
 

 

 

Understanding International Price Differences Using Barcode Data* 

 

Christian Broda (University of Chicago, GSB and NBER) and  

David E. Weinstein (Columbia University and NBER) 

November, 2007 

[Preliminary Version: Please do not cite without Permission] 

 

 

Abstract 

The empirical literature in international finance has produced three key results about 
international price deviations: borders give rise to flagrant violations of the law of one price, 
distance matters enormously for understanding these deviations, and convergence rates back to 
purchasing power parity are inconsistent with the evidence of micro studies on nominal price 
stickiness. The data underlying these results are mostly comprised of price indexes and price 
surveys of goods that may not be identical internationally. In this paper we revisit these three 
stylized facts using massive amounts of US and Canadian barcode data. We find that none of 
these three main stylized facts survive. We use our barcode level data to replicate prior work and 
explain what assumptions caused researchers to find different results from those we find in this 
paper. Overall, our work is supportive of simple pricing models where the degree of market 
segmentation across the border is similar to that within borders. 
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I. Introduction 
 

Data limitations have prevented researchers from comparing the prices of identical goods 

systematically within and across borders. This restriction has led researchers to infer the extent 

of market segmentation from the behavior of price indexes, aggregate prices of goods that may 

not be identical internationally, and a non-random selection of particular goods (e.g. Big Macs). 

This research has produced three key results about international price deviations: borders give 

rise to flagrant violations of the law of one price (LOP), distance matters enormously for 

understanding these deviations, and convergence rates back to purchasing power parity (PPP) are 

inconsistent with the evidence of micro studies on nominal price stickiness. In this paper we 

revisit these three stylized facts using massive amounts of US and Canadian barcode data. The 

results are shocking. None of these three main stylized facts survive. The law of one price in its 

absolute form holds as well across the border as it does within countries, distance coefficients are 

three times larger in aggregate data than in micro data, and rates of price convergence within and 

across borders are fast and completely in line with micro studies. In short, the data is supportive 

of simple pricing models where the degree of market segmentation across the border is similar to 

that within borders.  

A major difference between our study and that of previous researchers is the data. We 

bring several databases to bear on the questions we examine. These datasets contain a vast 

number of products with barcodes in the US and Canada: covering approximately 40 percent of 

all expenditures on goods in consumption. Since the US and Canada share a common barcode 

classification system for a large set of consumer goods, we can compare exactly the same 

identical good in each country. Moreover, we have this information within and across 10 cities in 

the US and 6 regions in Canada. Our data is also vastly richer at the micro level than that used in 

national statistics. For example, our data contains 700,000 price quotes for the US in a typical 

year. By contrast the CPI sample is only 5 percent as large. Moreover, unlike all prior work, we 

have both price and quantity data, which lets us form theory based, as opposed to ad hoc, indexes 

of PPP. 

One important feature of the data is that it lets us compare the extent of international 

market segmentation with segmentation within countries and even within cities. We confirm the 

early finding by Isard (1977) – and more recently shown by Crucini et al. (2005) – that the LOP 
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is flagrantly violated in international data. However, we can show that that the LOP is also 

flagrantly violated across cities in the same country. Thus, the observation that an identical can 

of soda sells at different prices in different countries is not very informative about border barriers 

because prices vary substantially across space.  

Obviously the more interesting question is how much larger are international violations 

than domestic ones.  Here we find the answer to be – not much. In their seminal work, Engel and 

Rogers (1996) conveniently compare border barriers with regional ones by expressing the 

“width” of the border in terms of distance equivalents. Using barcode data and the same 

methodology as they do, we find the distance-equivalent border effect to be 3 miles – roughly 

what one might expect if trucks crossing to border had to stop briefly to fill out some paperwork. 

In other specifications the “width” of the border rises to a few hundred miles, but never anything 

close to the tens of thousands of miles found in the original paper and in subsequent work (e.g., 

Parsley and Wei (2001)).  

Our second contribution is to explain why micro data reveals small border effects but 

aggregate data reveals much larger impacts. We begin by demonstrating that if we form price 

indexes using our barcode data and then replicate Engel and Rogers (1996), our results are quite 

similar to theirs. Clearly, something about aggregating micro data causes the border effect to 

appear larger. We argue that a vast amount of information about market segmentation across 

space is lost when one uses price indexes. In particular, because aggregate indexes collapse the 

large within-country idiosyncratic variation of relative goods prices while preserving the 

variation due to exchange rate movements, they make the cross-country variation appear much 

larger than the within country variation. Thus, aggregation of individual goods’ prices 

mechanically serves to amplify the measured impact of the borders on prices. In our data, this 

unintended consequence of aggregating individual prices into disaggregate product categories is 

entirely responsible for the large size of the border when using price index data.  

We also find a tiny border effect when we look at deviations in the LOP. Here we 

compare international LOP deviations with those within the US after controlling for distance. 

Our finding is particularly surprising given that the impact of distance on the price deviations of 

identical goods is only about one tenth as high as that obtained using price index data. This 

underscores the role that compositional effects can have in explaining the relationship between 

price dispersion and distance previously found in the literature. We document that the set of 
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common goods across cities varies systematically across space and borders and therefore unless 

all individual prices within the index move together, price indexes will appear to deviate across 

space and borders simply due to the fact that the underlying weights and goods are different. We 

next document that the underlying prices within indexes vary enormously across time even for 

narrowly defined product categories, e.g. “fresh eggs.” This implies that the majority of the 

increased dispersion in aggregate prices that we observe as the distance between cities rises is 

not the result of actual deviations from the LOP rising but are coming from compositional effects 

in the way city-specific prices are typically calculated. 

Finally, we turn our attention to understanding what Rogoff (1996) has termed “The PPP 

Puzzle”: the fact that international price adjustment occurs at much slower rates than what one 

would expect from micro data. Our first contribution is to find that when we use barcode data, 

price converge rapidly to absolute PPP. This is in stark contrast to the wealth of literature that 

has often found slow convergence to relative PPP. Our rates of convergence are similar to those 

found in Parsley and Wei (1996) for convergence within the US and implied by micro studies 

such as Gopinath and Rigobon (2007). However, when we examine price convergence using 

price aggregates formed from our barcode data, the PPP puzzle reemerges: convergence is slow 

to non-existent.  

Once  again the question arises of why the aggregate results differ so much from those 

using micro data. We show that this dichotomy is not explained by the type of aggregation “bias” 

suggested by Imbs et al (2007). The answer in our data is the result of the interaction of two 

forces. First, we document that convergence rates are highly non-linear. Large relative price 

deviations disappear very rapidly but small ones are quite persistent. Since price indexes are 

formed by aggregating many prices together, information about relatively large idiosyncratic 

fluctuations is lost and regressions using aggregate data place more emphasis on the relatively 

slow adjusting small price changes. This results in the much lower estimates of convergence 

using aggregate data.  

In sum, we not only show that borders matter little for the LOP, that the role of distance 

is similarly overemphasized, and that prices of the goods in our sample converge in absolute 

terms to PPP, but we can also explain why the literature has failed to uncover these facts. In 

Section II we provide a review of the theory and the empirical literature on international pricing. 

In Section III we describe the data and preview some of the main results and in Section IV we 
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examine the width of the border at the aggregate and micro level and explain the sources of the 

different results. In Section V we examine the issue of convergence rates to PPP within and 

across the border both at the aggregate and micro level. In Section VI we provide an explanation 

for the difference in convergence rates between different levels of aggregation.  

 

 

II. Theory and Literature Review 

 

The empirical literature on international pricing is vast, and it is useful to have an 

organizing framework for understanding the prior work. We find it useful to write down the 

simple prediction of the theory of the LOP in its “exact” form and then contrast these equations 

with their “approximate” forms, i.e. the equations that are estimated in the literature. The 

difference between both forms will be instructive in understanding where the problems in the 

existing tests of this theory lurk. Unfortunately, the empirical literature has not been consistent in 

its usage of terms like LOP and PPP, especially when narrow aggregates of products are 

compared. In order to avoid any confusion, we will use the terms LOP and PPP in the same way 

as in Rogoff (1996) – i.e. if the prices of two goods in different locations are compared, we will 

refer to that as a test of LOP, and if two price aggregates are compared, we will refer to that as a 

test of PPP. One of the drawbacks of this approach is that we will refer to some papers as tests of 

PPP even though the authors refer to their work as tests of LOP. This is regrettable, but because 

many of the results in this paper turn crucially on what exactly is being tested, we feel it 

necessary to be precise about our terminology.  

The LOP, or what the literature now refers to as “Absolute LOP,” states that the price of 

an identical good should be the same across locations when denominated in a common currency. 

Formally, this suggests that Puct (i.e. the price of good u in city or region c in time t) can be 

written as 

(1) ' 'uct cc t uc tP E P=  

where Puc´t is the price of the good in a different region or country and Ecc´t is the exchange rate 

which equals unity if the two cities or regions are in the same country.  

Tests of equation (1) have been extremely limited. Previous studies have found that 

commodities that are traded on organized exchanges, e.g. gold, tend not to have large deviations 



 

 6

in the LOP. For the handful of goods that have also been studied, authors have typically found 

large deviations from the LOP. Examples include the work on Big Macs by Cumby (1996), 

IKEA sales by Haskel and Wolf (2001), and The Economist magazine by Ghosh and Wolf 

(1994).  

 A second class of studies has sought to test what might be called “Approximate Absolute 

LOP:” 

(2) ' ' 'uct cc t u c tP E P= . 

where typically goods u and u’ belong to a similar product category but are not identical goods. 

Equation (2) differs from equation (1) in that one is not necessarily comparing the same goods, 

and hence one cannot distinguish violations in the LOP from violations of the assumption that 

good u and good u´ enter into consumer utility identically.  For example, very interesting recent 

work based on the Eurostat database (c.f., Crucini, Telmer, and Zachariadis (2005) and Crucini 

and Shintani (2006)) test this form of the LOP. However, it is difficult to know how much of an 

observed violation in the LOP is due to the fact that borders prevent arbitrage from eliminating 

price differentials for goods like “lady’s boots” and how much is due to the quality of the sample 

of lady’s boots varying across countries.  

 Concern over this unobserved heterogeneity has motivated researchers to examine 

“Relative LOP,” which we define as follows: 

(3) ' 'uct cc t uc tp e pΔ = Δ + Δ , 

where lower case letters refer to natural logarithms of the upper case letters, and the Δ’s refer to 

time differences. Tests of equation (3) relax the assumption that prices must converge to the 

same level (perhaps due to a constant trade barrier), and only test whether prices tend to remain a 

constant level apart. 

 The micro studies in the literature have typically worked with an equation that might be 

termed “Approximate Relative LOP:” 

(4) ' ' 'uct cc t u c tp e pΔ = Δ + Δ . 
The major advantage of using equation (4) relative to equation (3) is that it corrects for any 

unobserved heterogeneity that causes good u and good u´ to enter into consumer utility 

differently. This is what motivated Parsley and Wei (1996) to use this form of the LOP in their 

pioneering study of urban prices in the US. Differencing the data does not come without a cost. 

