, n)(ϑ)}}, and the

lower bound on debt (take e.g. the natural debt limit), the solution set is closed

and bounded in Euclidean space R
m (the space of {c, h, m̃, k′, sr, {(q, n)(ϑ)}}), and

hence compact-valued. Given any sequence {kn,mn, gn} converging to {k,m, g} we

can find

sup (1 + r(K,G, z))kn + φ(K,G, z)mn + gn −D = ς,

where D is the natural debt limit. We then know that each variable in the budget

constraint is bounded both from above and below, and is an element of a closed and

bounded interval (e.g. k′n ∈ [0, ς]. Hence, any sequence{cn, hn, m̃n, k
′
n, srn, {(qn, nn)(ϑ)}}

has a convergent subsequence as well. Taking the limits if each variable, we find that

the limits of these variables jointly satisfy the budget constraint and the money con-

straint (by the standard limit rules). Hence the limit of the sequence is feasible, and

hence the constraint correspondence is upper hemi-continuous.

To prove lhc, consider a (k,m, g) and a p(k,m, g). Let {kn,mn, gn}
∞
n=1 be a

sequence converging to (k,m, g). Construct a feasible sequence by keeping all vari-

ables that are at their lower bound at this bound in the sequence, and all other

non-state variables except one variable constant. Then, let this variable be deter-

mined by all other variables in the budget constraint, (this variable will be feasible

for n large enough, i.e. (kn,mn, gn) close enough to (k,m, g)). If all variables are at

their lower bound, then {kn,mn, gn}
∞
n=1 can only approach from above, and hence

the constructed sequence will still be feasible if we let one of the non-state variables

on the lower bound be determined by the budget constraint. Hence, lhc, and hence

continuous.

If φ is bounded, then given the boundedness of functions U(c), u(q), a(n), and

the restriction on h, h ∈ [0, 1] means that Tφ will be bounded as well. �

Lemma A.1.2. Mapping T defines a contraction in the space of bounded and con-

tinuous functions. T has a fixed point; and its fixed point is the solution to the

recursive equation.
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Proof. The last point is immediate; the second point follows from the completeness

of the space of bounded and continuous functions, and the application of Banach’s

fixed point theorem. Blackwell’s sufficient conditions are satisfied to show that T

defines a contraction. Define the argmax of the mapping T of a function φ1(k,m, g),

by a∗1 = {c1, h1, m̃1, k
′
1, sr1, {(q1, n1)(ϑ)}}, and the value of

T̃ (φ1, a1) ≡

{
U(c1) −Ah1+

Eϑ

[
a(n1(ϑ))

(
ϑu(q1(ϑ)) + βE[φ(k′1,m

′ − d1(ϑ), g′,K ′, G′, z′,$)]
)

+ (1 − a(n1(ϑ)))βE[φ1(k
′
1,m

′, g′,K ′, G′, z′,$)]

]}

�

Then if φ2 > φ1,

T̃ (φ2, a
∗
2) ≥ T̃ (φ2, a

∗
1) ≥ T̃ (φ1, a1),

for some feasible a∗2, in particular the arg max in (77) with functionφ2. Moreover

T̃ (φ1, a
∗
1) + βγ = T̃ (φ1 + γ, a∗1),

for each constant function γ, and discount rate 0 < β < 1.

Lemma A.1.3. T maps increasing functions in the space of continuous, bounded

functions into strictly increasing functions

Standard proof.

A.2 Spelling Out the Two-Subperiod Problem

Then, the maximization problem in the second subperiod, after the preference shock

has realized, can be written as

W
(
k′, m̃, sr, ϑ,K,G, z, {(q, d, n)}

)
=

max
{q,d,n}

{
a(n)

(
ϑu(qt) + βEV (k′,m′ − d, g′,K ′, G′, z′,$)

)

+ (1 − a(n))βEV (k′,m′, g′,K ′, G′, z′,$)

}
(87)
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subject to

d ≤ m̃

m′ = a(n)(m̃+ srnrbrd) + (1 − a(n))((m̃− d+ srnrbrd))

g′ = srnrbrq

brd(K,G, z),brq(K,G, z),nr(K,G, z)

