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ABSTRACT 

 
We study the location of more than 1,000 research and development (R&D) labs located in the 
Northeast corridor of the U.S. Using a variety of spatial econometric techniques, we find that these 
labs are substantially more concentrated in space than the underlying distribution of manufacturing 
activity. Ripley’s K-function tests over a variety of spatial scales reveal that the strongest evidence of 
concentration occurs at two discrete distances: one at about one-quarter of a mile and another at 
about 40 miles. We also find that R&D labs in some industries (e.g., chemicals, including drugs) are 
substantially more spatially concentrated than are R&D labs as a whole. 

Tests using local K-functions reveal several concentrations of R&D labs that appear to represent 
research clusters. We verify this conjecture using significance maximizing techniques (e.g., 
SATSCAN) that also address econometric issues related to “multiple testing” and spatial 
autocorrelation.  

We develop a new procedure for identifying clusters – the multiscale core-cluster approach, to 
identify labs that appear to be clustered at a variety of spatial scales. Locations in these clusters are 
often related to basic infrastructure such as access to major roads. There is significant variation in the 
industrial composition of labs across these clusters.  

The clusters we identify appear related to knowledge spillovers: Citations to patents previously 
obtained by inventors residing in clustered areas are significantly more localized than one would 
predict from a (control) sample of otherwise similar patents.   

 
JEL Codes: 031, R12Keywords: Spatial clustering of R&D labs, measures of geographic 
concentration, localized knowledge spillovers, patent citations
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1. INTRODUCTION 
 
Of the Marshallian externalities that motivate the literature on agglomeration economies, 
knowledge spillovers have proven to be the hardest to verify empirically. If knowledge spillovers 
are indeed economically important, there might be evidence of such externalities in the 
geographic pattern of private research and development (R&D) activity.   

In this paper, we construct a new data set of the location of private R&D labs in the Northeast 
corridor of the United States. We employ a variety of advanced spatial econometric techniques to 
detect and characterize a number of R&D clusters, and we verify that citations to patents 
produced by inventors living in these clusters are significantly more localized than are patent 
citations in general.   

That R&D labs are geographically concentrated is immediately evident from examining a 
national map of the locations of private R&D establishments, shown in Figure 1. Notice the very 
high concentration of R&D labs in the Northeast corridor — stretching from northern New 
Hampshire to Virginia.  Other concentrations appear around the Great Lakes, Southern 
California, and California’s Bay Area. What is not immediately clear from the map is that spatial 
concentration of R&D is significantly greater than manufacturing activity in general, a fact 
established in Buzard and Carlino (2011). 

A number of previous papers have used the Ellison and Glaeser (1997)—hereafter EG— 
concentration index to measure the clustering of manufacturing employment at the zip code, 
county, MSA, and state levels of geography. Rather than using fixed geographic units, such as 
counties or metropolitan areas, we use continuous measures to delineate the spatial structure of 
the concentrations of R&D labs. Specifically, we use Ripley’s (1976) K-function methods to 
analyze locational patterns over a range of selected spatial scales (e.g., within a quarter mile, 1 
mile, 5 miles, etc.).  This approach allows us to consider the spatial extent of the agglomeration 
of R&D labs as well as how rapidly the clustering of labs attenuates with distance. Following 
Duranton and Overman (2005) — hereafter referred to as DO — and Ellison, Glaeser, and Kerr 
(2010), we look for geographic clusters of labs that represent statistically significant departures 
from spatial randomness using simulation techniques.  Specifically, “randomness” in this case is 
not taken to mean a uniform distribution of R&D activity. Rather, since we are primarily 
interested in R&D concentration not explainable by manufacturing alone, we focus on departures 
from the distribution of manufacturing employment.  

In the first phase of the analysis, we employ global K-function statistics to test for the presence 
of significant clustering over a range of scales. There are two important findings from this global 
analysis. First, the clustering of labs is by far most significant at very small spatial scales, such as 
distances of about one-quarter of a mile.  Second, we find that the significance of clustering 
dissipates rapidly with distance.  This rapid attenuation of significant clustering at small spatial 
scales is consistent with the view that knowledge spillovers are highly localized.  .  Rosenthal 
and Strange (2001) find that proxies for knowledge spillovers positively affect EG concentration 
measures but only at zip code levels.  Rosenthal and Strange (2008) introduce spatial decay into 
the estimation of agglomeration externalities, but they assume no attenuation within the first 
mile.  Arzaghi and Henderson (2008) show that for ad agencies in New York City, information 
spillovers attenuate very rapidly, within several blocks.   
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If knowledge spillovers operate, we would expect them to be important in location decisions of 
knowledge-based activities such as R&D.  Importantly, our finding that the most significant 
localization of R&D labs occurs within a two- to three-block radius and attenuates rapidly 
thereafter is consistent with the mounting evidence for the attenuation of human capital 
spillovers at small spatial scales. 

We also observe a secondary mode of significance at a scale of about 40 miles. This will be seen 
to correspond roughly to the scales of the four major R&D agglomerations identified in the 
second phase of our analysis — one each in Boston, New York-Northern New Jersey, 
Philadelphia-Wilmington, and Virginia, including the District of Columbia (hereafter referred to 
as Washington, DC).  The scale of this clustering is roughly comparable to that of labor markets 
and hence is consistent with the view that agglomeration economies at the level of labor markets 
(e.g., externalities associated with pooling and matching) are important for innovative activity 
(see, for example, Carlino et al., 2007).  

Given the strong clustering found at small scales, the question remains as to where this clustering 
occurs. In the second stage of the analysis, explicit clusters are identified by a new procedure 
based on local K-functions, which we designate as the multiscale core-cluster approach. This 
new approach yields a natural nesting of clusters at different spatial scales. In particular, core 
clusters are identified at each scale containing those points involved in the most significant 
clustering at that scale. By construction, core clusters at smaller scales tend to be nested in those 
at larger scales. Such core clusters thus yield a hierarchy that can serve to reveal the relative 
spatial concentrations of R&D labs over a range of spatial scales. In particular, at scales of 5 and 
10 miles, these core clusters reveal the presence of the four major agglomerations mentioned 
above. As a consistency check, these results are replicated using the significance-maximizing 
procedures developed by Besag and Newell (1991) and Kulldorff (1997).  

We also use the global K-function technique to examine the concentration of R&D labs in 
specific two-digit SIC industries relative to the concentration of labs across all industries. This is 
both a higher bar and avoids a potential measurement issue at very small spatial scales that may 
occur when we use manufacturing employment as our baseline. We find at small spatial scales 
(such as within a two- to three-block area) that 37 percent of the industries studied are 
significantly more concentrated compared with overall R&D labs, and none are significantly 
more dispersed.  The rapid attenuation of significant clustering of labs for many individual 
industries bolsters our view that at least one important component of knowledge spillovers must 
be highly localized. 

Finally, using patent data, we are able to provide evidence consistent with the hypothesis that 
knowledge spillovers are highly localized within the clusters of R&D labs we identify.  Patents 
contain information about the location of inventors as well as citations to prior patents upon 
which they are built. As with citations to academic articles, we interpret patent citations as 
tangible evidence of knowledge spillovers.1

                                                 
1 The number of citations a patent receives is also correlated with the estimated value of the patent. See Harhoff et 
al. (1999). 

 If the clustering patterns we identify are motivated, 
at least in part, by spillovers that attenuate with distance, we should expect to find a comparable 
clustering of citations. In other words, we should expect to see that citations of patents generated 
within a cluster should come disproportionately from previous patents generated in that same 
cluster. We find that citations are a little over four times more likely to come from the same 
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cluster as earlier patents than one would predict using a (control) sample of otherwise similar 
patents.   

To place these results in perspective, we begin in the next section with a review of the relevant 
literature. This is followed in Section 3 with a brief discussion of data sources. The statistical 
methodology and test results for the global analyses of spatial clustering is developed in Section 
4, while the local analyses of clustering is discussed in Section 5. In Section 6 we introduce a 
new approach (multiscale core-cluster approach) for indentifying explicit R&D clusters. In 
Section 7 we provide a detailed discussion of the internal spatial structure of the four major R&D 
agglomerations identified by our analysis. In Section 8 we show that citations of patents 
generated within a cluster come disproportionately from within the same cluster as previous 
patents.  We conclude in Section 9.  

 
2. LITERATURE REVIEW 
 
A number of previous papers have used a spatial Gini coefficient to measure the geographical 
concentration of economic activity. Audretsch and Feldman (1996) were among the first to use a 
spatial Gini approach to show that innovative activity at the state level tends to be considerably 
more concentrated than is manufacturing employment.  EG extended the spatial Gini coefficient 
to condition not only on the location of manufacturing employment but to also on industrial 
structure.  