One can easily imagine that the heterogeneity between two different goods contains a constant 
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component and a time varying component. To the extent that the time varying component is 

small, estimating equation (4) will be similar to estimating equation (3), but if different goods 

experience very different shocks across time, it is easy to see how equation (3) might hold 

closely but equation (4) might be violated.  

 Much of our theory only requires average prices to equilibrate; hence we turn our 

attention to PPP.  In this paper, we derive Absolute PPP by weighting equation (1), summing and 

then taking logs to produce: 

(5) ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

Alternatively, one can first take logs of equation (1) and then sum to produce  

(6) ( ) ( )' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

= +∑ ∑  

There are two important features of equation (5) and (6). First, there is no intellectual content to 

equations (5) and (6) that is not captured in equation (1). If equations (5) and (6) hold but 

equation (1) does not, this simply is a statement that there is a weighting scheme that can cause 

the deviations in equation (1) to cancel. Second, assuming the Absolute LOP holds, Absolute 

PPP will hold only if one uses the same weights in both locations. However, in all prior 

empirical research in this area, the weights for the goods in the two locations vary, and thus the 

price indexes are not strictly comparable.  

 Given the data limitations to find price levels across countries, the literature has in 

general tended to focus more on Relative PPP. The theoretical version of relative PPP can 

written down by first differencing equation (5): 

(7) ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
Δ = Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

However, all previous work on PPP has focused on what might be term “Approximate Relative 

PPP:” 

(8) 
'

' ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
Δ = Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

. 
Prominent studies include Isard (1977) Giovannini (1988), and Knetter (1989, 1993) on average 

import prices, and Engel (1993), Froot, Kim, and Rogoff (1995), and Rogers and Jenkins (1995) 

on price indexes. Finally, Goldberg and Verboven (1995, 2005) and Lutz (2004) have examined 
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variants of equation (8) in which the prices are aggregated together using hedonically adjusted 

price indexes.  

There are three important differences between equation (8) and equation (7). First, 

equation (7) may hold but equation (8) will not if the price changes of goods u and u´ are 

different because of idiosyncratic shocks. Second, equation (7) may hold but equation (8) may 

not if the log price changes of goods u and u´ do not equal the simple price changes. Third, 

equation (8) may not hold because the weights and/or the set of goods on the left hand side do 

not equal those on the right. This last critique is particularly important because statistical 

agencies make no effort to insure that international or even urban price indexes use the same 

weights and/or goods.  

 Finally, Engel and Rogers pioneering work deserves special mention. Working around 

the limitations of existing price data they have instrumented a useful test based on “variance 

ratio” of price changes. In the simplest form, one can imagine taking the variance of equation (3) 

and seeing if the variance is larger when c and c´ are in different countries relative to when they 

are in the same country. However, instead of taking the variance of equation (3), Engel and 

Rogers are forced to work with the variance of equation (8). In section IV we explore the 

unintended consequences of their tests of (3) based on the relative volatility of the terms in (8).  

 The foregoing analysis provides a simple roadmap for understanding the way this paper 

is structured. First we will examine the LOP and PPP in their absolute and relative “exact” forms 

using thousands of barcode products both within and across borders. Next, every time we find a 

difference between our results and those of other papers that have examined these relationships 

in their “approximate” forms we will investigate whether we can replicate the results and 

pinpoint to the assumption that gives rise to the failure or anomaly. This enables us to not only 

do precise testing but also understand the previous literature.  

 

 

III. Data Description 

III. A. Overview 

 A major difference between this paper and prior work is that we bring barcode data to 

bear on the question of international price differences. We use three datasets that are extracts of 

ACNielsen’s Homescan database.  The Homescan database is collected by ACNielsen in the 
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United States and ACNielsen Canada in Canada. In each country Universal Product Code (UPC) 

scanners are given to a demographically representative sample of households. In the US, 

approximately 60,000 households in 23 cities receive these scanners and approximately 15,000 

households in 6 regions receive them in Canada. Households then scan in every purchase they 

make. If the purchase is made from a store with ScanTrak technology, the prices of each good 

are downloaded directly from the store’s database. If the good is purchased elsewhere, e.g. on the 

internet, the household directly enters the price. As such, the database provides us with a vast 

array of goods with barcodes. The majority of these goods are in the groceries, drugs, and mass 

merchandise sectors.  

 Because the full dataset is extremely expensive, we purchased three extracts that we will 

make use of in this study. The first one is the database that we will refer to as the “US National 

Database” and was used in Broda and Weinstein (2007). In this extract, we had ACNielsen 

collapse the city and household dimension of the database, and thus we have price and quantity 

data on every UPC purchased by the US sample of households for every quarter between 

2001:Q1 and 2003:Q4 at the national level. This database contains information on approximately 

700,000 goods each year.  

 The second database, we refer to as the “US Cross-Sectional Database,” is new. In this 

database, we have household level data on every purchase in the fourth quarter of 2003 by a 

subsample of 3,000 households evenly divided across 10 US cities. In each city, the households 

were randomly selected from the full sample so that their demographic characteristics match 

those of the city as a whole.  

 Finally, the third database, which we shall call the “Canadian Regional Database”, is also 

new. ACNielsen Canada provided us with average price and quantity data by region in Canada 

for every quarter between 2001:Q1 and 2004:Q4. Table 1 describes the basic statistics of each of 

these three different databases. As one can see from the table, our data provides a much richer 

breakdown of prices for this sample of goods than is available in national statistics. 

These databases have three key features that lend themselves to the study of pricing in 

different markets. The first is that we identify different goods using barcodes. Since companies 

only use one barcode per good, when we compare goods internationally, we can be confident 

that we are comparing precisely the same goods. As we will see shortly, previous studies that 

focused on product categories like eggs, butter, and cheese can be seriously misleading because 



 

 10

there is enormous price variation within these categories. Examples of the level of detail in our 

database are given in Table A1 in the appendix. Second, we can also compare variation of prices 

across cities within and across borders. This lets us precisely examine the border effect in levels; 

something no one has done before. Third, because we have both price and quantity data, we 

know exactly how to weight the goods when building price indexes, which allow us to examine 

the role that compositional effects play in studies that use national statistic data.  

 

III.B. Data Preview 

Before plunging into the econometrics, it is useful to examine the raw data to obtain some 

intuition for how prices vary across regions and time. The first point that is important to 

contemplate is the vastness of barcode information that is included in our database. In the US 

National and Canadian Regional Database there are 700,000 and 490,000 UPCs available, 

respectively. Even within narrow product categories, consumers have access to an enormous 

number of different goods.  We made use of the US National Database to examine how many 

UPCs were sold in each of the 123 “Product Groups” in the US. In the ACNielsen classification 

system, a product group is a highly disaggregated subset of the total database. For example, fresh 

eggs, ice, and milk are all different product groups. We plot a histogram of the count of the 

number of UPCs per product group in Figure 1. The first thing that is immediately apparent from 

the figure is the vast number of UPCs per product group. With the exception of a few product 

groups – yeast, meal starters, road salt, canning supplies, and contraceptives – all products in the 

US are comprised of over 200 different UPCs. The typical product group has 2700 different 

UPCs. Even relatively homogeneous goods like fresh eggs are comprised of 2275 different 

varieties.  

The simple fact that there are many UPCs per product group would be an intellectual 

curiosity if it weren’t for the fact that the degree of sample overlap varies systematically with 

variables of interest. In Figure 2, we plot the share of UPCs that are common between cities in 

the US and regions in Canada and the distance between those two locations. For expositional 

purposes, the bilateral city data is shown in three different plots: comparisons within city pairs in 

the US, within region pairs in Canada and between cities in the US and regions in Canada. The 

pattern observed in each of these plots is unmistakable: as distance between cities rise, the share 

of common identical goods between cities falls. Within the US, the share of common goods 
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across cities is over 28 percent between New York and Philadelphia—the closest city pair in our 

data—and is less than 18 percent for goods between New York and Los Angeles—the two cities 

further apart. Within Canada, Ontario and Quebec share almost 60 percent of goods while British 

Columbia and Maritimes share less than 45 percent of the goods. In Table A2 in the appendix we 

show regressions of the share of common goods in terms of the simple count of the number of 

goods and in value terms against bilateral distance between cities.  

The levels of the share of common goods within countries are not directly comparable 

between Figures 2A and 2B. This is because our data is based on different household sizes per 

city/region in the US and Canada, and because regions in Canada include several large cities. 

However, it is still surprising that despite the large sample of goods that are included in each city 

only around 25 percent of the UPCs are common between any two cities in the US. While this 

probably understates the true degree of overlap in the US because some UPCs might not have 

been purchased by the sample households included in our data but did exist in the city, it 

underscores the importance of compositional effects when comparing prices of similar “product 

categories” across cities within a country. Our sample of over 50,000 UPCs per city is around 40 

times larger than those used by the Bureau of Labor Statistics when computing regional price 

indexes.1 This suggests that the amount of overlap in city or regional price indexes in national 

statistics data is quite small.  

Figure 2C shows the importance of compositional effects across the border. A large 

number of the products sold in the US are not sold in Canada in identical form. In the typical 

bilateral city/region comparison between the US and Canada only 7.5 percent of the goods are 

common, this is less than one third the common set of goods available between city pairs of 

equal distance within the US (Figure 2A and 2C are directly comparable). This means that the 

composition of a random sample of goods sold in the US is likely to differ substantially with the 

composition of a sample of goods sold in Canada. By the same token, more proximate locations 

have more similar consumption bundles than distant locations.  

The fact that price indexes across regions or countries are largely composed of different 

goods would not be a problem for understanding the LOP or PPP if goods within categories are 

fairly homogenous. In this case, one could have a reasonable degree of confidence that similar 
                                                 
1 The BLS collects around 34,000 price quotes (for the same categories included in our database) over 23 different 
cities. This implies that they collect around 1,260 price quotes per city. 



 

 12

goods would have similar prices or at least these prices would move together.  The time series 

properties of disaggregated data have been examined extensively in Broda and Weinstein (2007) 

and Klenow and Kryvtsov (2007), so here we will just review a few key stylized facts uncovered 

in those papers. In Figure 3, we plot the kernel density of quarterly UPC relative price changes 

and quarterly UPC relative price changes after controlling for product group-time fixed effects. It 

is useful at this point to introduce some notation. Let ,ugc tp  be the log price of UPC u that 

belongs to product group g in city c and period t. We denote the relative log price of a UPC with 

respect to the largest Canadian province, Ontario, as qugc,t = pugc,t – pugOnt,t. The red line in Figure 

3 shows the distribution of Δqugc,t for all UPCs in all time periods in Canada. The typical 

quarterly UPC absolute price change is around 9 percent and the standard deviation is around 18 

percent. This number is similar in magnitude to the typical price changes of the quotes 

underlying the CPI calculation in the US.2  It suggests that there is a large amount of price 

volatility over time within Canada and the US.  