G′(K,G, z,$),K ′(K,G, z,$),

z′ = ξz + ε′

where we have used that k′ is already determined. Agents take the entire vector of

submarkets with their equilibrium quantity-price-tightness(n) relation as something

that is given: this is why (q, d, n)(ϑ) appears in the value function. Variables m′, g′

denote the money and goods holdings after dividends are paid out at the beginning

of the next period; brq,brd the expectations about their quantity given that the

aggregate state at the beginning of this period was (K,G, z,$). The remaining

functions are the aggregate laws of motion.19

In the first subperiod, the value function is

V (k,m, g,K,G, z) = max
(q,d,n)(ϑ),k′,m̃,sr,c,h,

{
U(c) −Ah+ EW (k′, m̃, sr, ϑ,K,G, z, {(q, d, n)(ϑ)})

}

(88)

subject to

φm+ g + (1 + r)k + wh = c+ φm̃+ k′ + s′rP
t
r

qϑ =

(
a(nϑ)

nϑ

)
E

[
ρ(K ′, G′, z′,$)φ′(K ′, G′, z′,$)dϑ

]
+

(
1 −

a(nϑ)

nϑ

)
E

[
ρ(K ′, G′, z′,$)qϑ

]
, ∀ ϑ

(89)

φ(K,G, z,$), w(K,G, z,$), r(K,G, z,$), ρ(K,G, z,$),Pt
r (K,G, z,$)

G′(K,G, z,$),K ′(K,G, z,$)

z′ = ξz + ε′

h ∈ [0, 1]

where the household chooses multiple q, d, n to post, but without loss of generality

we can restrict ourselves to one such vector per realization ϑ; we subsequently in-

dexed these variables by the realization ϑ for which these submarkets will be visited.

Putting these two problems together we get the full-period problem in the main text.

19Note that we make the assumption, purely for convenience, that households first spread out

the share holdings over all firms of the same type, before buying more shares of the same firm. I.e.

the household always chooses to invest in nr firms, so the only control is the share of these firms

that households own, sr.
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A.3 Proofs for the Decentralized Market Maximization Problem

A.3.1 Proposition 2

Proof. Let us solve the case without idiosyncratic uncertainty. The proof for the

general case (with adjustment for the fact that money paid, dϑ can be nonbinding)

is very similar. Moreover, for ease of notation, denote u(q)/U ′(c) simply by u(q).

From the zero-profit condition of entry, we can derive the following relation between

n and (q, d)

a(n) =

(
βẼφ′d− βẼq

q − βẼq

) η
1−η

.

The problem (where we could incorporate the above relation, thus reducing the

choice variables) is to maximize

−φd+ a(n)(u(q) − βẼφ′d) + βẼφ′d

First order conditions are given by

a(n)

q

(
−

η

1 − η

βẼφ′d

βẼφ′d− βẼq

(
u(q) − βẼφ′d

)
+ u′(q)q

)
= 0 (90)

Notice the familiar

η(u(q) − βẼφ′d)βẼφ′d− (1 − η)(βẼφ′d− βẼq)u′(q)q = 0 (91)

implied by this first order condition. The first order condition with respect to d is

given by

−φ+ a(n)

(
η

1 − η

βẼφ′

βẼφ′d− βẼq

(
u(q) − βẼφ′d

)
− βẼφ′

)
+ βẼφ′ = 0 (92)

Second order conditions, evaluated at the point where both first order conditions

equal zero, are then given by

a(n)

q

(
−

η

1 − η

βẼφ′dβẼ

(βẼφ′d− βẼq)2

(
u(q) − Ẽφ′d

)
+ u′′(q)q + u′(q)

−
η

1 − η

βẼφ′d

βẼφ′d− βẼq
u′(q)

)
(93)

a(n)

q

(
η

1 − η

βẼφ′βẼq

(βẼφ′d− βẼq)2

(
u(q) − βẼφ′d

)
+

η

1 − η

βẼφ′d

βẼφ′d− βẼq
βẼφ′

)
(94)

a(n)

(
−

η

1 − η

(βẼφ′)2

(βẼφ′d− βẼq)2

(
u(q) − βẼφ′d

)
−

(βẼφ′)2

βẼφ′d− βẼq

)

