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Introduction

• Looks at the performance of broker-originated 
and lowdoc mortgages originated during the 
housing bubble

• An interesting and important question, since 
there was an explosion in the origination of 
these loans during the bubble, and they also 
defaulted at much higher rates
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• Previous work

– Many papers have taken the simple step of adding 
a dummy variable for lowdoc loans or broker 
originations to a delinquency model (e.g. Elul, 
2009). Generally associated with increased risk.

– Also, Garmaise (2009) has found that the 
relationship between broker and lender gets 
worse over time

– This paper uses a nice dataset that allows it to 
examine these loans in detail

3



Data

• 700,000+ loans originated by a single lender between January 
2004-Feb 2008.
– Represents almost all of this lender’s loans 

• This lender specialized in lowdoc and broker-originated loans
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• Advantages of looking at a single lender: 

– More uniform: less need to worry that differences 
in performance are due to differences in lenders’ 
underwriting. Less geographically diverse

• E.g. Elul (2009) finds an effect on delinquency rates of 
broker and lowdoc using McDash – to what extent is 
this due to the fact that the worst lenders originated 
these loans?

– Potentially have access to additional variables

• Income, age, cash reserves, first-time homebuyer, job 
tenure, race
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• Drawbacks
– How representative is this sample? 

• Less geographically diverse (mainly Southern CA.)

• Almost all loans are lowdoc/broker-originated. 
– So maybe the ones that were not are special in some way

• By contrast in McDash: 12% lowdoc, 43% broker

– Some key variables missing/not used: type of 
mortgage (ARM, optionarm, current balance),  interest 
rate, prime/subprime
• This can be important: lowdoc and broker loans are 4 times 

as likely to be Option-ARMs and 40% more likely to be ARMs 
(McDash). This may be driving some of the observed 
difference in delinquency rates.
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Are Lowdoc/Broker Loans Worse?
• Split data into four subsamples:

– Bank/Broker×FullDoc/LowDoc

• Observed Delinquency Rates: 

– Bank/Full: 13%;  Bank/Low: 18%; Broker/Full: 24%; Broker/Low: 32%

• Run separate delinquency models for each subsample and 
then decompose the difference in these delinquency rates 
into “Endowment “ and Coefficient” effects (next slide)

– Maybe should instead have started with a big regression that 
includes all loans, with dummies for lowdoc, broker, and maybe with 
further interactions (w/income, vintage, time)
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• Decomposition
– How much of the difference in delinquency rates 

is due to differences in observables [like lower 
FICO]  (“endowment”) vs. unobservables
(“coefficient”)?

– Results: Lowdoc: almost all “coefficient”. Broker: ¾ 
endowment, ¼ coefficient.

– Methodology (for a linear model): 
• Run separate regressions for each subsample

• Endowment: apply fulldoc coefficients to difference in 
average observables between fulldoc and lowdoc. 

(Xfull-Xlow)βfull

• Coefficient: what’s left over. Xlow(βfull – βlow).

• Note: β’s include constant term ( “lowdoc dummy”)
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• Comments: 
– Omitted variables can bias this decomposition in favor 

of the coefficient effect (e.g. attribute optionarm to 
the coefficient effect)

– I would have personally started with the simpler 
strategy outlined above, and then used the 
decomposition to flesh out those results
• This would give us a benchmark for how much worse these 

lowdoc/broker loans are, and whether they get worse over 
time…

– Interpretation of the decomposition?
• In some sense we expect there to be differences in the 

coefficients, esp. between full-doc and low-doc loans (e.g. 
income, FICO coefficients). These are different products with 
different “production functions”. 

• So even if there was no difference in default rates, there 
might well still be  a nontrivial coefficient effect 
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–Bigger Picture: to what extent do we care 
about these differences?

• Maybe these were just riskier products, with 
higher returns for the bank

– Rates are 15 bp higher for lowdoc, 8bp for broker 
(McDash-ARMs)

– Dropping interest rate may obscure this

– Could try comparing delinquency rates on these 
mortgages to those on other loans with similar 
interest rates (i.e. similar risk)
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Information Falsification

• How much information falsification was occurring with 
lowdoc loans?
– One approach: examine coefficients in estimations for 

each subsample.
• Fulldoc: higher reported income → less default 
• Lowdoc: higher income → more default

– caution: may reflect noisier income

– Second approach: 
• Estimate “true income” for fulldoc sample w/other observables. 
• Apply these coefficients to lowdoc borrowers (except self-

employed). 
– Lowdoc borrowers exaggerate “true” income  by 20%
– Degree of income exaggeration predicts default

• Need to flesh this out more (regression results not in paper?)
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– Third approach: out-of-sample prediction

• Fix some semi-annual time period. Estimate 
delinquency models for each subsample using data from 
past vintages

• Use this to estimate default probability for each loan 
originated in this time period. Classify the loan as 
“predicted to be delinquent” if predicted prob>average 
in this period.

• Calculate fraction of correct predictions using model.

• Results: 
– Models better at predicting fulldoc loan delinquency than 

lowdoc

– Predictive power gets worse over time, esp. 2006

– No significant difference between broker and bank-originated
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• Comments:
– This is not necessarily a surprise. Again, maybe these are just 

“noisier” borrowers.

– But it is nice to quantify this

– Question: does the probit model include variable related to 
loan seasoning? 
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Conclusion

• Nice paper, novel dataset

• Authors should consider starting with a simple 
estimation with all the samples together, and 
also with vintage interactions.

• Try to exploit interest rates and also see if can 
get additional variables
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