These numbers imply that there is vastly more volatility in the raw price data than in 

exchange rates. The typical quarterly exchange rate change among developed economies with 

flexible exchange rates is less than 2 percent (see Calvo and Reinhart (2004)).  The large 

volatility of the raw price data relative to exchange rate data has an important implication for 

examining convergence. It implies that a large share of the fluctuations in the prices of individual 

goods across countries is likely to come from UPC specific shocks that are ignored at the 

aggregate level. As we will see in later sections, the distinction between idiosyncratic versus 

common price shocks will help us explain differences in the observed rates of convergence back 

to the LOP when we use disaggregate as opposed to aggregate data.  

Figure 3 also includes direct information on how important are UPC idiosyncratic price 

shocks are to explain the volatility of prices over time. The blue line shows the kernel 

distribution of ,ugc tqΔ  where , , ,ugc t ugc t gc tq q q= −  i.e. the log relative price of a particular UPC in a 

particular city and time once it has been purged for common city-time effects. As one can see 

from the plot, there is enormous dispersion of prices within product groups as both distribution 

lie almost on top of each other. This suggests that the role that common product-group and time 
                                                 
2 Klenow and Kryvtsov found that the median absolute price change for a price quotation used in the CPI was 13.3 
percent per month. Similarly Broda and Weinstein found that the standard deviation of price changes of a UPC was 
20 percent per quarter. 
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factors have to explain the observed time-series volatility of UPC prices is tiny. The standard 

deviation of the UPC specific component of prices is close to 15 percent, almost identical to the 

standard deviation of the raw price changes. If we focus our attention on a relatively 

homogeneous good like fresh eggs, the standard deviation falls to 10 percent, but it is pretty clear 

that one cannot even treat a relatively homogeneous good like fresh eggs as a single item. 

The preceding analysis suggests that even though goods may have identical prices, goods 

categories might exhibit very different average prices and price changes. Fortunately, the use of 

UPC data means that we can be incredibly precise about the prices that we are comparing. In 

Table 2, we compare the prices of individual UPCs across cities and regions in the fourth quarter 

of 2003. In the first panel, we focus on the US. Since we have data for 10 cities, we can make 45 

bilateral comparisons of prices across city pairs. The middle and lower panels examine all 

bilateral comparisons between regions in Canada and between cities in the US and regions in 

Canada. As the first column indicates, we typically have 10,616 prices of common UPCs for 

every city pair in the US, 25,094 goods in the typical bilateral region comparison within Canada 

and 1,531 identical goods across countries.  Columns 2-4 of Table 2 present medians, averages, 

and standard deviations of bilateral city comparisons for several sample statistics (in Table A3 in 

the appendix we present all city pair comparisons). In column 2, we first computed the median 

price differential for each city pair. In column 3, we compute the standard deviation of log 

relative prices of the same UPCs consumed in each city pair. Finally, in column 4, we computed 

the median absolute difference in the log prices for each UPC consumed in city pair.  

The first interesting number presented in the table is the standard deviation of the median 

price differential in the city pairs. The standard deviation of 0.016 means that the typical price 

differential between cities in the US is very close to zero (upper panel). We repeat the same 

exercise for Canadian regions and obtain very similar results (middle panel). These results 

suggest that whatever price differentials exist within countries, they are distributed around zero. 

This is strong indication that in different locations within countries absolute PPP holds. This 

finding is present in our data in all quarters for which we have regional Canadian data. The 

average difference in prices of identical goods does seem to rise as we cross borders, but the rise 

is quite modest (lower panel). The median price difference in the 4th quarter of 2003 for a given 

UPC in a US city relative to a Canadian region is only 1.9 percent higher on average.3 This result 

                                                 
3 We adjust Canadian prices downwards by 7 percent because Canadian prices are inclusive of the VAT. 
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however, is not robust to the time period being studied, as large cumulative exchange rate 

movements over this period have made absolute PPP fluctuations vary from around 15 percent to 

2 percent.  

In columns 3 and 4 we present the standard deviation of the log relative prices and the 

median absolute price deviation. The table reveals that the typical standard deviation of log price 

differences between any two cities is 22.3 percent in the US and 18.7 percent in Canada. These 

numbers reveal something very important about the LOP: even within a country the standard 

deviation of prices of identical goods is typically 20 percent. To put this number in perspective, 

consider the results of Froot, Kim, and Rogoff’s [1995] study of international violations of the 

law of one price. In that study, they concluded, “the volatility of law of one price deviations is 

both remarkably high (typically on the order of 20% or more per year for most commodities in 

most centuries) and remarkably stable over time.” The important fact to bear in mind is that the 

LOP deviations that these authors found internationally are approximately the same magnitude as 

those we observe within countries. In other words, the prices of individual goods vary 

substantially across space regardless of whether two regions are in the same country or not.   

This point notwithstanding, we can see that the dispersion of prices of individual goods 

vary slightly more when crossing the border. The lower panel of Table 2 shows that the standard 

deviation of prices of identical goods across the border is typically 26.7 percent, roughly 4 

percentage points larger than within the US and 8 percentage points larger than within Canada. 

Results are similar using the typical absolute price difference between cities.  However, we need 

to be cautious about interpreting this raw data because we need to adjust these numbers for the 

fact that cities within a country are likely to be closer together on average than cities in different 

countries.  

 One can also inspect the importance of the border visually in Figure 4. Here we plot the 

kernel densities of all relative prices across cities within the US, within Canada, and between the 

US and Canada. As the plot makes clear, prices in the US are a bit higher than prices in Canada, 

and there is evidence of greater dispersion in international prices than in domestic prices, but the 

distributions are not radically different. Rather the border seems to add a small amount to the 

very large within-country dispersion in prices across cities. This creates some tension with the 

results of Engel and Rogers (1996), and is a point that we will need to explore more 

systematically.  



 

 15

 In sum, the sample statistics reveal a number of important lessons for understanding 

international pricing. First, there are a vast number of goods in the market and the composition of 

consumption varies systematically with distance and across borders. This implies that one must 

take great care about how samples are constructed when comparing relative price movements 

across space and borders. Second, the prices of these goods vary substantially even for narrowly 

defined commodities. This implies that absolute deviations in the LOP will be quite sensitive to 

whether precisely the same goods are compared. Third, one should not equate the international 

violation of the law of one price with a barrier at the border. The data strongly suggests that there 

are substantial violations of the law of one price within countries and that these violations are of 

similar magnitudes as international violations. A corollary of this lesson is that one should not be 

surprised at the existence of LOP deviations – these happen all the time within countries – the 

more interesting question is how much larger international deviations are than the regional ones. 

Fourth, there is vastly more volatility in individual price quotes than in price indexes. This means 

that much of the price variation is eliminated when one focuses on price indexes. As we will see 

in the next few sections, each of these stylized facts will play a key role in understanding why 

absolute price convergence holds and why it has been so hard to find evidence in favor of it.  

 

 

IV. The Width of the Border Redux 

 

 In order to understand the magnitude of international deviations of the LOP, we need to 

think of a benchmark. One of the simplest and most compelling reasons why prices may differ 

spatially is that it is difficult to transport goods. Thus, one might expect smaller LOP deviations 

in close cities than in distant cities. In their seminal work, Engel and Rogers [1996] developed 

this concept further by expressing border effects in terms of distance – a convention we will 

adopt here.  

 A simple way of computing the “width” of the border is to regress a measure of the price 

dispersion on the log of distance and a dummy variable that is one if the price difference is 

computed for a good purchased in cities that are located in different country. In this case one can 

compute the width of the border by dividing the border coefficient by the distance coefficient 

and then exponentiating. In Table 3, we present the results for a similar regression as that in 
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Engel and Rogers. The only difference is that we use two different measures of price dispersion. 

First, we look at a price variance measure: the square of the log price difference of a UPC 

purchased in two different cities, i.e. ( ) ( )2 2

', , ',ugcc t ugc t ugc tr p p= − ; second, we look at the absolute 

log price difference paid for the same UPC in two cities, i.e. ', , ',ugcc t ugc t ugc tr p p= − .  

Specifically, we run the following regression: 

(9) ( )2

', ' ' ',lnugcc t c cc cc ugcc tr dist Borderα β γ ε= + + +  

(10) ', ' ' ',lnugcc t c cc cc ugcc tr dist Borderα β γ ε= + + +  

where  cα   are city dummies, and standard errors are clustered by city pair. The “width” of the 

border adopted by Engel and Rogers is given by ˆˆexp( / )γ β , where circumflexes indicate 

estimated parameters. 

 The results of this exercise are presented in Table 3. The first panel presents the raw 

regression results and the second panel presents results in which we weight the observations by 

the sales of the UPC.4 The weighted regression results are probably more reasonable because the 

forces of goods arbitrage are probably much greater for a good with a large amount of sales than 

for a good that is only purchased by a few people. In all regressions, distance contributes 

significantly to price dispersion and there is a positive and significant border effect. This is 

comforting because our priors strongly suggest that borders and distance interfere with the law of 

one price. 

 What is most interesting in the table, however, is our estimate for the width of the border. 

In the un-weighted regressions, the width of the border ranges from 720 miles to 328 miles 

depending on the specification. By contrast the point estimate in Engel and Rogers was 75,000 

miles for all goods and 3.8 million miles for food at home – the category closest to our sample of 

goods. Similarly Parsley and Wei (2001) estimate that the width of the border into Japan is 43 

quadrillion miles. Of course, the un-weighted estimates are likely to overstate the border for the 

reasons we have highlighted above. If we turn to the weighted regression results, we find that 

that width of the border ranges between 36 and 106 miles. In other words, Canada is not located 

                                                 
4 We use the average value of consumption of each UPC between city pairs as a weight. 
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midway between the Earth and the Moon – it’s really just a few miles north of Buffalo. We show 

in Figure A1 in the appendix that this result is robust to the quarter we use.   

 The fact that we find the border effect to be so small strikes us as both deeply comforting 

and confounding. On the one hand given Canada’s proximity to the US, the existence of a Free 

Trade Agreement, and the similarity of the economies suggests that we should expect small 

border effects. However, it is puzzling why we should find such a small border effect when so 

many other studies have not.  