A number of recent studies have used the EG index to measure the clustering of manufacturing 
employment at the zip code, county, MSA, and state levels (see, for example, Ellison and 
Glaeser, 1997; Rosenthal and Strange, 2001; and Ellison, Glaeser, and Kerr, 2010). Holmes and 
Stevens (2004) take a broader approach and  use employment data for all U.S. industries, not just 
manufacturing, and find that among the 15 most concentrated industries, six are in mining and 
seven are in manufacturing; only two industries fall outside mining and manufacturing (casino 
hotels and motion picture and video distribution).   

The EG index suffers from a number of important aggregation issues that result from using a 
fixed spatial scale.  One aggregation issue is known as the modifiable area unit problem 
(MAUP).  The problem is that conclusions reached when the underlying data are aggregated to a 
particular set of boundaries (say, counties) may differ markedly from conclusion reached when 
the same underlying data are aggregated to a different set of boundaries (say, MSAs).  And the 
MAUP is more severe as the level of aggregation increases.  Another problem is that researchers 
sometimes construct indexes of localization but do not report any indication of the statistical 
significance of their results. Without further statistical analyses, it is not clear whether the 
concentrations reported are significantly different from ones that might result even if the 
locations of economic activity were randomly chosen. 

To address these issues, DO used micro data to identify the postal codes for each manufacturing 
plant in the UK, thus allowing these data to be geocoded.  Geocoding is important, since DO are 
not bound by a fixed geographical classification but base their approach on the actual distance 
between firms.  Additionally, rather than using a specific index to measure geographic 
concentration, such as the EG index, DO take a nonparametric approach (based on kernel 
densities).  Essentially, DO construct frequency distributions of the pair-wise distances between 
plants in a given industry. When the mass of the distribution is concentrated at short distances, 
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this represents a spatial concentration of plants in the industry.  Alternatively, if the mass of the 
distribution is concentrated at longer distances, this represents a more dispersed spatial pattern. 
Importantly, DO consider whether the number of plants at a given distance is significantly 
different from the number that would have been found if their locations were randomly chosen.   

A few other studies have used continuous measures of concentration.  In addition to considering 
a discrete measure of coagglomeration (measured at the state, MSA, and county levels), Ellison, 
Glaeser, and Kerr (2010) follow DO and also consider more spatially continuous measures of 
coagglomeration.  Marcon and Puech (2003) use distance-based methods to evaluate the spatial 
concentration of French manufacturing firms and find that some industries are concentrated, 
while other industries are dispersed. Arbia, Espa, and Quah (2008) use a K-function approach to 
study the spatial distribution of patents in Italy during the 1990s.  Kerr and Kominers (2010) 
develop a model where the costs of interaction among agents define the distance over which 
forces for agglomeration of activity operate. In one application, Kerr and Kominers (2010) use 
data on patent citations and show that technologies with short distances over which agents 
interact are characterized by smaller and denser concentrations relative to technologies allowing 
for interactions over longer distances.  In another application, Murata, et al. (2011) apply a 
continuous approach to test for the localization of knowledge spillovers using U.S. patent data. 
Using tests introduced by Jaffe, Trajtenberg and Henderson (1993)—hereafter JTH— Murata, et 
al. (2011) find evidence supporting the localization of knowledge spillovers. 

Our work differs from past studies in a number of ways.  Rather than looking at the geographic 
concentration of firms engaged in the production of goods (such as manufacturing), we use a 
new location-based data set that allows us to consider the spatial concentration of private R&D 
establishments. Rather than focusing on the overall concentration of R&D employment, we 
analyze the clustering of individual R&D labs.2 Our analytical approach also permits such 
clustering to be identified at a range of scales in continuous space, rather than at a single 
predefined scale. While this multiple-scale approach is similar in spirit to that of DO, our test 
statistics are based on Ripley’s K-function rather than the “K-density” approach of DO. One 
advantage of K-functions is that they can easily be disaggregated to yield information about the 
spatial locations of clusters at various scales. Our tests for the localization of R&D labs also 
control for industrial concentration and, in particular, the concentration of manufacturing 
employment.3

 

  Finally, in addition to these cluster-identification results, we show that patents 
from these clusters generate citations that are more localized than are patent citations in general.   

3. DATA  
 
Our primary data source is the 1998 vintage of the Directory of American Research and 
Technology. Using the complete address information for each R&D establishment, we were able 
to geocode the locations of more than 3000 labs. For this paper, we limited the analysis to 1,035 
                                                 
2 The study by Guimarães, Figueiredo, and Woodward (2007) is the only other study we are aware of that looks at 
spatial clustering at the establishment level. Specifically, they look at the geographic concentration of over 45,000 
plants in 1999 for concelhos (counties) in Portugal.  
3Duranton and Overman (2005) suggest five properties for a good index of concentration. The index should (1) be 
comparable across industries, (2) control for overall concentration of industry, (3) control for industrial 
concentration, (4)  be unbiased with respect to scale and aggregation, and (5) test for the significance of the results.  
It can be shown that the index of concentration used in this study satisfies these conditions. 
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R&D labs in ten states comprising the Northeast corridor of the United States (Connecticut, 
Delaware, Maryland, Massachusetts, New Hampshire, New York, New Jersey, Pennsylvania, 
Rhode Island, and Virginia, including the District of Columbia — the Washington, DC cluster). 
These labs are plotted in Figure 2.4

Even at the most aggregate level, it is easy to establish that R&D activity is relatively 
concentrated in these ten states. For example, in 1998 one-third of private R&D labs (and 32 
percent of private R&D expenditures) were located within this region, as compared with 22 
percent of total employment (21 percent of manufacturing employment) and 23 percent of the 
population. This concentration is consistent with Audretsch and Feldman (1996), who report that 
three of the top four states in terms of innovation in their data include Massachusetts, New 
Jersey, and New York. 

 Since there are approximately 6,043 zip codes in these states, 
there is on average one R&D facility for every six zip codes in this part of the country.  

In our formal analysis below, the concentration of R&D establishments is measured relative to a 
baseline of economic activity as reflected by the amount of manufacturing employment in the zip 
code, as reported in the 1998 vintage of Zip Code Business Patterns. These data are plotted in 
Figure 3. Since our main objective is to describe the localization of total R&D labs, 
manufacturing employment represents a good benchmark, since the vast majority of our R&D 
labs are owned by manufacturing firms.5

For the analysis in Section 8 of this paper, we use patent and citation data obtained from the 
NBER Patent Data Project.

  Since R&D labs may choose locations for different 
reasons than those of manufacturing establishments, later in the paper, we also examine the 
concentration of labs conducting R&D in specific industries, as compared to the locations of all 
R&D labs. 

6 We use data for patents granted in the years 1996-2006. In 
particular, we are interested in the geographic distribution of citations to patents obtained by 
inventors living within one of the R&D clusters we identify in Section 6 of the paper. As with 
journal articles, patent documents often include citations to earlier patents that are somehow 
related to the current invention. We follow the previous literature in using the home address of 
the first inventor on the patent to locate the patent in space. We obtained the specific coordinates 
for the patents we used from the Patent Dataverse.7

 

 

 
 
 
4. GLOBAL CLUSTER ANALYSIS 

                                                 
4 In some cases, a company reported multiple labs at the same address. For the analysis presented in this paper, we 
treated these cases as separate labs. As a robustness check, we also generated a map in which multiple labs owned 
by the same company and with a common street address were treated as a single lab. This reduces our lab count to 
951. We repeated all of our analyses using this alternative map and found essentially the same results.   
5 There are two notable exceptions in our labs data: electronics wholesaling (which includes firms such as Apple 
computers) and software. As a robustness check, we ran many of our tests using total employment as a back cloth 
and found comparable results.   
6 See https://sites.google.com/site/patentdataproject/. 
7 Specifically, we used the location information contained in the file inventors5s_9608.tab downloaded from 
http://dvn.iq.harvard.edu/dvn/dv/patent. For details, see Lai, D’Amour, and Fleming (2009). 
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The key question of interest is whether the overall pattern of R&D locations in the ten states we 
examine exhibits more clustering than would be expected from the spatial concentration of 
manufacturing in those states. To address this question statistically, our null hypothesis is that 
R&D locations are determined entirely by the distribution of manufacturing employment:  

0H : The probability of finding a randomly selected R&D lab in any given area is proportional to 
manufacturing employment in that area.  