+ a(n)
η

1 − η

βẼφ′

βẼφ′d− βẼq

(
η

1 − η

βẼφ′

βẼφ′d− βẼq

(
u(q) − βẼφ′d

)
− βẼφ′

)

(95)
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Note that from the first order conditions, it must be that u′(q)q ≥ βẼφ′d, with

equality iff φ = βẼφ′. Note that we can derive the conditions under which (95) and

(93) are negative, using (91) first for (93)

−
βẼq

βẼφ′d− βẼq
u′(q)q + u′′(q)q2 + u′(q)q −

η

1 − η

βẼφ′d

βẼφ′d− βẼq
u′(q)q (96)

For coefficient of relative risk aversion larger than 1, it follows. For (95),

a(n)

d2

βẼφ′d

βẼφ′d− βẼq

((
−u′(q)q − βẼφ′d

)
+

η

1 − η

(
u′(q)q − βẼφ′d

))
. (97)

The crossderivatives can be rewritten as

a(n)

dq

(
βẼq

βẼφ′d− βẼq
u′(q)q +

η

1 − η

βẼφ′d

βẼφ′d− βẼq
βẼφ′d

)
. (98)

We can find an upperbound of (95), since u(q) ≥ u′(q)q (as long as u(0) ≥ 0, this is

guaranteed)

a(n)

d2

βẼφ′d

βẼφ′d− βẼq

((
−u′(q)q − βẼφ′d

)
+

η

1 − η

(
u(q) − βẼφ′d

))
. (99)

= −
a(n)

d2

βẼφ′d

βẼφ′d− βẼq

(
u′(q)q + βẼφ′d

)
+
a(n)

d2
u′(q)q. (100)

= −
a(n)

d2

(
βẼq

βẼφ′d− βẼq
u′(q)q +

βẼφ′s

βẼφ′d− βẼq
βẼφ′d

)
< 0. (101)

Moreover, it now can be shown that the Hessian evaluated at the point where both

first order conditions are satisfied (101) and (96) are larger in absolute value than

(98) (ignoring the a(n)
.

term as we will be able to factor them out when evaluating

the determinant of the Hessian). Thus the second order conditions for concavity at

the points where the first order conditions hold, are satisfied.

It can be shown that there is no utility function that starts at 0, and has a

coefficient of relative risk aversion larger than 1 everywhere. Two solutions to the

problem of having a utility function with a high relative risk aversion with positive

values, simply shifting the standard CRRA function upwards (by adding a constant),

or shifting it upwards and to the left, so u(0) = 0. In the first case, we have to make

sure that u(q) > u′(q)q for the q’s picked in the first order conditions. Here follows

the proof:
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Let us try to prove that in the bargaining solution, whenever η < 0.5, we must

have u′(q)q < u(q). Suppose not. Start from the familiar condition

1 − η

η

u′(q)q

βẼφ′d
=
u(q) − βẼφ′d

βẼφ′d− βẼq
.

We must have u(q) > βẼφ′d as the outcome of bargaining, and hence

1 − η

η

u′(q)q

u(q)
<
u(q) − βẼφ′d

u(q) − βẼq
,

since the denominator is smaller, positive as u(q) > βẼq.

Given u′(q)q > u(q), and (1 − η) > η, it must be that the RHS of the above

equation is larger than 1. Moreover, since βẼφ′d < βẼφ′d, the LHS is smaller than

1. Contradiction. Hence, given our assumption about the bargaining power, it must

be that the bargaining solution is in the range of q’s which exhibit u(q) ≥ u′(q)q.

For the other solution, the utility function is given by, e.g.

u(q) =
(q + b)1−σ − b1−σ

1 − σ
.

In this case u(q) > u′(q)q because the function is strictly concave. However, the

degree of relative risk aversion approaches σ for q’s sufficiently away from 0, but

close to q = 0, relative risk aversion is lower than 1. Hence, it has to be checked

that for the q solving the first order condition, the RRA(q) is indeed larger than 1.