 One possible explanation harks back to our earlier discussion of the heterogeneity of 

products within product categories. If categories like “fresh eggs” are very heterogeneous, then a 

basket of fresh eggs in one country is likely to contain very different eggs than a basket of eggs 

in another country. We have already seen that this compositional effect becomes more important 

with distance and when one crosses a border. We can now examine the importance of this effect 

in three stages. Our first task is to demonstrate that carefully aggregating the data does not affect 

the estimates of the border effect. In order to do this, we need to be precise about what goods and 

weights are used to compute city price indexes. We first define Icc’ as the set of commonly 

consumed UPCs in city pair cc´. We first construct a common weighted index as a Geometric 

index of the relative prices of common goods within every product group in every bilateral city 

pair: 

(11) 
( )1
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'
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where sugct is the share of expenditure in product group g on UPC u in city c in time t. Note that 

the log of equation (11) can be expressed in terms of the actual log price difference of a UPC 

purchased in two different cities ( )
'

1
' ' ',2ln(Common Weight Index )

gcc
gcc t ugc ugc ugcc tu I

s s r
∈

= +∑ . The 

two key characteristics of this index is that it only uses prices for common UPC across cities and 

it only depends on the average share of consumption in the two cities and not on the city specific 

expenditure shares.  

The second index we consider is the city-specific index: 

(12) 
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In contrast to the common-weight index, the city-specific index can vary with the market shares 

of expenditures in two locations even if the average expenditure level is the same. The 

distinction is important because it lets us examine whether simply allowing the weights of 

common goods to vary has an effect on the results. We would expect distance to have a different 

effect on this index if compositional effects are important. 

 Finally we form an all-goods price index defined below: 

(13) 
( )

( ) '
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All-Goods Index
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u I
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∏
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where Ic is the set of UPCs available in city c. The major difference between this equation and 

equation (12) is that we now allow all goods in each city to enter the index, not just the common 

ones.  

Our basic tests involve re-estimating the regressions in (9) - (10) using the log of the 

price indexes at the product group level instead of the log price differences of individual UPCs to 

see whether the simple act of aggregation creates a problem. As one can see in the first panel of 

Table 4, simply using common goods price indexes has almost no impact on our measure of the 

border.  The estimated border effects do not move by much and the “width” of the border stays 

within 100 miles of the estimates that we obtained with the UPC-level data.  

 However, it is important to remember that the data used by researchers to examine border 

effects is not based on a common set of goods, but rather on non-overlapping samples of the 

goods available in each country. Panels 2 and 3 in Table 4 can help us understand the impact of 

using price indexes to assess the border effect. The second panel shows the impact that 

compositional effects through city-specific weights can have on the distance and border 

coefficients. The impact of distance on the square log price differences is over 5 times larger 

than in the first panel. The difference between the two panels can be traced directly to 

compositional effects. The prices of disaggregated goods categories may vary a lot even if the 

underlying prices hardly vary at all. The border dummy also rises to almost 3 times its value 

when common-weights are used.  Since compositional effects tend to raise both the log distance 

and border coefficients the impact on the “width” of the border is not strongly affected by using 

city-specific weights.  
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The importance of distance and the border rises dramatically when we use an index 

composed of all goods.  Now the distance and border coefficient rises by at least an order of 

magnitude. Interestingly, when goods that are specific to each city are included, the width of the 

border dummy jumps to literally astronomical values. The width of the border ranges from 23 

million miles to 7.9 billion miles depending on the specification. The difference between this set 

of results and the previous one arises solely from the fact that the composition of goods within a 

product group differs across the border sufficiently to affect the average price. This large border 

effect results in apparent rejections of the law of one price or PPP because the Canadians drink 

RC Cola and Americans drink Coca-Cola. While one may hope that RC Cola and Coca-Cola 

move together in the time series, there are many reasons to worry that this may not be the case. 

At the very least, one can see ample reasons why LOP might hold precisely, but the way in 

which aggregate indexes are formed produces failures of PPP. This establishes that it can be very 

misleading to estimate deviations from the law of price or PPP using even highly disaggregated 

product categories.  

 This explanation, however, is unsatisfactory to explain the results of Engel and Rogers 

(1996) because those results are based on the time-series volatility over time of price indexes as 

opposed to the dispersion of price levels. For instance, if prices in a product group all move 

together, it is possible for the levels to deviate across regions but the time series not to show a 

large border effect. In order to examine what role is played by aggregation in the results by Engel 

and Rogers we exploit the fact that we have time series data at the UPC level in the US National 

Sample and for each of six Canadian regions in the Canadian Regional Sample. Following Engel 

and Rogers, for each region pair, we compute the standard deviation of the relative log price 

changes of the goods common to that pair. In particular, we calculate ',( )ugcc tsd rΔ  where 

', ', ', 1ugcc t ugcc t ugcc tr r r −Δ = − . This is the same statistic that Engel and Rogers use in their study but 

computed at the UPC level rather than at the product group level. We then regress these standard 

deviations on the log of distance between the regional pairs (counting the US as another region) 

and a border dummy, using the average distance between the Canadian region and our sample of 

cities as a proxy for the Canadian region’s distance to the US. That is, we just use this time-series 

proxy for market segmentation as the dependant variable in regression (9).  

 The results from this exercise are presented in Table 5. At first glance, the results are 

quite similar to those of Engel and Rogers (1996) – we find that the standard deviation of relative 
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inflation rates rises with distance and jumps discretely at the border. This result is suggestive of 

trade costs and border effects mattering for price arbitrage. However, what is most striking is the 

magnitude of the border. While Engel and Rogers found a border effect of 3.8 million miles for 

the “food at home” sector, we find a more modest border that is 3 miles wide. Thus the UPC 

level data also suggests much smaller border effects even when we use the same proxy for 

market segmentation as Engel and Rogers. 

 But why do these results differ so much? Before we begin our investigation of the cause 

for the much smaller border effect, it is useful to first focus on why it is likely that disaggregated 

data would produce different results. The major difference between Engel and Roger’s use of 

price indexes and our use of UPC level data is that price indexes are averages of individual price 

quotes. We have already seen in our analysis of the sample statistics that individual price 

movements exhibit enormous volatility in the time series but there is not much difference in the 

average price level across cities. Thus averaging the prices of UPCs together tends to eliminate 

much of the idiosyncratic variance of UPCs and leaves us with only the relatively small levels of 

variance of average prices across cities. Internationally, however, the impact of exchange rate 

fluctuations is not compressed by averaging because the impact is common to all UPCs in a 

country. This causes the border coefficient to fall less slowly than the distance coefficient. Since 

we divide by the distance coefficient when computing the border effect, ceteris paribus, this will 

tend to make the border appear wider. 

 We can see this formally by conducting the following exercise. Suppose that we can 

write the log relative price between foreign city c, and home city c´, for UPC, u, in product group, 

g, in time t as rugcc´t. We then can decompose the change in the relative price as follows: 

(14) ' ' 'ugcc t cc t et ugcc tr δ δ εΔ = + + , 

where the  δ’s correspond to city pair and exchange rate shocks, and εugcc’t is the idiosyncratic 

shock to a UPC. Similarly if two cities are in the same country, we decompose the price 

movement using the same terms with the exception that δet = 0. If we assume that all these terms 

are independent, then we can write  

(15) ( ) 2 2 2
' 'ugcc t cc eVar r εσ σ σΔ = + +  

in the case when the cities are in different countries and  

(16) ( ) 2 2
' 'ugcc t ccVar r εσ σΔ = +  
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when the cities are in the same country. In this case the border effect (expressed in terms of 

ratios of variances instead of standard deviations) would be  

(17) 
( )
( )

2 2 2
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However, if there are n UPCs in a product group and we first average the data before computing 

the variances, the ratio of the variances will be  

(18) 
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which is strictly larger than the expression given in equation (17) for n > 1. This suggests that if 

one computes border effects by comparing the variances of relative prices using price indexes, 

one will tend to find larger effects than if one uses the underlying micro-data. Moreover in 

datasets like ours, where the variance of the idiosyncratic shocks is likely to be large and the 

variance of bilateral city-pair shocks small, one would expect this effect to be substantial for 

large n. 

 In Table 6, we examine this aggregation bias by running the same regressions that we ran 

in Table 5, but first pooling the UPC level data to form product group averages and then 

computing the standard deviations in the movements of the product group level prices. We 

present two sets of results based on the two different ways of pooling the data given by equations 

(11) and (13). As one can see from the upper panel of this table, the width of the border 

estimated from regressions that use indexes based only on a common set of goods rises 

substantially (relative to Table 5). Averaging the data causes the width of the border to rise to 

1000 to 100,000 miles depending on the specification.  

 Although these numbers are much larger, they are still smaller than the typical border 

effects of millions, if not quadrillions of miles that often appear in studies. The lower panel of 

Table 6 shows the width of the border based on aggregate city-specific price indexes. A key 

distinction between these aggregate prices and those used in the upper panel is that each product-

group index is an average of a much larger number of UPCs than in the upper panel. This is 

because the share of common goods across the border is less than 5 percent the size of the 

sample of goods in each region in Canada. As we noted earlier, this suggests that we might 
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expect to see even larger border effects if we just formed indexes based on the set of UPCs 

consumed within a city in a particular product group. We verify that using indexes based on all 

the UPCs within a city widens the border substantially. The border with Canada now rises to 

between 16 billion to 120 billion miles – still not in the quadrillion mile range but much further 

away than the 3 miles suggested by the UPC-level data.  

Finally, the last two columns of the lower panel show the impact that the exchange rate 

fluctuations have on the measure of market segmentation based on aggregate price indexes. We 

replicate the results in columns 2 and 4 but drop the exchange rate from the relative price terms, 

i.e. we simple compute the US price index in US dollar terms and the Canadian price index in 

Canadian dollar terms. Not surprisingly we find no border effect in this case. This result 

underscores the importance of exchange rates shocks that are common across all UPCs when 

using aggregate data that collapses the UPC specific shocks. 

 

 

V. Absolute Convergence Within and Across Countries 

 

Having established that border effects are small, we now turn our attention to 

convergence. We have two objectives in this section. First, we want to estimate convergence 

rates using barcode data and second we want to explain why our results differ from those in other 

studies that use more aggregate data.  

Our measure of relative prices is the log difference between the price of the UPC in a 

particular region and the price of the same UPC in Ontario. In modeling deviations of relative 

prices from their long-run levels we start by estimating the following regression:  

(19) , , 1 ,ugc t c ugc t ugc tq qα β ε−= + +  

where αc is a city-specific dummy and β denotes the speed of convergence. Under the null of no 

convergence, β  is equal to one. In this case, a shock to ,ugc tq , i.e. ,ugc tε , is permanent. 

Convergence implies that β is less than one, with the approximate half-life of a shock to log 

prices given by –ln2/lnβ.5 If β is less than one, the long-run level of relative prices is given by 

                                                 
5 As Goldberg and Verboven (2005) note, this formula is only correct for AR1 processes. In general, the correct half 
life can be computed from the impulse response functions. However, we will follow the literature and drop the word 
“approximate” in future discussions of the half life. 
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αc/(1 – β). If αc = 0 and β < 1 then we can say that we observe absolute convergence in the data. 