Although we do not have employment data for arbitrary areas, our zip code geography for the 
Northeast corridor should be sufficiently disaggregated to provide reasonable approximations for 
the purposes of our global cluster analysis (as unions of zip code areas).8

A simple two-stage Monte Carlo procedure for generating locations consistent with our null 
hypothesis is to randomly draw a zip code with a probability that is proportional to 
manufacturing employment in that zip code, relative to manufacturing jobs in all zip codes in our 
data, and then to choose a random location within that zip code.  By repeating this procedure for 
a set 

  

1035n =  location choices, one generates a pattern, ( ( , ) : 1,.., )i i iX x r s i n= = = , of potential 
R&D locations that is consistent with 0H , where ( , )i ir s represents the latitude and longitude 
coordinates (in decimal degrees) at point i. This process is repeated many times for each R&D 
location in the data set. In this way, we can test whether the observed point 
pattern, 0 0 0 0( ( , ) : 1,.., )i i iX x r s i n= = = , of R&D locations is “more clustered” than would be 
expected if the pattern were generated randomly (i.e., randomly drawn from the manufacturing 
employment distribution).  

In the next section we introduce the appropriate test statistics in terms of K-functions. In Section 
4.2 and Section 4.3 we summarize our test results for global clustering. In Section 4.4 we 
consider the relative concentration of labs conducting R&D in specific (two-digit SIC) industries 
as compared to the locations of all R&D labs. In other words, we investigate whether labs in 
some industries exhibit more clustering than R&D labs in general.  

 
4.1 K-Functions  
 
The most popular measure of clustering for point processes is Ripley’s (1976) K-
function, ( )K d ,9

( )K d
  which (for any given mean density of points) is essentially the expected 

number of additional points within distance d of any given point. Hence if  is higher than 
would be expected under 0H , then this may be taken to imply clustering of R&D locations 
relative to manufacturing at a spatial scale d.   

For testing purposes, it is sufficient to consider sample estimates of ( )K d . If for any given point i 
in pattern ( : 1,.., )iX x i n= = , we denote the number (count) of additional points in X within 

                                                 
8 The median area of zip codes in our data set is 17 square miles, which corresponds roughly to a radius of 2.3 miles. 
9 The term “function” refers to the fact that ( )K d is in principle defined for all 0d ≥ . 
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distance d of i  by ( )iC d , then the desired sample estimate, ˆ ( )K d , is given simply by the 
average of these point counts, i.e., by 10

1
1ˆ ( ) ( )n

iinK d C d
=

= ∑
   

                                                                                  (1) 

As described in the preceding section, we draw a set of point 
patterns, ( : 1,.., ) , 1,..,s s

iX x i n s N= = = , for a selection of radial distances, 1( ,.., )kD d d= , and 

calculate the resulting sample K-functions, ˆ{ ( ) : }, 1,..,sK d d D s N∈ = . For each spatial scale, 
d D∈ , these values yield an approximate sampling distribution of ( )K d  under our null 
hypothesis.  

If one simulates a number of point patterns, ( : 1,.., ) , 1,..,s s
iX x i n s N= = = , by the above 

procedure, and for a selection of radial distances, 1( ,.., )kD d d= , constructs the corresponding 
sample K-functions, ˆ{ ( ) : }, 1,..,sK d d D s N∈ = , then at each scale, d D∈ , these values yield an 
approximate sampling distribution of ( )K d  under 0H . Hence if the corresponding value, 0ˆ ( ),K d  
for the observed point pattern, 0X , of R&D locations is sufficiently large relative to this 
distribution, then this can be taken to imply significant clustering relative to manufacturing. 
More precisely if the value 0ˆ ( )K d is treated as one additional sample under 0H , and if the 
number of these 1N +  sample values at least as large as 0ˆ ( )K d  is denoted by 0( )N d , then the 
fraction, 

 
0 ( )( )

1
N dP d
N

=
+

        (2) 

is a (maximum likelihood) estimate of the p-value for a one-sided test of hypothesis 0H .  

For example, if 999N =  and 0( )N d  = 10, so that ( ) 0.01P d =  then under 0H , there is estimated 

to be only a one-in-a-hundred chance of observing a value as large as 0ˆ ( )K d . Thus, at spatial 
scale d there is significant clustering of R&D locations at the 0.01 percent level of statistical 
significance.  

 
 4.2 Test Results for Global Clustering 
 
Our Monte Carlo test for clustering was carried out with 999N =  simulations at radial distances, 

{0.25,0.5,0.75,1,2,...,99,100}d D∈ = , i.e., at quarter-mile increments below 1 mile and at 1-
mile increments from 1 to 100 miles.  We find that clustering is so strong, relative to 
manufacturing employment, that the estimated p-values were 0.001 for all spatial scales we 
considered. Thus, our conjecture that private R&D activities exhibit significant agglomeration is 
extremely well supported by the data. 
 

                                                 
10 These average counts are usually normalized by the estimated mean density of points. But since this estimate is 
constant for all point patterns considered, it has no effect on testing results. 
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Note that, using our approach, the smallest possible p-value that can be generated is 1 ( 1)N + .  
For 999,N =  the smallest possible p-value is then 0.001, which suggests that we may be 
underestimating the statistical significance of our results. Of course, we could increase the 
number of draws, but we chose 999N =  because it was sufficiently large to obtain reliable 
estimates of the sampling distributions under 0H .  Analysis of these distributions—both in terms 
of Shapiro-Wilk (1965) normality tests and normal quintile plots (not shown)—indicate that they 
were well approximated by the normal distribution for all the spatial scales we tested.  
 
4.3 Variation in Global Clustering by Spatial Scale   
 
To obtain a sharper discrimination between results at different spatial scales, we calculate the z-
scores for each observed estimate, 0ˆ ( )K d , as given by 

 
0ˆ ( )( ) , {0.25,0.5,0.75,1,2,...,99,100}d

d

K d Kz d d
s
−

= =  (3)  

where dK  and ds  are the corresponding sample means and standard deviations for the 1N +  
sample K-values. These z-scores are depicted in Figure 4a.  Notice first that the lowest z-score is 
already more than seven standard deviations away from the mean, which explains the constancy 
of p-values reported above. 

A key finding from the global K-function analysis is that the overall clustering of R&D labs is by 
far most significant (based on z-scores) at very small spatial scales, such as distances of one-
quarter mile. While still highly significant, the z-scores decline rapidly up to a spatial scale of 
about 5 miles. We also observe a secondary mode of significant clustering for the totality of all 
labs at about 40 miles, as shown in Figure 4a. In terms of standard deviations, this is about half 
as pronounced as the primary mode.   

This pattern of z-scores is consistent with two strands of empirical research on human capital 
spillovers and agglomeration economies. For example, there are a number of papers that 
establish very rapid attenuation of effects with distance in studies of the concentration of 
manufacturing employment (Rosenthal and Strange, 2001 and 2008, and Elvery and 
Sveikauskas, 2010), of innovative activity (Audretsch and Feldman, 1996; Keller, 2002; and 
Agrawal, Kapur, and McHale, 2008); and of locations of advertising firms in New York City 
(Arzaghi and Henderson, 2008). Other studies find evidence of positive effects of agglomeration 
at much greater distances (Rosenthal and Strange, 2008, and Elvery and Sveikauskas, 2010). 
Carlino et al. (2007) establish robust correlations between patent intensity (patents per capita) 
and job density (jobs per square mile) for 280 U.S. cities in the 1990s. Such patterns are 
consistent with models of labor market search that exhibit matching externalities (Berliant et al., 
2006, and Hunt, 2007).   

 
4.4 Precision at Very Small Spatial Scales  
 
The global K-function approach is suitable for detecting non-random concentrations over a wide 
spectrum of spatial scales. For our particular application of this technique, however, we need to 
address a potential confounding factor with our data. The concern is that while we have 
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identified the precise locations of R&D labs, our data on employment are a sum of jobs for each 
zip code in the data set. Thus, we are implicitly assuming that jobs are distributed uniformly 
across a zip code. This creates the possibility of potential bias at spatial scales that are much 
smaller than a zip code.11

For a number of reasons, we don’t believe there is much, if any, bias in our significance 
measures at very small spatial scales. First, as discussed in the next section, we have constructed 
alternative tests for concentration for which the underlying data do not vary in terms of their 
spatial precision. In the next section, we test for the concentration of R&D labs in specific 
industries relative to the locations of all R&D labs in our data set. As we found in Figure 4a, for 
practically all industries, our measures of statistical significance are higher at very small spatial 
scales (e.g., a quarter of a mile) than they are at intermediate or even larger scales.  