The restriction that η < 0.5 is not unintuitive: we see that with an ex ante

constant cost of bringing each unit to the decentralized market, the matching rate

depends only on the ratio d/q. If η/(1− η) > 1, there are increasing returns to d/q:

a doubling of the ratio more than doubles the probability of matching. If we choose

η sufficiently larger than 0.5, utility becomes unbounded, by letting d/q approach

infinitely, while both d and q become very small (but q at a faster rate), using that

the matching rate of buyers approaches infinity at the fastest rate. There are two

assumptions behind this: first that limq↓0 u
′(q) = ∞, and secondly that with the

usual Cobb-Douglas constant elasticity matching function, the matching probability

within one period is not bounded by one (on the contrary, it could go to infinity).

This has the effect of allowing multiple small matches to substitute for one large

one. If we rewrite the maximization problem as a function of d/q and q, it can be

derived that for any utility level, we can find a larger d/q and a smaller q that will

give higher utility.

On the other hand, if we had a fixed cost of retail firms to enter the decentralized

market, and production on the spot (as in RW), we would not have to worry about

the returns to scale of the buyer matching function, as the firms with high d/q, but

low d would not be able to recoup their fixed cost needed to enter. �
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A.3.2 Lemma 1

Proof. Take a ϑ; consider the nonbinding case: qϑ is fixed and a unique solution to20

ηϑu(qϑ) − ϑu′(qϑ)qϑ = −(1 − η)βẼqϑ < 0, (102)

as the RHS is decreasing and the LHS is increasing in qϑ. Money spent dϑ is given

by ϑu′(qϑ)qϑ = βẼφ′dϑ, which is a decreasing continuous function of βẼφ′. For the

binding cash constraint, dϑ = 1, and qϑ is given by

η(ϑu(qϑ) − βẼφ′)βẼφ′ − (1 − η)(βẼφ′ − βẼqϑ)ϑu′(qϑ)qϑ

ηϑu(qϑ) − (1 − η)ϑu′(qϑ)qϑ(1 −
Ẽqϑ

Ẽφ′
) = η(βẼφ′) > 0 (103)

Again, the LHS is an increasing function of qϑ, while the RHS is constant, so the qϑ
is unique. Moreover, it can be shown that qϑ is increasing with βẼφ′. To establish

continuity of the qϑ, dϑ choice, it is now sufficient to establish that for a βẼφ′ for

which both the unconstrained and constrained case give dϑ = 1, it is the case that

qϑ is the same in both cases (or equivalently, in the case that qϑ in the constrained

case equals the unconstrained qϑ, dϑ = 1). This follows from the fact that, at this

βẼφ′, it must be that ϑu′(qϑ)qϑ = βẼφ′ substitution then finds that both ’bargaining

conditions’ (102) and (103) are equivalent. Hence, qϑ, dϑ are continuous functions of

βẼφ′; it follows straightforwardly from (16) and the continuous matching rate a(nϑ)

that nϑ is a continuous function of βẼφ′. Finally, since µϑ is a continuous function

qϑ, dϑ, nϑ which in turn are continuous functions of βẼφ′, φ is a continuous function

of βẼφ′ as well. �

A.3.3 Lemma 2

Proof. In the unconstrained case, qϑ can be determined by solving21

η(ϑu(q) − ϑu′(q)q) − (1 − η)(ϑu′(q)q − βq)

We can derive the response dq
dϑ

from the above function as

dq

dϑ
= −

ηu(q) − u′(q)q

ηϑu′(q) − ϑu′(q) − ϑu′′(q)q + (1 − η)β
(104)

which can be rewritten as

dq/q

dϑ/ϑ
=

(1 − η)βq

ηϑu′(q)q − ϑu′(q)q − ϑu′′(q)q2 + (1 − η)βq
(105)

20For ease of notation, we have normalized the utility function by U ′(c).
21We will not write u′(c) in the general case, but normalize the utility function by it. I.e.

u(q) = uold(q)/u′(c). Furthermore, we redefined β to mean βẼ.
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Then
dq/q

dϑ/ϑ
=

1
ηu′(q)q−u′(q)q−u′′(q)q2

u′(q)q−ηu(q) + 1
(106)

If
ηu′(q)q − u′(q)q − u′′(q)q2

u′(q)q − ηu(q)
> −1,

q will indeed go up as ϑ goes up; or equivalently,

ηu′(q)q − u′(q)q − u′′(q)q2 > ηu(q) − u′(q)q

This means that

ηu′(q)q − ηu(q) − u′′(q)q2 > 0.