This means that not only are shocks to relative prices transitory, but that eventually relative price 

differences between cities disappear. In the case where 0cα ≠  and β < 1 then we observe 

relative convergence in the data, i.e. shocks to ,ugc tq  are transitory but relative price differentials 

will persist. 

The dummies αc capture city fixed effects that account for non-time dependent price 

differences across cities (and countries). In addition to the speed of convergence, β, we are also 

interested in examining the absolute values of αc. If these are zero or small (and β is less than 

one), then this would indicate that markets are not very segmented and that absolute price 

convergence is a good description of the data.  

 For estimation purposes we want to control for potential serial correlation in equation 

(19). For this reason, we augment equation (19) to include higher order auto-regressive terms as 

in Dickey-Fuller (1979): 

(20) , , 1 , 1 ,1

S
ugc t c ugc t s ugc s ugc ts

q q qα β γ ε− −=
= + + Δ +∑    

where , 1 , 1 , 2ugc t ugc t ugc tq q q− − −Δ = −  and S is the number of lags included in the regression. Since we 

are interested in studying the different convergence speeds of prices within and across countries, 

we allow for the convergence and autocorrelation terms to vary by country. Specifically, we 

estimate the following equation:  

(21) 
4

, , 1 , 1 , 11

4
, 1 ,1

ugc t c w ugc t a ugc t ws ugc ss

as ugc s ugc ts

q q q Border q

q Border

α β β γ

γ ε

− − −=

−=

= + + × + Δ

+ Δ × +

∑
∑

 

where Border is a dummy that takes the value of 1 when city c is not in Canada, wβ  is the 

convergence parameter “within” countries, and wβ + aβ  is the convergence parameter “across” 

countries. In each of the specifications we run several tests: 1) whether 0cα =  within countries 

and 0cα =  for cities across countries; 2) whether 1wβ = , that is if there is a unit root within 

countries; 3) whether w 1aβ β+ = , that is if the data supports a unit root process across countries; 

and 4) whether 0aβ = , that is if the convergence rates within country are the same as across 

country.  
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 Table 7, column 1, reports the results for equation (21) estimated on all the set of 

common UPCs between cities assuming a homogenous panel (i.e., 0c cα = ∀ ). The coefficient 

estimate for β  is 0.789 with a standard error of 0.021. Since we have a limited time series 

dimension (12 – 16 quarter), it is inappropriate to employ conventional panel unit root tests that 

rely on large T asymptotics. Instead, we employ a unit root test for short panels developed by 

Harris and Tzavalis (1999). In the homogeneous panel case we can reject the unit-root test within 

and across borders at the 1 percent level. This suggests that prices revert back to their long-run 

level. In particular, the implied half-life for convergence is 2.9 quarters.  

A notable feature of our data is that we can compare the rates of convergence back to 

PPP across as well as within countries. The second column allows for the β  coefficient to vary 

within and across countries. In particular, we find that aβ , the difference in the autoregressive 

coefficient within and across the border to be around 0.06 and statistically significant. This 

suggests that while prices take longer to converge back to PPP when cities are across the border 

as opposed to within countries, the increase in the half-life of the shock is less than 2 quarters! 

Overall this implies a half-life for convergence of shocks across the border in this specification is 

4.1 quarters.  

 Column 3 repeats the regression in column 2 but weights each UPC by how important 

they are in consumption in each pair of city.6  Half-lives for shocks within Canada double to 5.6 

quarters as UPCs with large weights in consumption seem to have slightly slower convergence 

rates. The rate of convergence for UPCs across country also rises, but the difference between 

convergence rates between and within countries is less than 1 quarter. While we discuss the 

magnitude of city-specific effects below, when these are included in the regression convergence 

rates across countries rise to around 8 to 9 quarters, while within country convergence rates 

remain around 4 quarters. Overall, we find estimates for the rate at which PPP deviations 

diminish of between 3 to 4 quarters within borders and 4 to 9 quarters across borders. These 

numbers are broadly consistent with the micro price evidence on sticky prices. For example, Bils 

and Klenow (2007) find that half of domestic goods' prices last less than 4.3 months while the 

median duration in prices (including sales) in Nakamura and Steinsson (2007) is around 4.6 

                                                 
6 The actual weight used is 

0 0, ,0.5 0.5ugc ugc t ugOnt tw value value= × + × where 0t  is 1999.  
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months. Gopinath and Rigobon (2007) find that price stickiness in US import prices can last up 

to 11 months. 

Given that we have price data on identical goods across cities within and across countries 

we can assess the economic magnitude of the deviations from absolute PPP within and across 

countries. As mentioned above, cα / β  defines the long-run level of ,ln ugc tq . In columns (3) – (5) 

we compare how large are the absolute deviations from the PPP within and across countries. We 

find that the within Canada the average deviation from absolute PPP is statistically significant 

but small, between 0.9 percent and 1.5 percent. That is, any deviation in prices between regions 

in Canada and Ontario converge back to levels that imply that Ontario is around 2 percent 

cheaper than the average of the 5 other regions in Canada (column 6).  

Furthermore, we find evidence that the absolute deviation between Canada and the US is 

approximately the same as that within regions in Canada. The absolute long-run values converge 

to levels that are between 0.6 percent to 3.3 percent more expensive in the US. Interestingly, 

deviations between Ontario and British Columbia and Alberta are equally as large as those 

between Ontario and the US. The hypothesis of absolute price convergence fails in a statistical 

sense within and across borders, but the magnitude of the failure is negligible from an economic 

standpoint. This is strong evidence in favor of a small role played by the border in terms of 

market segmentation.  

 

 

VI. Aggregation and Non-Linear Convergence Rates 

 

  Once again the results should be seen as deeply comforting and confounding. On the one 

hand one should expect that in the absence of trade barriers and absolute price convergence 

should be a good description of the data when examining similar countries. However, no study 

has ever found this result before. Moreover, with the notable exception of Imbs et al (2005), 

studies have not investigated why the results are so dependent on the data. For example, Crucini 

and Shintani (2006) find faster half lives when using more disaggregated data than is typically 

found using aggregate data, but after rejecting the aggregation bias explanation of Imbs et al 

(2005) do not offer an explanation reconciling these two findings.  We now turn to trying to 

understand this puzzle 
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The evidence presented in Table 7 suggests that when individual product data is used, we 

find estimates for the rate at which PPP deviations diminish is between 3 to 6 quarters within 

borders and 4 to 9 quarters across borders. However, we still have not addressed whether if we 

aggregate our data we would obtain slower rates of convergence that have plagued the existing 

literature. In particular, in the next two tables we not only assess whether half-lives estimated 

using aggregate data are large but also examine what are the reasons behind any difference 

between results at different level of aggregations.  

Table 8 presents re-estimates equation (21) using product-group price indexes across 

cities instead of UPC price ratios. In particular, we run the following specification: 
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where Pgc,t  is a product-group price index. We will vary the method we use to compute this 

index to obtain a better understanding of how aggregation affects the data.  

We consider two ways of computing these price indexes. First, we consider an index in 

which we allow all goods in each city to be averaged together.  
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where ,0ugcw is the weight of UPC u in product group g in city c in 1999 and gcI includes all the 

set of available UPCs in product group g in city c. Second, we build an index that aggregates 

only those goods that are common in Ontario and the region:  

(24) 
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where 1 1
,0 ,02 2ugc ugc ugOntw w w≡ + .  

 Table 8 shows the convergence results under the these different aggregation schemes. For 

simplicity we will focus our discussion on columns 8 and 12 but results are similar using the 
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comparison between other columns. Aggregation of the micro data produces significantly higher 

half lives. If we aggregate the data using only common goods, the convergence coefficient rises 

from 0.85 (Table 7 column 6) to 0.95 (Table 8 Column 8). Despite the increase in half-lives, the 

rich panel nature of our data allows us to reject the presence of a unit-root in all cases (we also 

use the Harris and Tzavalis (1999) distributions).  The implied half life of price shocks rises from 

4 to 13 quarters within Canada and from 9 to 13 quarters across the border. If we form the index 

using all goods within the product group instead of just the common ones, the half lives jump to 

138 quarters within Canada and 346 across the border! These half lives are essentially infinite 

considering that we no longer can reject a unit root.  

 These results suggest that whatever causes the discrepancy between aggregate results and 

those of micro data studies is present in our data. However, we can immediately rule out one 

source of this bias. Since we were consistent in the construction of the price indexes, we know 

that the difference between aggregate results and those obtained with the UPC-level variation is 

not due to differences in how aggregate indexes are constructed internationally. Compositional 

effects may explain why indexes comprised of disjoint samples of goods exhibit unit roots (e.g. 

the difference between panel 3 and panel 2), but they do not explain why the results in panel 2 

differ from those in Table 7.  

 A second hypothesis for what might be driving aggregation bias has been suggested by 

Imbs et al (2005). However, it is difficult to see how it could apply here. Their explanation relies 

on the convergence coefficients varying systematically with the goods. Hence the aggregation 

bias can be solved by estimating different β’s for different goods. The bias we have identified 

arises solely from aggregating the data and is present even though we estimate one β in the UPC-

level regressions and one β in the aggregate regressions.  

 Nonetheless, we can examine the importance of this form of aggregation bias in our data. 

In particular, the type of aggregation bias they study can be briefly explained using a general 

version of equation (19):  

(25) , , 1 ,ugc t c u ugc t ugc tq qα β ε−= + +   

where the main difference with (19) is related to the fact that the persistence coefficient is 

allowed to vary with each UPC u, i.e. uβ .7 For simplicity and without loss of generality we can 

                                                 
7 Equation (25) is identical to the benchmark regression used in Imbs et al (2006). 
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define u uβ β δ= + , where ( ) 0uE δ =  . In the case where the true model is that given by (25) but 

instead equation (19) is estimated, then Imbs et al. (2006) argue that the estimated β̂  from (19) 

has a bias. In particular, under certain conditions ( )ˆE β β χ= + where 0χ > .  

Our data is particularly well suited to test for the existence of this type of aggregation 

bias. Since we are constrained by the time-series dimension of our panel, we start by assuming 

that the heterogeneity in persistence coefficients exists not at the UPC level but at the product 

group level. Specifically, this means we assume that u g u gβ β= ∀ ∈  and g gβ β δ= + .  That is, 

two UPCs in the same product group g share the same persistence coefficient, but UPCs in 

different product groups have different β .  

Table 9 presents the results for the mean ˆ
gβ and half-lives across all product group levels 

from (25) separately estimated for each product group, and the single β̂  estimated from equation 

(19) using exactly the same set of UPCs. The first two columns of this table report the results for 

both weighted and un-weighted regressions. The average persistence coefficient across all 

product groups is 0.79, while the single persistent coefficient estimated from (19) is 0.81. This 

implies that allowing for heterogeneous coefficients at the product group level implies an 

average half-life for UPCs of around 2.9 quarters, while assuming homogenous coefficients 

across all product groups, implies the single estimated half-life to be 3.3 quarters. When we 

extend equations (25) and (19) to allow for both within and across coefficients, we find that the 

mean group estimate of the half-life across borders is 4.6 quarters while at the aggregate level the 

half-life is 6.6 quarters. Despite the small positive “aggregation bias”, standard tests reject the 

equality of the mean group coefficient with the homogenous coefficient. Hence, like Crucini and 

Shintani (2006), who also looked at the importance of this form of aggregation bias, we conclude, 

“our estimate of aggregation bias is modest, as anticipated by the simulation procedures used by 

Chen and Engel (2005).”  