   

To be conservative, however, we constructed a second counterfactual exercise designed to sweep 
out any possible effect of differences in spatial precision in our global K analysis. In this 
alternative formulation, rather than using the actual location of R&D labs, we assign each lab 
randomly to a point in the zip code where they are located. Thus, the pseudo location of R&D 
labs has the same spatial precision as our zip-code-level employment data.12

We conclude first that any differences in the spatial precision of our R&D lab data and the 
employment data have no effect on the significance measures for spatial scales of 3 miles or 
more. Second, even using this alternative specification, it is clear that the global K statistic 
remains highly significant at very small spatial scales. Thus, the evidence for clustering at even 
very small distances is not an artifact of measurement error. Finally, it is almost certainly the 
case that the z-scores reported for smaller spatial scales depicted in Figure 4b are biased 
downward, since we have deliberately introduced additional noise into our information on the 
location of R&D labs.

 Figure 4b shows the 
z-scores for this alternative exercise. Comparing Figures 4a and 4b, it is clear the only material 
differences in z-scores occur at distances of about 3 miles or less. The plots are otherwise the 
same.  

13

 

 This appears to be confirmed by the pattern of z-scores for measures of 
the relative concentration of R&D labs described in the next section.       

4.5 Relative Clustering of R&D Labs by Industry   
 
We believe that the distribution of manufacturing jobs is a reasonable, relatively objective basis 
for assessing patterns of clustering by private R&D facilities. Nevertheless, the reasons for 
establishing an R&D lab in a particular location may differ from those that determine the 
location of manufacturing establishments. For example, R&D labs may be drawn to areas with a 
more highly educated labor force than would be typical for most manufacturing establishments.  
Some R&D labs may co-locate not because of the presence of spillovers but rather because of 
subsidies provided by state and local governments. One example might include partial public 
funding of technology parks.  

                                                 
11 This potential source of bias was first pointed out to us by Gilles Duranton and Isabel Tecu. 
12 We thank Gilles Duranton for suggesting the alternative counterfactual exercise. 
13 To put it another way, in order to eliminate the possibility of a false positive result, this alternative approach 
increases the likelihood of false negative results. 
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In this section, we modify our null hypothesis: we assume that the probability of finding a 
randomly selected R&D lab associated with a particular industry is proportional to the total 
number of R&D labs in that area. The limitation of this approach is that we cannot say anything 
about the clustering of R&D labs in general. But the benefit is two-fold. First, we can incorporate 
into our null hypothesis factors that are likely to influence the location of R&D in general. 
Second, we can assess whether specific industries exhibit more spatial concentration of their 
R&D than for all R&D labs taken together. Note that, here, we are constructing a test of relative 
spatial concentration, since we have already established that R&D facilities are significantly 
more concentrated in space than manufacturing activity in general. 

To accomplish this, we grouped labs in terms of their primary industrial research areas at the 
two-digit SIC level.14  We apply a variant of the global K-function procedure by taking random 
draws of the count of R&D labs from the full population of 1,035 labs.15 Table 1 reports the p-
values for each of the 19 two-digit SIC industries for selected distances. We find that at a 
distance of a quarter-mile, seven of these 19 industries (37 percent) are significantly more 
localized (at the 0.05 percent level) than are R&D labs in general16 None are significantly more 
dispersed.17

The z-scores for the seven industries with the most significant patterns of clustering are displayed 
graphically in Figure 5. Because we are especially interested in the attenuation of z-scores at 
small scales, these z-scores are given in increments of 0.25 miles up to 5 miles. For all but one of 
these industries, the clustering of R&D labs is by far most significant at very small spatial scales 
— a quarter mile or less. The lone exception is Miscellaneous Manufacturing Industries (SIC 
39), where the highest z-score occurs at a distance of just under 2 miles.  

  

In addition, Figure 5 reveals a very rapid distance decay of the z-scores for each of the seven 
industries. The rapid spatial attenuation of z-scores supports our view that at least one important 
component of knowledge spillovers in these industries is highly localized. For most of these 
industries there is nearly a monotonic decline in z-scores as spatial scale increases. In four 
instances, at distances above 3 miles, the industry’s R&D labs are no more concentrated spatially 
than R&D labs in general. Two exceptions do stand out—Chemicals and Business Services: labs 
in these industries are also spatially concentrated, relative to all R&D labs, at much larger spatial 
scales. Note that, in our data, all but one of the R&D labs in the Business Services category are 
associated with firms engaged in computer programming or data processing.  

                                                 
14 This assignment is based on information contained in the Bowker Directory. The two-digit level is used to achieve 
sufficient sample sizes for testing purposes. This yields 19 industrial groups with corresponding SIC designations: 
10, 13, 20-23, 26-30, 32-39, and 73. It also reduces the likelihood that the presence of outliers, in terms of industry 
specialization, might also lead to false positives. Consider, for example, a company developing advanced, large 
caliber cannon, which may require a proving ground isolated from other activities. 
15 In particular, this identification procedure is carried out (in a manner similar to DO) in terms of standard random-
permutation tests based on global K-function statistics.  
16 The seven industries include Textile Mill Products; Stone, Clay and Glass; Fabricated Metals; Chemicals and 
Allied Products (this category includes drugs); Instruments and Related Products; Miscellaneous Manufacturing 
Industries; and Business Services.  
17 With respect to dispersion, two of the 19 industries are found to be significantly more disbursed starting at a 
distance of 5 miles, while an additional industry exhibits some degree of relative dispersion at 50 miles.  
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The results for the chemical and allied products industry (SIC 28) merit some additional 
discussion, if for no other reason than that this category includes labs engaged in pharmaceutical 
R&D, a very important segment of the U.S. economy. In our data, this category of labs accounts 
for about 40 percent of all labs, a share more than twice as large as any other two-digit SIC 
industry. Thus, at least within the geographic area we study in this paper, this industry is a major 
contributor to the overall clustering pattern of R&D shown in Figure 4a. Nevertheless, as Figure 
5 demonstrates, evidence of clustering occurs in many other industries. In other words, the 
clustering of R&D labs is not a phenomenon specific to drugs and chemicals. 

 
5. LOCAL CLUSTER ANALYSES  
 
The global analysis documents that R&D facilities in these ten states are indeed clustered at a 
variety of spatial scales. In this section we a use variation of our techniques to identify specific 
R&D clusters and the labs that belong to them.  The main tool for accomplishing these tasks is 
the local version of sample K-functions for individual pattern points (first introduced by Getis, 
1984).18 i Basically, this local version at  is simply the count of all additional pattern points 
within distance d of i . In terms of the notation in expression (1) above, the local K-function, ˆ

iK , 
at location i  is given for each distance, d, by,19

           

 

ˆ ( ) ( )i iK d C d=       (4) 

Hence, the global K-function, K̂ , in expression (1) is simply the average of these local functions. 
 

5.1 Local Testing Procedure 
 
For the remainder of the paper, we use the same null hypothesis employed in Section 4.1 (R&D 
labs are distributed in a manor proportional to the distribution of manufacturing employment). 
The only substantive difference from the procedure used in that section is that the actual point 
pattern associated with location i, ix , is held fixed. The appropriate simulated values,  
ˆ ( ) , 1,..,s

iK d s N= , under 0H  are obtained by generating point patterns, ( : 1,.., 1)s s
jX x j n= = − ,  

of size 1n − , representing all points other than i . The resulting p-values for a one-sided test of 
0H  with respect to point i  take the form,  

0 ( )( )
1

i
i

N dP d
N

=
+

      (5) 

                                                 
18 The interpretation of the population local K-function, ( )iK d , for any given point i is simply the expected number 

of additional pattern points within distance d of i. Hence ˆ ( )iK d is basically a (maximum likelihood) estimate of size 

one for ( )iK d .  For a range of alternative measures of local spatial association, see Anselin (1995).  

19 It should be noted that the original form proposed by Getis (1984) involves both an “edge correction” based on 
Ripley (1976) and a normalization based on stationarity assumptions for the underlying point process. However, in 
the present Monte Carlo framework, these refinements have little effect on tests for clustering. Hence, we choose to 
focus on the simpler and more easily interpreted “point count” version above.  
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where 0( )iN d  is again the number of these 1N +  draws that produce values at least as large as 
0ˆ ( )iK d .  

An attractive feature of these local tests is that the resulting p-values for each point i  in the 
observed pattern can be mapped. This allows one to check visually for regions of significant 
clustering. In particular, groupings of very low p-values serve to indicate not only the location 
but also the approximate size of possible clusters. Such groupings based on p-values necessarily 
suffer from “multiple testing” problems, which we address rigorously in later sections.   