Next we substitute −(1−η) (ϑu′(q)q−βq)
ϑ

for ηu′(q)q−ηu(q). In the optimum, it must

be that ϑu′(q) ≥ 1, as 1 is the marginal cost of buying 1 unit for retailers (and

ϑu′(q)/u′(c) ≥ 1 in the non-rescaled version of the utility) in the optimum. Hence,

we can find that

−(1 − η)(ϑu′(q)q − βq) − ϑu′′(q)q2 > 0

which is satisfied if the following bound holds:

−
qu′′(q)

u′(q)
> (1 − η) > (1 − η)

(
1 −

β

ϑu′(q)

)
,

which means that the coefficient of relative risk aversion larger than 1 should suffice

for an increase in q in response to a change in ϑ.

The response of n depends on the response of d/q. From the optimization, we

have (βφ′d)/q = ϑu′(q). Using that βẼφ′d = ϑu′(qϑ)q, we find that

η(ϑu(qϑ) − ϑu′(qϑ)qϑ) − (1 − η)(ϑu′(qϑ)qϑ − βu′(c′)qϑ) = 0, (107)

and rewriting, we get

η(ϑu(qϑ)) + (1 − η)βu′(c′)qϑ = ϑu′(qϑ)qϑ

From this equation, if ϑ increases, and qϑ increases in response, then it must be that

the two terms on the LHS increase as well. Hence, ϑu′(qϑ)qϑ also goes up. But then

βẼφ′d goes up, which implies d goes up.

Let us now look at d/q: this goes up in the optimum if and only if ϑu′(q) goes

up. Again, calculate the elasticity

d ln ϑu′(q)

d ln ϑ
= 1 +

d lnu′(q)

d ln q

d ln q

d ln ϑ
(108)

Above, we have calculated d ln q
d lnϑ

already, and we will use it here. Continuing the

above,
d lnϑu′(q)

d lnϑ
= 1 +

qu′′(q)

u′(q)

d ln q

d ln ϑ
,
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d ln ϑu′(q)

d ln ϑ
= 1 −RRA(q)

d ln q

d ln ϑ
,

has the same sign, as long as quantity increases with ϑ (for which a sufficient con-

dition is RRA > 1 − η).
d lnϑ

d ln q
−RRA(q)

=
ηu′(q)q − u′(q)q − u′′(q)q2

u′(q)q − ηu(q)
+ 1 −RRA(q) (109)

=
u′(q)q

u′(q)q − ηu(q)
(η − 1 +RRA(q)) + 1 −RRA(q)

=
η

u′(q)q − ηu(q)
(u′(q)q − u(q) + u(q)RRA(q)) > 0

Thus, given RRA(q) > (1−η), we can show that this term is positive for any concave

function that starts at u(0) = 0 or u(0) > 0, since then u(q) > u′(q)q. Moreover, in

the proof of proposition 2 we establish that in fact u(q) > u′(q)q holds in different

utility functions as well.

Thus, we have derived relatively mild conditions under which a multiplicative

preference shock leads to more money being spend, more q being bought, and a

higher buyer matching rate. �

A.3.4 Lemma 3

Proof. Rewriting the ‘bargaining’ condition

η
(
ϑu(qϑ) − βφ′

)
βφ′ − (1 − η)

(
βφ′ − βqϑ

)
ϑu′(qϑ)qϑ = 0

as
η(u(qϑ) − βφ′

ϑ

u′(qϑ)qϑ
+

(1 − η)βqϑ
βφ′

= (1 − η).

Now, raising ϑ can only be offset by changing q to keep the RHS constant. If

RRA(q) > 1, lowering q will achieve this (u(q) and q will decrease while denominator

u′(q)q will increase), while raising q will not. Hence, at a higher ϑ we have lower

qϑ. Since dϑ/qϑ = 1/qϑ is increasing in ϑ among the binding ϑ’s, nϑ is increasing.