If the aggregation bias does not resolve the PPP puzzle in our data, how can we explain 

the large differences in estimated persistence at different levels of aggregation? An attractive 

explanation is the presence of strong non-linearities in response to shocks. Table 10 shows the 

response of goods with different relative price volatilities over time. The lowest 10th percentile 

are goods whose relative price has little volatility over time. All goods with standard deviation of 
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less than 4.1 percent are included in this category. The data is further divided into terciles and the 

upper decile is also included. As the table suggests, the rate of convergence is extremely slow for 

small shocks. Half-lives for shocks within Canada for the lowest 10th percentile of this 

distribution are between 14 and 20 quarters, that is between 3 to 5 years. For convergence across 

the border we find even slower rates. For the lowest decile, the half-life of a small shock ranges 

between 25 and 43 quarters. Half-lives rapidly fall, however, as the shocks become larger. For 

instance, the largest tercile of shocks has half-lives of between 1 to 2 quarters for convergence 

within Canada and half-lives between 3 and 4 quarters for across the border. These results are 

quite intuitive. If the price differentials are small, the gains from arbitrage are likely to be 

minimal and small price differentials can persist for a long time. However, one might expect it to 

be more difficult for producers to maintain substantial price differentials for extended periods of 

time. 

It is worth contemplating the cutoffs in this table in terms of the international evidence on 

convergence. As we just saw, when shocks are sufficiently small that the standard deviation of 

price changes lies below 4.1 percent, the half lives within Canada tend are 13.6 quarters or 3.4 

years. Over this time period, the standard deviation of exchange rate between the US and Canada 

was 4.0 percent. This implies that if we started from a situation in which the absolute PPP held in 

all locations and rates of convergence internationally were identical to rates within Canada, one 

should expect to see a half life of price differentials of 3.4 years internationally not because of 

border barriers but because exchange rate fluctuations are relatively small and adjustment occurs 

non-linearly! Moreover, if we use the half life implied by the international data, we see that we 

should expect to see half of each shock dissipate in 6.4 years. These results are not that different 

from the 3-5 year half lives suggested by the macro studies. In other words, the slow half lives 

we observe in aggregate international data are consistent with the non-linear adjustment we see 

in the micro data.  

As attractive as this explanation seems, it still does not resolve why the convergence 

coefficient rises as we move to aggregate indexes. In order to see this result more clearly, it is 

useful to draw a picture that summarizes our findings. In particular the non-linearity implies that 

the persistence of relative price deviations will drop off  as the absolute magnitude of the 

deviation rises. We portray this in Figure 5. The implication of this non-linearity is that the slope 

of a regression of current relative prices on past relative prices will depend on the amount of 
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dispersion observed in the relative prices of the past period. The convergence coefficient, β, will 

be strongly influenceded by this non-linearity because the OLS estimates will place a heavy 

emphasis on the observations where |qugc,t-1| was large. However, if we aggregate the data, these 

large positive and price deviations are likely to cancel and hence the relative weight given to 

goods with small price deviations will rise. To the extent that these goods converge at a slower 

rates, this means that the use of aggregated data such as a price index will produce estimates of 

the convergence coefficient that are larger than those produced using disaggregated data.  

In Table 11 we present an illustrative example of this effect. In each time period there are 

two goods whose log relative prices converge from  30 to 21 and -30 to -21 (i.e. have a 

convergence coefficient of 0.7) and one good whose relative log price deviation ranges between 

3 and -3 and has a convergence coefficient of 0.9. In this case if we estimated the convergence 

coefficient using the disaggregated data we would estimate a coefficient close to 0.7, but one 

would obtain an estimate of 0.9 if one first aggregated the data. In other words, the non-linearity 

of convergence rates would mean that the estimated half life in the rise from 2 quarters in the 

disaggregated data to 6.5 quarters in the aggregated data. 

   One way to see that this is what is driving the aggregation bias is to form our aggregates 

in such a way that we preserve much of the underlying volatility of the UPC level data to see if 

this causes us to recover our disaggregated estimates. In order to this, we form our product group 

price indexes according to equation (24) but only use 5 UPCs chosen at random to form the 

product group level price indexes. By using a small number of UPCs we allow the product group 

prices to be affected by large outliers. As one can see from the estimates, the rate of convergence 

in this table hardly differ from those of Table 7. The contrast with panel 2 of Table 8 is striking, 

however. Increasing the number of UPCs in the aggregate price index drives up the convergence 

coefficient significantly because the individual relative price deviations cancel out in the larger 

sample. As a result, the estimated convergence coefficient rises in all specifications and the 

corresponding half-lives rise as well.  
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VII. Conclusion 

 

 The use of barcode data reveals a very different picture of international price differences 

than what one sees with coarser data. In particular we find that the LOP and PPP hold in their 

absolute forms as well across the border as they do within countries. Moreover, the importance 

of distance for price differences is five to ten times larger in aggregate data than in barcode data. 

Much of this is driven by the fact that the set of common goods falls systematically with distance 

leading price indexes to diverge because their composition diverges. Finally, we find that rates of 

price convergence within and across borders are fast and completely in line with micro studies.  

 Our study also explains why prior work has failed to identify these facts. In particular, 

our examination of the barcode data reveals that there is enormous heterogeneity in individual 

goods even when one examines goods that strike most researchers as homogeneous. This 

heterogeneity gives rise to very large relative price deviations that are lost when one examines 

price aggregates. The combination of using price indexes that are comprised of non-comparable 

goods and averaging away the large idiosyncratic price changes gives rise to a biased picture of 

how fast price differentials dissipate.  

 Finally, we are able to demonstrate that there are important non-linearities in the rate of 

price convergence. Large price differences disappear rapidly, but small ones persist. The non-

linearity of price adjustment is present both when we look within and across borders.  These 

results imply that the relatively small price differences generated by the typical exchange rate 

movement will tend to be quite persistent, but larger ones will be short lived. This may have 

important implications for understanding why prices sometimes seem to respond to exchange 

rate changes but other times do not. Obviously more work is needed to understand the 

implications of this for local versus producer currency pricing.  
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Figure 2B: Within Regions in Canada
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Figure 2A: Within Cities in the US
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Figure 5
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US National US Cross-Section Canada-Regional 

Number of Cities/Regions 1 10 6
Number of Households per City/Region 55,000 300 2500
Time Period 1999Q1 - 2003Q4 2003Q4 2001Q1-2004Q4

Number of UPCs per City/Region 697,312 50,628 57784

Number of Product Groups per City/Region 123 118 156

Number of UPCs per Product Group per City/Region 5,669 429 370

Number of CPI Individual Quotes per ELI per City/Region - 10 30

Cities included in the US: Boston, Chicago, Houston, Los Angeles, New York, Atlanta, Detroit, Philadelphia, 
Buffalo-Rochester, and Phoenix.
Regions included in Canada: Alberta, British Columbia, Manitoba, Maritimes, Ontario and Quebec. 
Source: ACNielsen Homescan US and ACNielsen Homescan Canada.

Table 1: Descriptive Statistics 



Number of 
Common UPCs Median Standard Deviation Median Absolute

(1) (2) (3) (4)

Upper Panel:  U.S. - U.S.
All 45 US city comparisons:
Median 10,616 0.000 0.223 0.113
Average 10,730 -0.001 0.224 0.114
St. Deviation 1,303 0.016 0.012 0.013

Middle Panel:  Canada - Canada
All 15 Canadian region comparisons:
Median 25,094 0.003 0.187 0.085
Average 25,980 0.007 0.181 0.083
St. Deviation 4,682 0.010 0.015 0.016

Lower Panel:  U.S. - Canada
All 60 U.S. City-Canada region comparisons:
Median 1,531 0.021 0.267 0.161
Average 1,634 0.019 0.266 0.160
St. Deviation 328 0.020 0.008 0.008

Table 2: Law of One Price Deviations within City/Region Pairs in the U.S. and Canada

Price Differences across Cities Common UPCs ONLY



Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.0047 0.0028 0.0083 0.0120 0.0068 0.0213

[0.0006]** [0.0007]** [0.0006]** [0.0015]** [0.0016]** [0.00165]**
Border Dummy 0.0312 0.0694

[0.0009]** [0.0020]**
Observations 970338 482869 389701 970338 482869 389701
R-squared 0.02 0.00 0.01 0.03 0.00 0.01
"Width" of the Border 720 328

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.0062 0.0024 0.0084 0.0182 0.0058 0.0245

[0.0006]** [0.0008]** [0.0007]** [0.0019]** [0.0019]** [0.0023]**
Border Dummy 0.0290 0.0654

[0.0013]** [0.0027]**
Observations 970338 482869 389701 970338 482869 389701
R-squared 0.04 0.00 0.01 0.05 0.00 0.03
"Width" of the Border 106 36

Absolute Log Price Difference

Square of log Price Difference Absolute Log Price Difference

All Regressions include city dummies. Robust standard errors in brackets. All standard errors are clustered by city 
pair. ; * significant at 5% level; ** significant at 1% level.