 
5.2 Test Results for Local Clustering  
 
For our local cluster analysis, simulations were performed using 999N =  test patterns of size 

1n −  for each of the ( 1035)n =  R&D locations in observed pattern 0X . The set of radial 
distances (in miles) used for the local tests was {0.5,0.75,1,2,5,10,11,12..,100}D = .  

In our global analysis, the associated p-values were essentially the same for nearly all spatial 
scales. That is not the case for the local analysis. It is not surprising to find that many isolated 
R&D locations exhibit no local clustering whatsoever, so that wide variations in significance 
levels are possible at any given spatial scale. It is also natural to expect variations in tests of 
statistical significance at different spatial scales. At very small scales (say, less than one-quarter 
of a mile), one expects to find a wide scattering of very small clusters, such as industrial parks 
that include more than one R&D lab. At the other extreme (say, 100 miles) one expects to find 
very large clusters, based mostly on the strong overlap of K-function areas around each location. 
From a visual perspective, at least, the most interesting scales are those intermediate scales at 
which one begins to see more “coherent” clusters.  

A visual inspection of p-value maps for our tests shows that the clearest patterns of distinct 
clustering can be captured by the smaller set of distances {0.5,1,5,10}.  Of these four, the single 
best distance for revealing the overall clustering pattern in the entire data set appears to be 5 
miles, as illustrated in Figure 6.20

i
  For clarity, we have shown only three levels of p-values. As 

seen in the legend, those R&D locations, , exhibiting maximally significant clustering 
[ (5) 0.001iP = ] are shown in black, and those with p-values not exceeding 0.005 are shown as 
dark gray. Here it is evident that essentially all of the most significant locations occur in four 
distinct groups, which can be roughly described (from north to south) as the “Boston,” “New 
York City,” “Philadelphia,” and “Washington DC” agglomerations.21

 

 But while these patterns 
are visually compelling, it is important to establish the results more formally. 

6.  IDENTIFYING CLUSTERS USING ROBUST METHODS  
 
The global cluster analysis in Section 4 identified the scales at which clustering is most 
significant (relative to manufacturing employment). The local cluster analysis in Section 5.1 
provided information about where clustering is most significant at each spatial scale. But neither 

                                                 
20 We use the results for the entire set of distances in the robustness sections that follow.   
21 The one exception here is a small but significant agglomeration in Pittsburgh. 
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of these methods formally identifies or defines “clusters,” the combinations of specific labs that 
belong in a set of labs subject to mutual influence by other members of the set. In this section, 
we apply some additional techniques to identify clusters. In the process of doing so, we will 
address some econometric issues that could potentially contaminate these and our earlier results.  
 
6.1 The Multiple-Testing Problem 
 
Our method of identifying clusters is, by construction, a local cluster analysis. Because we are 
testing over multiple locations (some nearby) and spatial scales (some quite large), we must 
address two aspects of a “multiple testing” problem.22

Suppose there was in fact no local clustering of R&D labs (so that the observed pattern 

  
0X of 

R&D locations could not be distinguished statistically from the patterns generated under our null 
hypothesis). Suppose also that all local K-function tests were statistically independent from each 
other. Then, by construction, we should still expect 5 percent of our resulting test statistics to be 
statistically significant at the 0.05 percent level. So when many such tests are involved (in our 
case, 1,035 tests at each scale, d D∈ ), one is bound to find some degree of  “significant 
clustering” using standard testing procedures. As is well known, this type of “false positive rate” 
can be mitigated by reducing the p-value threshold level deemed to be “significant.” That is one 
reason why we focus only on p-values no greater than 0.005 in Figure 5.  

This adjustment alone is not sufficient in instances where the assumption of statistical 
independence of the tests is also violated. This is a likely possibility when our statistics for 
detecting local clustering are calculated over radial distances that are larger than half the distance 
between any two points for which the statistic is being calculated. The resulting p-value map 
must necessarily exhibit some degree of (positive) spatial autocorrelation, much in the same way 
that kernel smoothing of spatial data induces autocorrelation.23

 

  

6.2 The Significance-Maximizing Approach 
 
A number of econometric approaches have been developed for resolving multiple testing 
problems in spatial applications. Perhaps the best known are the original work of Besag and 
Newell (1991) and the more recent work of Kulldorff (1997). Both approaches resolve the 
multiple-testing problem by conducting only a single test.   

In the present setting, one focuses on zip code areas (cells) and replaces individual locations with 
counts of R&D labs in each area (cell counts). Using centroid distance between cells, candidate 
clusters are then defined as unions of m-nearest neighbors to given “seed” cells, and a test 
statistic is constructed to determine the single most significant cluster.  In both of these 
significance-maximizing procedures, the notion of “significance” is essentially defined with 
respect to tests based on the same null hypothesis, 0H , above.24

                                                 
22 A global cluster analysis, conducted over many spatial scales, may also suffer from this problem, but the problem 
is made worse for the local cluster technique, which we address in the text. 

  To determine a second most 

23  For a full discussion of these issues in a spatial context, see, for example, Castro and Singer (2006). 
24  In our present setting, the Besag-Newell (1991) procedure directly uses 0H  to define a nonhomogeneous Poisson 
process of R&D frequency counts in each zip code area. The appropriate test statistic is then simply the observed 
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significant cluster, the zip code areas in the most significant cluster are removed, and the same 
procedure is then applied to the remaining zip code areas.  This procedure is typically repeated 
until some significance threshold (such as a p-value exceeding 0.05) is reached.   

While this repeated series of tests might appear to reintroduce multiple testing, such tests are, by 
construction, defined over successively smaller spatial domains and hence are not directly 
comparable. Notice also that at each step of this procedure, the cluster identified has an explicit 
form, namely, a seed zip code area together with its current nearest neighbors. So both of the 
problems raised for K-function analyses above are at least partially resolved by this significance-
maximizing approach. 

We have applied both the Besag-Newell procedure and Kulldorff’s SATSCAN procedure to our 
data and found them to be in remarkably good agreement with each other. Thus, we present only 
the results of the (more popular) SATSCAN procedure. In this setting, we ran the maximum of 
10 iterations allowed by the SATSCAN software,25

Turning next to the specific clusters identified by SATSCAN, we start with the single most 
significant cluster found in “stage 1” of the procedure, as shown by the darkened set of zip code 
areas in Figure 8 (where the slightly darker zip code in the center is the starting seed).  This 
cluster is essentially the “Boston cluster,” referred to in Figure 6 above. For purposes of 
comparison, the Boston area of Figure 6 has been superimposed on Figure 8 to show that the two 
most statistically significant groupings of R&D Labs (based on the local K-Function analysis) in 
the Boston area are essentially contained in this cluster. Again, there appears to be a reasonable 
correspondence between the results reported in Section 5 and those found here. 

 and the results from the union of these 
iterations are plotted in Figure 7. Comparing this figure to Figure 6 (derived using our local K-
function), it is evident that both procedures are identifying essentially the same areas. 

Still, the patterns presented in Figure 6 naturally raise the question as to why two distinct 
groupings of labs identified in the local K-function analysis should constitute a single cluster as 
identified by the SATSCAN procedure. It is due to the approximately circular shapes of 
candidate clusters defined by this particular implementation of the procedure.26

An even more dramatic example is provided by the single largest cluster in the New York area, 
just north of New York City in Figure 7, which is shown enlarged in Figure 9 (again the relevant 
portion of Figure 6 has been superimposed). Here it is evident that all significant concentrations 
of R&D labs (at scale d = 5 miles) lie along the southern edge of this cluster. While there is a 

 In particular, no 
circular approximation to either of these two groupings is more significant than the single 
circular cluster shown.  

                                                                                                                                                             
total count in each candidate cluster. The SATSCAN procedure of Kulldorff (1997) uses a more complex likelihood-
ratio statistic (under 0H ) for each candidate cluster and then employs essentially the same simulation procedure as in 

Section 4.1 above to simulate the sampling distribution of this statistic under 0H . 

25 This software is available online at http://www.satscan.org/download_satscan.html.  
26 Our particular model corresponds to the “continuous Poisson” option in the SATSCAN software, for which 
neighborhoods are required to be “circular” (as defined by a seed area together with its first m-neighbors). 
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smaller concentration of labs in the east central portion, it is clear that attempts to capture these 
concentrations by circular shapes may have distorted the identification of the actual cluster. 27

In addition to this shape limitation, the sequential nature of cluster identification in these 
procedures introduces other types of “path-dependence” problems. In particular, the removal of 
clusters identified at each stage necessarily modifies the neighborhood relations among the 
remaining zip codes at later stages. So at a minimum, these modifications require careful 
“conditional” interpretations of all clusters beyond the first cluster.