From (49) it follows that µϑ/P(ϑ) is increasing, as ϑu′(qϑ)qϑ increases with ϑ among

binding shocks. �

A.3.5 Lemma 4

Proof. Let us turn our attention to the effect of a change in the value of money

tomorrow on the value of money today, given that the money market clears. To save

notation, denote Ẽφ′ by φ′. To begin, note that the system of equations (41)-(43)
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is solved sequentially. First, (41) directly links φ′ with qϑ, then (42)-(43) link the

qϑ’s for which the cash constraint is binding with φ, given market clearing m̃. Since

shocks for which the cash constraint does not bind, do not influence the value of

money for marginal changes (and for larger changes the larger-order effects move

to amplify our conclusions) we can focus only on those shocks for which the cash

constraint is currently binding. First, we can directly calculate the impact of changes

in βφ′ on qϑ, by looking at the ’bargaining condition’ with a binding cash constraint,

η(ϑu(qϑ) − βφ′)βφ′ − (1 − η)(βφ′ − βẼqϑ)ϑu′(qϑ)qϑ = 0 (110)

Then, dqϑ
dβφ′ is given by

−η(ϑu(qϑ) − βφ′) + ηβφ′ + (1 − η)ϑu′(qϑ)qϑ

ηϑu′(qϑ)βφ′ + (1 − η)βẼϑu′(qϑ)qϑ − (1 − η)(βφ′ − βẼqϑ)(ϑu′′(qϑ)qϑ + ϑu′(qϑ))
(111)

The numerator is larger than zero, as η(ϑu(qϑ)−βφ′)βφ′ < (1−η)βφ′ϑu′(qϑ)qϑ; the

denominator is positive for a coefficient of relative risk aversion close to one or larger

than 1. Hence, not very surprisingly, an increase in φ′ will lead to more units being

transacted in the decentralized market (given that at market clearing and binding

m̃ = dϑ = 1). We can also calculate what happens to the ratio βẼφ′/qϑ.

dq/q

dβφ′/βφ′
=

−ηϑ(u(qϑ) − βφ′)βφ′ + η(βφ′)2 + (1 − η)ϑu′(qϑ)qϑβφ
′

(
ηβφ′ + (1 − η)βẼqϑ + (1 − η)(βφ′ − βẼqϑ)(RRA(qϑ) − 1)

)
ϑu′(qϑ)qϑ

(112)

It follows that this term is

εqϑ,βφ′ =
η(βφ′)2 + (1 − η)ϑu′(qϑ)qϑβẼqϑ(

ηβφ′ + (1 − η)βẼqϑ + (1 − η)(βφ′ − βẼqϑ)(RRA(qϑ) − 1)
)
ϑu′(qϑ)qϑ

< 1

(113)

since βφ′ < ϑu′(qϑ)qϑ and RRA(qϑ)− 1 > 0. Thus, we get the remarkably clean-cut

result that if prices go up, q goes up, but less than proportionally so: 0 < εqϑ,βφ′ < 1.

Since the elasticity of q with respect to φ′ is less than 1, it follows immediately that
βφ′−βẼqϑ

qϑ−βẼqϑ
goes up, and hence nϑ must go up as well.

From

φ =
∑

{ϑ}b

(
P(ϑ)a(nϑ)

(
ϑu′(qϑ)qϑ − βφ′

))
+ βφ′, (114)

we can calculate the elasticity of φ with respect to βφ′ as

To relate the equilibrium changes in φ to variation in φ′, we can calculate dφ
dβφ′

as

a(n)
du′(q)q

dφ′
+ (1 − a(n)) +

da(n)

dβφ′
(u′(q)q − βφ) (115)

�
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B Computational Algorithm

The full PEA algorithm is as follows:

1. Solve a linearized version of the model.

2. Use the decision rules of the linearized problem to find the initial set of pa-

rameters γ0 = {γ10, γ20, γ30}. This is done by solving nonlinear projections of

expectation terms computed from simulations on the polynomial approximants

of the expectation terms; denote the resulting parameters as vector ξ.

3. Nonlinear Model: set γ0 = ξ. Using γ0, simulate the economy, solving the

system of Euler equations. Assume first that the cash constraint does not

bind. If it does, re-solve the system under binding constraints.

4. Run the nonlinear projections to get a new estimate ξ.

5. Compare ξ and γ0. If they are close according to a chosen tolerance parameter,

we have convergence. If not, update γ1 = λξ+ (1− λ)γ0. Repeat from step 3.

6. Once we have the final estimates γ, we have the decision rules of the problem.
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