Table 3: Deviations in the Prices of UPCs

Lower Panel:  Weighted Regression

Upper Panel:  Unweighted Regression
Square of log Price Difference



Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.003 0 0.004 0.02 0.004 0.03

[0.001]** [0.000] [0.000]** [0.003]** [0.002]* [0.002]**
Border Dummy 0.018 0.064

[0.002]** [0.005]**
Constant -0.019 0.002 -0.023 -0.119 0.028 -0.148

[0.007]* [0.002] [0.003]** [0.033]** [0.013]* [0.017]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.12 0.02 0.08 0.15 0.04 0.14
"Width" of the Border 403 25

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.016 0.004 0.024 0.048 0.011 0.07

[0.002]** [0.001]** [0.003]** [0.006]** [0.004]** [0.006]**
Border Dummy 0.063 0.109

[0.005]** [0.010]**
Constant -0.086 0.017 -0.141 -0.232 0.094 -0.365

[0.017]** [0.013] [0.019]** [0.051]** [0.039]* [0.046]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.06 0.02 0.1 0.12 0.06 0.17
"Width" of the Border 51 10

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.162 0.013 0.15 0.103 0.023 0.173

[0.071]* [0.004]** [0.032]** [0.024]** [0.011]* [0.034]**
Border Dummy 3.693 1.746

[0.100]** [0.029]**
Constant -0.973 0.016 -1.188 -0.387 0.16 -1.207

[0.453]* [0.032] [0.289]** [0.156]* [0.089] [0.308]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.34 0.02 0.19 0.54 0.09 0.25
"Width" of the Border 7.95E+09 2.30E+07

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 4: Border Effects for Product Group Level Price Indexes

Upper Panel:  Common Weighted Index of Common Goods
Absolute Log Price DifferenceSquare of log Price Difference

Middle Panel:  City-Specific Weighted Index of Common Goods
Square of log Price Difference

Lower Panel:  City-Specific Weighted Index Composed of All Goods

Absolute Log Price Difference

Square of log Price Difference Absolute Log Price Difference



Dependent Variable St. Deviation over time of the Log of Price Ratio between Cities
Data Within Canada All Within Canada All
Weighted No No Yes Yes

Log Distance 0.01 0.009 0.014 0.012
[0.0010]** [0.0008]** [0.0018]** [0.0013]**

Border Dummy 0.012 0.012
[0.0048]** [0.0039]**

Observations 99444 116744 99444 116744
R-squared 0.01 0.01 0.01 0.01
"Width" of the Border 3.8 2.7

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 5: Engel and Rogers at the UPC level 

All UPCs 



Dependent Variable St. Deviation over time of the Log of Price Ratio between Cities
Data Within Canada All Within Canada All
Weighted No No Yes Yes

Log Distance 0.01 0.004 0.003 0.002
[0.0017]** [0.0019]* [0.0007]** [0.0009]*

Border Dummy 0.046 0.014
[0.0036]** [0.0027]**

Observations 1213 4336 1213 4336
R-squared 0.01 0.07 0.01 0.02
"Width" of the Border 98716 1097

Dependent Variable
Currency of Canadian Prices US $ US $ US $ US $ Canadian $ Canadian $
Data Within Canada All Within Canada All All All
Weighted No No Yes Yes No Yes

Log Distance 0.007 0.002 0.007 0.002 0.002 0.002
[0.0007]** [0.0006]** [0.0007]** [0.0006]** [0.0006]** [0.0006]**

Border Dummy 0.051 0.047 -0.005 -0.003
[0.0000]** [0.0000]** [0.005] [0.003]

Observations 1268 11941 1268 11941 11941 11941
R-squared 0.01 0.27 0.01 0.27 0.18 0.18
"Width" of the Border 1.19E+11 1.61E+10 . .

Robust starndard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 6: Engel and Rogers at the Product Group level using only Common UPCs across Cities

All Product Groups - Common UPCs - Common Weights

St. Deviation over time of the Log of Price Ratio between Cities
All Product Groups - All UPCs - City-Specific Weights



Dependent Variable
City Dummies No No No Yes Yes Yes
Value Weights No No Yes No No Yes

(1) (2) (3) (4) (5) (6)

qugc,t-1 0.787 0.779 0.866 0.772 0.762 0.853
[0.002] [0.002] [0.005] [0.020] [0.002] [0.006]

qugc,t-1 * Border 0.079 0.05 0.156 0.071
[0.006] [0.020] [0.008] [0.024]

Dummy ALB -0.013 -0.014 -0.020
[0.001] [0.000] [0.001]

Dummy BRC -0.017 -0.018 -0.020
[0.000] [0.001] [0.002]

Dummy MAN -0.009 -0.01 -0.014
[0.000] [0.001] [0.002]

Dummy MAR 0.004 0.003 -0.006
[0.001] [0.001] [0.002]

Dummy QUE 0.003 0.003 -0.005
[0.001] [0.001] [0.001]

Dummy US -0.005 -0.030 -0.019
[0.005] [0.002] [0.007]

Constant -0.005 -0.006 -0.012
[0.000] [0.000] [0.000]

Observations 399879 399879 399879 399879 399879 399879
R-squared 0.39 0.39 0.61 0.4 0.4 0.62

Half-life Within Canada 2.9 2.8 4.8 2.7 2.6 4.4
p-value (†) 0.000 0.000 0.000 0.000 0.000 0.000

Half-life Across Border . 4.5 7.9 . 8.1 8.8
p-value (†) . 0.000 0.000 . 0.000 0.001

Long-Run Convergence 
Coefficient within Canada -0.026 -0.026 -0.090 -0.029 -0.029 -0.088

Absolute Convergence Test  
within Canada (p-value) 0.000 0.000 0.000 0.000 0.000 0.000

Equality Test between Within 
and Across Absolute 
Convergence    (p-value)

0.677 0.000 0.291

(†) P-value for a standarized normal coefficient test based on the asymptotic distribution estimated by Harris and Tzavalis (1999). 
(‡) This is the average of the dummies for canada divided by the coefficient on L1dlnp. Standard errors are computed using the
delta method.
Robust standard errors in brackets.

Table 7: Convergence Rates at the UPC Level

Log of UPC Price Ratio Relative to Ontario



Dependent Variable
City Dummies No No Yes Yes No No Yes Yes No No Yes Yes
Product Group Weights No Yes No Yes No Yes No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

qugc,t-1 0.821 0.843 0.82 0.83 0.873 0.967 0.848 0.947 0.989 0.999 0.986 0.995
[0.028] [0.053] [0.030] [0.057] [0.014] [0.016] [0.016] [0.019] [0.006] [0.003] [0.006] [0.003]

qugc,t-1 * Border 0.075 0.038 0.138 0.111 0.015 -0.034 0.135 0.039 -0.01 0.001 0.017 0.033
[0.040] [0.055] [0.051] [0.066] [0.034] [0.030] [0.048] [0.033] [0.011] [0.016] [0.012] [0.013]

Dummy ALB 0.013 0.015 0.01 0.009 0.002 0.007
[0.003] [0.006] [0.002] [0.003] [0.003] [0.003]

Dummy BRC 0.014 0.018 0.013 0.009 0.006 0.005
[0.004] [0.005] [0.003] [0.003] [0.003] [0.003]

Dummy MAN 0.003 0.003 0.006 0.006 0.001 0.003
[0.004] [0.006] [0.003] [0.003] [0.003] [0.003]

Dummy MAR -0.003 0.003 0 0.004 -0.002 0
[0.004] [0.007] [0.003] [0.003] [0.004] [0.003]

Dummy QUE -0.006 -0.001 -0.002 0.003 -0.001 0.003
[0.004] [0.007] [0.003] [0.003] [0.003] [0.003]

Dummy US -0.04 -0.022 -0.04 -0.03 -0.041 -0.033
[0.009] [0.011] [0.009] [0.010] [0.005] [0.012]

Constant 0.002 0.006 0.003 0.006 -0.001 0.004
[0.001] [0.002] [0.001] [0.001] [0.001] [0.001]

Observations 6144 6144 6144 6144 6144 6144 6144 6144 6432 6432 6432 6432
Average UPCs per product group 5 5 5 5 80 80 80 80
R-squared 0.63 0.71 0.64 0.71 0.73 0.86 0.72 0.87 0.97 0.98 0.97 0.98

Half-life Within Canada 4 4 3 4 5 21 4 13 63 . 49 138
p-value (†) 0.001 0.012 0.000 0.010 0.001 0.012 0.000 0.010 0.214 1.000 0.063 0.161

Half-life Across countries 6 5 16 11 6 10 40 49 33 . . .
p-value (†) 0.504 0.000 0.000 0.015 0.504 0.000 0.000 0.015 0.125 1.000 1.000 1.000

Long-Run Convergence Coefficient 
within Canada

0.011 0.039 0.022 0.044 0.024 0.182 0.0342 0.149 -0.091 2.628 0.114 0.879

Absolute Convergence Test  within 
Canada (p-value)

0.093 0.000 0.000 0.000 0.002 0.035 0.000 0.011 0.410 0.628 0.083 0.152

Equality Test between Within and 
Across Absolute Convergence    (p-
value)

0.000 0.015 . . 0.000 0.043 . . . .

(†) P-value for a standarized normal coefficient test based on the asymptotic distribution estimated by Harris and Tzavalis (1999). 
(‡) This is the average of the dummies for canada divided by the coefficient on L1dlnp. Standard errors are computed using the delta method.
Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level

Table 8: Results from Aggregating UPC prices at the product group level

Common UPCs - Common Weights - Small Sample
Log of Product Group Price Ratio Relative to Ontario Log of Product Group Price Ratio Relative to Ontario

Common UPCs - Common Weights - Large Sample All UPCs - City-Specific Weights - Large Sample
Log of Product Group Price Ratio Relative to Ontario



Unweighted Weighted Unweighted Weighted Unweighted Weighted
(1) (2) (3) (4) (5) (6)

Persistence
Mean Product Group Estimates 0.79 0.81 0.57 0.64 0.85 0.86
Aggregate 0.81 0.88 0.64 0.8 0.87 0.9
p-value* 0.000 0.000 0.000 0.000 0.000 0.000

Half-Lifes
Mean Product Group Estimates 2.9 3.3 1.2 1.6 4.3 4.6
Aggregate 3.3 5.4 1.6 3.1 5.0 6.6

Table 9: Aggregation Bias

Within Country Across the BorderWithin and Across 



Type of goods 

Cutoffs of St. Deviation 
distribution (over time)

Persistence 
within 

Canada

St. Error of 
Persistence

Half-lifes 
within 

Canada

Additional 
Persistence 

Across Border

St. Error of 
Additional 

Persistence

Persistence 
Across the 

Border

Half-lifes 
Across 
Border

Lowest 10th 0.041 0.950 0.007 13.6 0.023 0.009 0.973 25.4
Lowest 33th 0.084 0.910 0.008 7.3 0.027 0.007 0.937 10.6
Middle 33th . 0.807 0.012 3.2 0.087 0.008 0.894 6.2
Upper 33th 0.149 0.590 0.023 1.3 0.182 0.014 0.772 2.7
Upper 10th 0.250 0.349 0.025 0.7 0.277 0.019 0.626 1.5

Lowest 10th 0.041 0.965 0.008 19.4 0.019 0.015 0.984 42.9
Lowest 33th 0.084 0.931 0.006 9.7 0.011 0.005 0.942 11.6
Middle 33th . 0.841 0.008 4.0 0.087 0.010 0.928 9.3
Upper 33th 0.149 0.671 0.010 1.7 0.185 0.021 0.856 4.4
Upper 10th 0.250 0.428 0.045 0.8 0.289 0.053 0.716 2.1

Upper Panel:   Unweighted

Lower Panel:   Weighted

Table 10: Non-linearity in Absolute Convergence Rates within and across Countries



Individual Good's 
Convergence Coefficient

Period 1 Period 2 Period 3

Good 1 0.7 -0.3 -0.21 -0.147
Good 2 0.7 0.3 0.21 0.147
Good 3 0.9 -0.03 -0.027 -0.024