  

28

To conclude, tests using both the Newell procedure (not shown) and Kulldorff’s SATSCAN 
procedure are generally consistent with the results found in our local K-function analysis. This 
suggests that the results reported in Section 5 are not attributable to the kinds of multiple testing 
problems outlined above. Nevertheless, we can improve upon our implementation of the 
SATSCAN procedure for the purposes of formally identifying clusters. We accomplish this in 
the next section. 

 

 
6.3 A Multiscale Core-Cluster Approach  
 
It is useful to consider an alternative approach to cluster identification that explicitly uses the 
multiscale nature of local K-functions. This procedure starts with the results of the local point-
wise clustering procedure in Section 5.2 and seeks to identify subsets of points that can serve as 
“core” cluster points at a given selection of spatial scales, d . Here we focus on the three scales, 

{1,5,10}d ∈ , that appear to capture the essential substructure of the four main clusters in Figure 
6. In most of the discussion below, we focus on the 5-mile scale for purposes of illustration and 
consider scales 1 and 10 only when substantive comparisons between the scales are made.  

At each scale, d , a core point is an R&D lab with an associated p-value of 0.001 or lower, 
derived in the local K-function analysis using the 999 simulations described in Section 5.1.29 In 
order to exclude “isolated” points that simply happen to be in areas with little or no 
manufacturing, we also require that there be at least four other R&D labs within this d-mile 
radius. Finally, to identify distinct clusters of such points, we created a d-mile-radius buffer 
around each core point (in ArcMap) and identified the sets of points in each connected 
component of these buffer zones as a core cluster of points at level d. Hence, each such cluster 
contains a given set of “connected” core points along with all other points that contributed to 
their maximal statistical significance at level d.30

                                                 
27 It should be noted that the option of using more general “elliptical” clusters is available in certain SATSCAN 
modeling options other than the “continuous Poisson” option used here. 

  

28 Methods for addressing such path dependencies have been developed, but they require global optimization, which 
can be intractable for some applications. See Mori and Smith (2009). 
29 The use of 999 simulations was designed to maintain comparability with the SATSCAN results, where 999 is the 
maximum allowable number of simulations. As a check, we also ran the local cluster simulations in Section 5.1 with 
9,999 simulations. The core points identified from this exercise were, with a few minor exceptions, the same as 
those obtained from the original 999 simulations.  
30 The present definition of “core cluster” is designed to ensure that individual clusters are disjoint sets. 
Topologically, this requires that each such cluster be generated by sets of core points that are 2d-path connected, 
where a 2d-path is a sequence of points in the set with adjacent points no more than a distance of 2d apart. In other 
words, “adjacent” core points on such paths should be capable of sharing at least one d-neighbor. 
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The advantages of this core-cluster approach are best illustrated by examples. We begin with the 
single most significant cluster identified by SATSCAN—the Boston cluster shown in Figure 8.  
We noted earlier that the local K-function analysis produced two distinct concentrations of R&D 
labs within a single cluster as identified using the SATSCAN procedure. The corresponding 
results for the multiscale approach are shown in Figure 10. The core points for the spatial scales 

1,5,10d = are plotted along with their corresponding core clusters.  

For example, at the 5-mile scale we see that there are indeed two core clusters, defined by all of 
the labs inside each of the dark gray buffer zones (with corresponding core points also shown in 
dark gray). However, when the scale is expanded to 10 miles, these two clusters merge into a 
single core cluster that is roughly comparable to the SATSCAN cluster in Figure 6, but which 
now contains precisely those labs that contribute to the significance of at least one core point at 
this scale.  

Conversely, when the scale is reduced to 1 mile, a richer picture of local concentration emerges. 
Here, the largest core cluster at the 5-mile scale is now seen to contain six individual 1-mile core 
clusters, while the smaller core cluster at 5 miles contains only a single 1-mile core cluster. Note 
finally that while such clusters tend to be nested by scale, this is not always the case. In 
particular, there is a conspicuous 1-mile core cluster near the bottom of the figure that is not 
contained in any 5-mile core cluster. There happens to be a concentration of five R&D labs in 
close proximity that are relatively isolated from the other labs. So while this concentration is 
picked up at the 1-mile scale (and in fact at the half-mile scale as well), it is too small by itself to 
be picked up at the 5-mile scale. 

Our second example illustrates one of the strong local concentrations of R&D labs that 
contribute to the peak of significance for the smallest spatial scales described in Section 4.3 
above. Figure 11 plots a cluster of 17 labs just south of Central Park in New York City.  The 
figure shows core points at the quarter-mile and half-mile scale as well as the 1-mile scale. The 
quarter-mile core cluster of five labs is denoted by the darkest buffer containing four black points 
(where the lowest of these points contains two labs). This is a particularly strong cluster since all 
labs are within one-quarter mile of each other, and hence all are core points at the quarter-mile 
scale. The larger 1-mile core cluster is indicated by the dashed buffer. The 1-mile core points are 
more difficult to show, since they are also half-mile or even quarter-mile core points. To 
distinguish these, a larger circle has been placed around each of the eight 1-mile core points.  All 
points other than the five white points (labeled “Other Labs”) are half-mile core points, with the 
associated core cluster shown in dark gray. The only one of these that is not either a 1-mile or 
quarter-mile core point is shown by the single dark gray point (which also contains two labs).  

To gain further insight into the differences between these core clusters, the zip codes shown in 
Figure 11 are shaded to depict the relative number of manufacturing jobs. The darkest one of 
these has more manufacturing jobs (22,000) than any other zip code in our data set. Notice that 
the 1-mile core cluster overlaps part of this dense manufacturing area, while the quarter-mile and 
half-mile core clusters do not. This explains why the half-mile core point closest to this area (the 
two labs at the dark gray point) as well as the quarter-mile core point closest to this area (the two 
labs at the lowest black point) are not also core points at the 1-mile scale. It is also of interest to 
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note that this strong concentration of labs was not among the 10 most significant clusters 
identified by SATSCAN (although it might very well be close to the top 10).31

These examples serve to illustrate some of the attractive features of this multiscale core-cluster 
approach. First and foremost, such representations add a scale dimension not present in other 
clustering methods. In essence, this approach extends the multiscale feature of local K-functions 
from individual points to clusters of points. Moreover, individual core-cluster shapes are seen to 
be more sensitive to the actual configuration of points than those found in the significance-
maximizing method. Finally, since all core clusters are determined simultaneously, the problems 
of “path dependencies” discussed above do not arise.   

  

Still, this multiscale approach is not a substitute for more standard approaches such as 
significance-maximizing. We can establish statistically significant clusters, but we cannot 
necessarily rank order clusters in terms of statistical significance. In particular, this method 
cannot be used to gauge the relative statistical significance of clusters (such as determining 
whether clustering in Boston is more significant than in New York). While individual core points 
can be said to reflect relative (threshold) significance levels, there is no way to assign precise 
statistical significance to the core clusters they generate.  Moreover, such representational 
schemes offer no formal criteria for choosing the key parameter values by which they are defined 
(the d-scales to be represented, the p-value thresholds and d -neighbor thresholds for core points, 
and even the connected-buffer approach to identifying distinct clusters). Hence, the main 
objective of this procedure is to yield visual representations of clusters that capture both their 
relative shapes and concentrations in a natural way. Since there is no universally accepted 
definition of clusters, it seems prudent to analyze this problem from many viewpoints and look 
for areas of substantial agreement among them. 

 
7. DESCRIPTION OF SPECIFIC R&D CLUSTERS   
 
In this section we provide a more detailed discussion of the internal spatial structure of the four 
major agglomerations found at the metropolitan level. In particular, in Section 7.1 we identify 
the primary research areas associated with individual core clusters of labs. In Section 7.2 we 
relate these spatial structures to key local geographic features such as proximity to freeways and 
the presence of university centers. Finally, we briefly compare the spatial structures of those 
R&D labs with primary research areas in specific industries. 

 
7.1 Major Areas of Agglomeration  

Figure 12 plots all the core clusters at spatial scales of 1,5,10d =  miles. The outer gray contours 
correspond to core clusters at scale 10d = , for example. This map can be compared to the K-
function results for 5d =  in Figure 6 and the results using SATSCAN plotted in Figure 7.  