Average -0.01 -0.009 -0.0081

Aggregate 
Convergence 0.9

Microdata 
Convergence 0.7008

Table 11: A Simple Example of the Role of Non-Linearities

Log Price Difference Relative to Ontario



UPC UPC Descriptor Product Group Descriptor

6897829901 PLAYSTATION 2 RF ADAPTER 1S (# AUDIO/VIDEO/COMPUTER UNITS
6897879500 XBOX UNI RF ADAPTER 1S (#79500 AUDIO/VIDEO/COMPUTER UNITS

1380300201 CANON POWERSHOT A10 DIG CAMERA CAMERAS/FILM/ACCESSORIES
1821070001 NIKON COOLPIX 2000 DIGITAL CAM CAMERAS/FILM/ACCESSORIES

5820038576 LUCERNE BUTTER UNSALTED 454GM BUTTER & MARGARINE
5574227472 SMART CHOICE SOFT TUB 454 GM(# BUTTER & MARGARINE

5980061302 NESTLE AFTER EIGHT BISCUIT CAR COOKIES & SWEET BISCUITS
7241709129 CADBURY CARAMEL FINGERS 125 GM COOKIES & SWEET BISCUITS

5610015728 PRINGLES REGULAR PLAIN 50 GM SNACK FOODS
6041002521 LAYS CLASSIC PLAIN BIG GRAB 70 SNACK FOODS

5218132276 SAFETY 1ST FISH N ROD TUB TOY TOYS
6487432633 MATTEL HOT WHEELS RIPPIN WHEEL TOYS

Table A1: Examples of Common UPCs across the Border



US-US Can-Can US-Can US-US Can-Can US-Can

Ln(Distance) -0.0301*** -0.0460** -0.0184*** -0.0301*** -0.0238 -0.0186***
[0.0029] [0.018] [0.0032] [0.0028] [0.027] [0.0029]

Border Dummy -0.134*** -0.157***
[0.0061] [0.0056]

Constant 0.434*** 0.972*** 0.347*** 0.469*** 0.888*** 0.387***
[0.026] [0.16] [0.027] [0.025] [0.24] [0.023]

Observations 45 15 105 45 15 105
R-squared 0.82 0.88 0.97 0.8 0.83 0.97

Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1

Share of Common UPCs                        
(in terms of the count of UPCs)

Share of Common UPCs (in terms of the 
value of UPCs)

Table A2: Examples of Common UPCs across the Border



Number of Number of 
Common UPCs Median Standard Deviation Median Absolute Common UPCs Median Standard Deviation Median Absolute

City/Region 1 City/Region 2 (1) (2) (3) (4) City/Region 1 City/Region 2 (1) (2) (3) (4)

U.S. - U.S. U.S. - Canada

Boston Chicago 10,362 0.000 0.226 0.117 Boston Alberta 1737 0.018 0.267 0.152
Boston Houston 10,235 0.017 0.212 0.107 Boston British Columbia 1686 0.021 0.265 0.162
Boston Los Angeles 9,119 0.000 0.242 0.134 Boston Manitoba 1517 0.038 0.256 0.147
Boston New York 11,503 0.000 0.223 0.115 Boston Maritimes 1529 0.031 0.272 0.162
Boston Atlanta 10,257 0.001 0.208 0.098 Boston Ontario 2513 0.030 0.275 0.164
Boston Detroit 10,863 0.000 0.220 0.110 Boston Quebec 1616 0.036 0.275 0.175
Boston Philadelphia 12,346 0.000 0.220 0.106 Chicago Alberta 1569 0.025 0.255 0.145
Boston Rochester 10,996 0.000 0.214 0.102 Chicago British Columbia 1595 0.013 0.256 0.145
Boston Phoenix 10,111 0.000 0.227 0.117 Chicago Manitoba 1450 0.038 0.259 0.145
Chicago Houston 11,102 0.038 0.221 0.123 Chicago Maritimes 1407 0.034 0.274 0.155
Chicago Los Angeles 9,773 0.000 0.234 0.120 Chicago Ontario 2275 0.028 0.267 0.160
Chicago New York 9,231 0.000 0.232 0.122 Chicago Quebec 1442 0.029 0.274 0.171
Chicago Atlanta 10,677 0.021 0.219 0.114 Houston Alberta 1548 -0.013 0.249 0.153
Chicago Detroit 12,798 0.000 0.222 0.106 Houston British Columbia 1552 -0.028 0.250 0.149
Chicago Philadelphia 11,213 0.000 0.226 0.112 Houston Manitoba 1408 -0.003 0.254 0.144
Chicago Rochester 10,466 0.000 0.214 0.102 Houston Maritimes 1375 -0.003 0.267 0.152
Chicago Phoenix 10,996 0.000 0.227 0.112 Houston Ontario 2191 -0.010 0.269 0.163
Houston Los Angeles 10,425 -0.039 0.241 0.141 Houston Quebec 1450 -0.007 0.264 0.161
Houston New York 8,910 -0.062 0.235 0.143 Los Angeles Alberta 1558 0.007 0.257 0.147
Houston Atlanta 13,209 0.000 0.193 0.083 Los Angeles British Columbia 1558 -0.001 0.262 0.162
Houston Detroit 12,322 -0.023 0.213 0.113 Los Angeles Manitoba 1356 0.025 0.256 0.156
Houston Philadelphia 10,823 -0.013 0.214 0.109 Los Angeles Maritimes 1337 0.027 0.267 0.154
Houston Rochester 10,074 -0.018 0.215 0.109 Los Angeles Ontario 2210 0.021 0.279 0.169
Houston Phoenix 12,853 -0.019 0.218 0.115 Los Angeles Quebec 1437 0.018 0.272 0.158
Los Angeles New York 8,346 0.000 0.252 0.136 New York Alberta 1514 0.035 0.267 0.159
Los Angeles Atlanta 9,494 0.029 0.239 0.133 New York British Columbia 1518 0.038 0.271 0.169
Los Angeles Detroit 10,116 0.002 0.237 0.124 New York Manitoba 1358 0.057 0.257 0.166
Los Angeles Philadelphia 9,361 0.002 0.245 0.135 New York Maritimes 1401 0.067 0.267 0.167
Los Angeles Rochester 8,449 0.000 0.236 0.124 New York Ontario 2313 0.056 0.269 0.168
Los Angeles Phoenix 12,752 0.000 0.222 0.102 New York Quebec 1522 0.061 0.273 0.173
New York Atlanta 8,963 0.043 0.229 0.131 Atlanta Alberta 1383 -0.017 0.251 0.154
New York Detroit 9,964 0.001 0.232 0.118 Atlanta British Columbia 1363 -0.016 0.257 0.159
New York Philadelphia 12,893 0.003 0.226 0.116 Atlanta Manitoba 1234 0.004 0.257 0.151
New York Rochester 9,723 0.000 0.233 0.119 Atlanta Maritimes 1241 0.014 0.266 0.163
New York Phoenix 8,684 0.000 0.240 0.128 Atlanta Ontario 1982 0.001 0.273 0.168
Atlanta Detroit 12,539 -0.005 0.208 0.105 Atlanta Quebec 1345 0.000 0.265 0.163
Atlanta Philadelphia 11,280 0.000 0.212 0.098 Detroit Alberta 1756 0.007 0.262 0.152
Atlanta Rochester 10,616 0.000 0.209 0.094 Detroit British Columbia 1755 0.010 0.270 0.161
Atlanta Phoenix 11,464 -0.007 0.218 0.111 Detroit Manitoba 1608 0.022 0.256 0.151
Detroit Philadelphia 11,984 0.000 0.221 0.107 Detroit Maritimes 1617 0.034 0.270 0.159
Detroit Rochester 11,593 0.000 0.214 0.096 Detroit Ontario 2587 0.023 0.276 0.163
Detroit Phoenix 11,603 0.000 0.224 0.111 Detroit Quebec 1662 0.024 0.267 0.164
Philadelphia Rochester 12,196 0.000 0.214 0.100 Philadelphia Alberta 1624 0.024 0.254 0.151
Philadelphia Phoenix 10,510 0.000 0.231 0.119 Philadelphia British Columbia 1616 0.021 0.268 0.163
Rochester Phoenix 9,675 0.000 0.226 0.113 Philadelphia Manitoba 1464 0.034 0.260 0.165

Philadelphia Maritimes 1455 0.036 0.271 0.159
All 45 US city comparisons: Philadelphia Ontario 2411 0.031 0.270 0.168
Median 10,616 0.000 0.223 0.113 Philadelphia Quebec 1549 0.036 0.265 0.161
Average 10,730 -0.001 0.224 0.114 Rochester Alberta 1495 0.014 0.265 0.162
St. Deviation 1,303 0.016 0.012 0.013 Rochester British Columbia 1509 0.002 0.272 0.171

Rochester Manitoba 1381 0.021 0.271 0.164
Canada - Canada Rochester Maritimes 1388 0.026 0.274 0.171

Rochester Ontario 2215 0.026 0.282 0.177
Alberta British Columbia 29014 0.000 0.160 0.063 Rochester Quebec 1455 0.037 0.274 0.170
Alberta Manitoba 27824 0.000 0.154 0.056 Phoenix Alberta 1629 -0.015 0.258 0.154
Alberta Maritimes 22004 0.022 0.188 0.096 Phoenix British Columbia 1667 -0.010 0.268 0.156
Alberta Ontario 30995 0.003 0.187 0.085 Phoenix Manitoba 1483 0.015 0.261 0.156
Alberta Quebec 22359 0.005 0.193 0.094 Phoenix Maritimes 1410 0.016 0.268 0.156
British Columbia Manitoba 25094 0.007 0.168 0.071 Phoenix Ontario 2303 0.006 0.278 0.163
British Columbia Maritimes 20286 0.031 0.196 0.106 Phoenix Quebec 1532 0.002 0.282 0.169
British Columbia Ontario 29281 0.016 0.194 0.096
British Columbia Quebec 21126 0.017 0.200 0.103
Manitoba Maritimes 20879 0.008 0.189 0.092 All 60 Uscity-Canadian region comparisons:
Manitoba Ontario 28757 0.000 0.185 0.083 Median 1,531 0.021 0.267 0.161
Manitoba Quebec 20994 0.000 0.192 0.089 Average 1,634 0.019 0.266 0.160
Maritimes Ontario 30914 0.000 0.168 0.066 St. Deviation 328 0.020 0.008 0.008
Maritimes Quebec 24800 0.000 0.171 0.073
Ontario Quebec 35374 0.000 0.165 0.068

All 15 Canadian Region comparisons:
Median 25,094 0.003 0.187 0.085
Average 25,980 0.007 0.181 0.083
St. Deviation 4,682 0.010 0.015 0.016

Price Differences across Cities Common UPCs ONLY Price Differences across Cities Common UPCs ONLY

Appendix Table A3: Law of One Price Deviations within City/Region Pairs in the U.S. and Canada
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Distance Equivalent of Border Effect 
(Weighted Regression Results)