Reviewing these maps, it is clear that each technique reveals Boston, New York, Philadelphia, 
and Washington, DC, to be areas of significant spatial concentration in R&D, relative to the 
underlying pattern of manufacturing activity. The clusters identified using the multiscale 
                                                 
31This also shows that at micro scales such maximal-significance procedures can be very sensitive to the particular 
shapes of zip code areas (cells). In this case, the two adjacent zip code areas containing most of these labs happen to 
be closer to other neighbors (in centroid distance) than they are to each other. 
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approach for 10d =  correspond reasonably well to the ones identified via SATSCAN, but they 
are closer in shape to the pattern of the most significant local p-values found for labs using the 
local K-function approach. Given the multiplicity of techniques we have employed, these results 
seem quite robust. 
 
The Boston Agglomeration 
 
There are 187 R&D labs within Boston’s single 10-mile cluster, as shown in Figure 10.32

  

  Most 
of these labs conduct R&D in five three-digit SIC code industries — computer programming and 
data processing, drugs, lab apparatus and analytical equipment, communications equipment, and 
electronic equipment.  The largest 5-mile cluster shown in Figure 10 contains 108 labs, which 
account for 58 percent of all labs in the larger 10-mile cluster.  At the 1-mile scale, Boston has 
eight clusters, six of which are centered in the largest 5-mile cluster. The largest of these 1-mile 
clusters contains 30 labs, half of which conduct research on drugs.   

The New York City Agglomeration 
  
The single largest cluster identified within our 10-state study area is the 10-mile cluster above 
New York City (shown in Figure 13) that stretches from Connecticut to New Jersey. This cluster 
contains a total of 235 R&D labs. Sixty-four (27 percent) of these labs conduct research on 
drugs, and 37 (16 percent) do research on industrial chemicals. Within this highly elongated 10-
mile cluster, three distinct 5-mile clusters were identified. Most of the concentration is seen to 
occur in the two clusters west of New York City, which in particular contain five of the nine 1-
mile clusters identified. Among these 1-mile clusters, the largest is the “Central Park” cluster 
shown in Figure 11.  About two-thirds of the 17 labs in this cluster are conducting research on 
drugs, perfumes and cosmetics, or computer programming and data processing. 
 
The Philadelphia Agglomeration 
  
As seen in Figure 14, there is a large 10-mile cluster to the west of Philadelphia (where the city 
of Philadelphia is shown in darker gray), where there are a total of 49 labs.  Of these 49 labs, 16 
conduct research on drugs, and another 16 do research in the plastics materials and synthetic 
resins industry. This cluster in turn contains two 5-mile clusters. The most prominent of these is 
centered in the King of Prussia area directly west of Philadelphia and contains 30 labs, with 40 
percent doing research on drugs. The second 5-mile cluster is centered in the city of Wilmington 
to the southwest.  Here, about 25 percent of the labs are also engaged in research on drugs, but 
most (almost 60 percent) are doing research on plastics materials and synthetic resins.   
 
The Washington, DC, Agglomeration  
 
The final area of concentration is the 10-mile cluster around Washington, DC, which contains 76 
R&D labs as shown in Figure 15 (with the city of Washington, DC, in darker gray), where three 
5-mile clusters can also be seen. The most prominent of these is directly west of Washington, 
DC, and contains 37 (almost one-half) of the labs in the larger cluster. Thirty percent of the firms 

                                                 
32 The map legend in Figure 10 applies to all map figures in this section. 
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in this 5-mile cluster do research in the areas of computer programming and data processing.  In 
turn, this cluster contains two 1-mile clusters, the largest of which (to the north) contains 16 labs 
with 44 percent conducting research on drugs. 33

 
   

The Pittsburgh Area  
 
In addition to these four major areas of agglomeration, notice from Figure 12 that there is a 
smaller agglomeration consisting of two 1-mile core clusters in the Pittsburgh area, one of which 
is contained in a 5-mile cluster. These are shown enlarged in Figure 16 (with the city of 
Pittsburgh in darker gray). In the 5-mile cluster (dark gray buffer) there are eight labs, six of 
which are in its 1-mile sub-cluster (dashed black buffer). Five of these are actually at the same 
location, denoted by the half-mile cluster (solid black buffer), where the three main areas of 
research are in plastics materials and synthetic resins, chemicals, and paints and allied products.  
The 1-mile cluster on the eastern edge of Pittsburgh contains seven labs, with the center three 
defining the half-mile cluster shown. All but one of these seven labs is conducting research in the 
areas of laboratory apparatus and analytical, optical, measuring, and control equipment.  
 
7.2 The Importance of Highways and Universities 
 
It is likely that access to both major highways and major research universities is an important 
determinant of the location and development of innovative activity.  This is clearly evident in the 
four major agglomerations identified here. 
 
Boston Area 
 
A prime example is provided by the locations of R&D labs in the Boston area. As seen in Figure 
10, the largest 1-mile cluster (just west of Boston) is centered in Cambridge, home to both 
Harvard and MIT.  The strength of the Boston area’s R&D activity has been especially supported 
by the strength of MIT in electrical engineering, a core discipline for R&D in the computer and 
electronics industries.   

Turning next to Figure 17, observe that Cambridge also has good access to both Interstate 93 
(running north to south) and Interstate 90 (running east to west). Similarly, many of the labs in 
the major 5-mile Boston cluster of Figure 10 are seen in Figure 17 to be located along Route 128 
(Interstate 95), which is the inner ring highway around the city.  In particular, four of the six 1-
mile clusters in this grouping are located along the Route 128 corridor.  This corridor also has 
junctions with Interstate 93 and Interstate 90.  Further to the west of Route 128, the smaller 5-
mile cluster in Figure 10 is seen to be centered precisely on the intersection of Interstate 90, with 
the outer circumferential highway being Interstate 495. 

 
 
New York Area 
                                                 
33 It is also worth noting that the 5-mile cluster containing these two 1-mile clusters appears to be somewhat 
questionable in this case. Here, a scale choice of, say, around 4 miles would have produced two distinct clusters that 
might provide a more appropriate representation of this particular configuration. However, for the sake of 
comparability across the study area, we have chosen to use a common set of scales throughout.   
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Given its size, the New York area is by far the most complex. But here again, both the shapes 
and locations of core clusters are heavily influenced by major highways. In particular, the main 
5-mile cluster west of New York City shown in Figure 13 is seen from Figure 18 to be nested 
within the triangle of Interstates 78, 287, and 80 (also 280) and is most concentrated in 
Morristown, just south of the 287-80 intersection. Even more dramatic is the elongated shape of 
the northern 5-mile cluster stretching along Interstate 87. As for universities, the 5-mile cluster 
southwest of New York City is clearly concentrated around Princeton University, which is active 
in all areas of research. Finally, the strong “Central Park” cluster in Manhattan is, of course, in 
close proximity to a host of research universities, including both Columbia and New York 
University.  
 
Philadelphia Area 
 
Another example of the importance of highways, and especially locations close to the junction of 
two major highways, is seen by comparing the Philadelphia core clusters in Figure 14 with the 
major routes shown in Figure 19.  Notice first that the major 5-mile cluster (west of Philadelphia) 
essentially follows the confluence of both the Pennsylvania Turnpike (Interstate 76) and Route 
202.  In fact, the only significant 1-mile sub-cluster (located in King of Prussia, PA) is almost 
precisely at the intersection of these two major routes.  Further south, Route 202 basically runs 
through the middle of the second 5-mile cluster in Figure 14 (located in Wilmington, DE).   The 
labs in the Philadelphia cluster are also in close proximity to a number of high-quality 
engineering and medical schools, including the University of Pennsylvania, Drexel University, 
Temple University, and Lehigh University.    
 
Washington, DC, Area 
  
Finally, in the metropolitan area of Washington, DC, we see from a comparison of Figure 15 and 
Figure 20 that essentially all core R&D points of the main 5-mile cluster (including its two 1-
mile sub-clusters) are stretched along Interstate 270 to the north of Washington, together with the 
“Washington Beltway” (Interstate 495) to the west. In addition, the smaller 5-mile clusters to the 
east and west of the main cluster are close to Interstate 95 and Interstate 66, respectively.  In 
terms of universities, the University of Maryland is just north of Washington, DC, inside the 
Beltway. In particular, the 5-mile cluster to the east along Interstate 95 is between the University 
of Maryland (to the south) and Johns Hopkins University in Baltimore (to the north). 34

 
 

8. CLUSTERS AND KNOWLEDGE SPILLOVERS FROM PATENT CITATIONS   
 
So far we have established a body of evidence demonstrating that R&D labs are indeed clustered, 
and we have posited a method for identifying specific clusters. In this section, we test whether 
there is any additional evidence that these clusters are potentially associated with knowledge 
spillovers that are attenuated by distance.  

                                                 
34As Figure 22 reveals, the 5-mile core cluster just west of the city of Pittsburgh (as seen in Figure 16) is almost 
precisely at the intersection of two major routes (Interstate 279 and Interstate 79) . 
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To do that, we follow in the tradition of JTH, who developed a method for studying the 
geographic extent of knowledge spillovers using patent citations. These are citations to earlier 
patents that are included in subsequent ones, much like references in an academic journal 
article.35

JTH test for the “localization” of spillovers by constructing measures of geographic 
concentration of citations contained in two groups of patents – a “treatment” group and a 
“control” group. The treatment group represents a set of patents that cite a specific patent from 
an inventor living in a particular geographic area (in their study either a state or a consolidated 
metropolitan statistical area (CMSA)). The control group is a set of patents that are similar to 
citing patents in the treatment group, but that do not cite the specific patent in that geographic 
area. In this instance “similar” means that the control patents are selected so that they come from 
the same 3-digit (technology) patent classification and were issued at about the same date. In this 
way, the statistical test should control for the pre-existing spatial concentration of 
technologically related activities, which may be driven by a host of factors other than the specific 
spillovers they seek to measure.  

 These citations are a concrete indication of the transmission of information from one 
generation of innovation to another.  

JTH construct two proportions, one for the treatment group and one for the control group. The 
proportion is the number of citing patents that are from the same geographic area as the patent 
they cite divided by the total number of patents that cite a patent from that area. A statistically 
significant positive difference in these ratios for treatment and control groups is then taken to be 
a potential indication of localized spillovers. In this setting, JTH find that patent citations are two 
times more likely to come from the same state and about six times more likely to come from the 
same metropolitan area as earlier patents than one would expect based on the sample of control 
patents. 

Here, we construct a comparable test statistic but substitute the R&D clusters identified in 
Section 6.3 for the state and CMSA geography used by JTH. This provides us with an alternative 
way to test for possible localized knowledge spillovers at smaller spatial scales than found in 
much of the preceding literature.36

For out tests, we use the boundaries identified by our 5-mile and 10-mile buffer clusters.

 Recall that the boundaries of our clusters are determined by 
interrelationships among the R&D labs in our sample and therefore should more accurately 
reflect the appropriate boundaries in which knowledge spillovers are most likely to be at work. In 
that sense, the geography of our clusters should be better suited for studying knowledge 
spillovers than are states, metropolitan areas, or other political boundaries.   

37

                                                 
35 This analogy should not be taken too literally. Referencing a prior patent may implicitly limit the scope of the 
current one. Thus, there is a disincentive to include gratuitous citations, which may occur in some journal articles. 

 Recall 
that we identified nine 5-mile clusters, of which two are in Boston, three in New York, two in 
Philadelphia, and two in Washington, DC.  We identified four 10-mile clusters, one each in 
Boston, New York, Philadelphia, and Washington.  

36 One exception is Murata et al. (2011), who test for (and find) evidence of localized knowledge spillovers using 
patent citations mapped to the level of “census places.” in the U.S., which are somewhat larger than zip codes.  
37  Ideally, we would also like to conduct the analysis using the boundaries determined for the one-half mile and 1-
mile buffer clusters. Unfortunately, we were unable to find a sufficient number of control patents to confidently 
conduct the analysis for the clusters defined at those spatial scales.   
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The patent citation counts we use are constructed from the NBER U.S. Patent Citations Data File 
and refer to citations from subsequent patents granted in the U.S. As is customary in much of the 
literature, we assign patents to locations according to the residential address of the first inventor 
named on the patent.38 9105on = We begin with a set of  originating patents, { : 1,.., }i oo i n= , that 
were granted to inventors living in one of our 5-mile clusters in the years 1996-97 (see Table 
2).39

io  If the forward citations for patent  are denoted by{ : 1,.., }ij ic j n= , then (after removing 

self-citations), these originating patents received a total of 
1

90,159on
ii

n
=

=∑  forward citations 

over the years 1996-2006.40
ijc For each of these citing patents , we attempted to identify a unique 

control patent, ijc , issued in the same year and 3-digit technology class, but which did not cite 
the originating patent, io . We were successful about 60 percent of the time. More specifically, if 

( )i in n≤  denotes the number of io -citing patents, ijc , for which a control, ijc , was found, then the 

total number of forward citations actually used for testing was 
1

54,532on
ii

n n
=

= =∑  .41

io

 Given 
these basic data, the desired proportion for the remaining “treatment” citations can be 
constructed by counting for each originating patent, , the number, im , of citations, ijc , with 
residential addresses in the same cluster as io . The fraction of all citations that are in the same 
cluster as their originating patent is then given by the treatment proportion,  
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                                                                                  (6) 

 
Similarly, if im  denotes the number of “control” citations, ijc , with residential locations in the 
same cluster as io , then the desired fraction of these citations among all control citations is given 
by the  control proportion,  
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Finally, the desired test statistic is simply the difference between these proportions, i.e., 

                                                 
38 Note that we are not conditioning our test on whether an inventor works at one of the R&D labs in our sample. At 
the same time, not all inventors who do work at one of those labs live close enough to work to fall within our 5- or 
10-mile buffer clusters. This should not affect the validity of our statistical test, since we are using the same method 
of classifying patents for both the treatment and the control groups.  
39 The following formulation of the proportions used for testing purposes is based largely on Murata et al. (2011). 
40 Since self-citations may not result from knowledge spillovers, we not only removed inventor self-citations, but we 
also excluded citing patents owned by the same organizations as the originating patent.  
41 We could increase this match rate by relaxing the matching criteria (e.g., looking for patents in adjacent years or 
related patent classes), but it would be at the expense of reducing the similarity between the treatment and control 
groups. We chose not to do that. 
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p p−  . Under the null hypothesis of “no relation,” this difference of independent proportions is 
well known to be asymptotically normal with mean zero and thus provides a well-defined test 
statistic.42

 
 

As shown in Table 2, across all of the 5-mile clusters, 3.9 percent of the treatment patents were 
obtained by an inventor living in the same cluster as an inventor of the cited patent. For the 
control group, this occurs among less than 1 percent of citing patents. Thus, any patent citing an 
earlier patent in one of our 5-mile clusters is on average 4.3 times more likely to be in that cluster 
than would be expected by chance alone. This differential is statistically significant, as are the 
differentials for each of the clusters (the smallest z statistic is over 10). The range of differentials 
varies from as little as 2.8 times for one of the Boston clusters to as high as 12.3 times for one of 
the Washington clusters. 

Table 3 presents the comparable analysis for our four 10-mile buffer clusters. For these 
geographies we identified 16,424 originating patents granted in 1996-97 that received a total of 
160,224 subsequent citations. We successfully matched 62 percent (99,255) of those citing 
patents to a control patent. At this spatial scale, any patent citing an earlier patent in one of our 
10-mile clusters is on average 1.7 times more likely to be in that cluster than would be expected 
by chance alone. This differential is statistically significant, as are the differentials for each of 
the clusters (the smallest z statistic is over 6).  

While hardly conclusive, the smaller differential identified for the 10-mile buffer clusters, when 
compared to the differential for the 5-mile clusters, is consistent with the attenuation in z-scores 
we observed with rising spatial scales in our analysis of the global K-function estimates. It is also 
consistent with the rapid attenuation of knowledge spillovers with distance found in other 
empirical studies. 

 
9. CONCLUDING REMARKS  
 
In this article, we use several distance-based econometric techniques to analyze the spatial 
concentration of the locations of over 1,000 R&D labs in a ten-state area in the Northeast 
corridor of the United States. Rather than using a fixed spatial scale, we attempt to describe the 
spatial concentration of labs more precisely, by examining spatial structure at different scales 
using Monte Carlo tests based on Ripley’s K-function.  Geographic clusters at each scale are then 
identified in terms of statistically significant departures from random locations reflecting the 
underlying distribution of manufacturing activity (employment).   

Two important findings emerged from the global K-function analysis.  First, the clustering of 
labs is by far most significant (based on z-scores) at very small spatial scales, such as distances 
of about one-quarter of a mile, with significance attenuating rapidly during the first half-mile. 
The rapid attenuation of significant clustering at small spatial scales is consistent with the view 
that knowledge spillovers are highly localized. We also observe a secondary mode of 
significance at a scale roughly associated with metropolitan areas.  This secondary cluster is 

                                                 
42 In JTH the standardized test statistic, ( ) / [ (1 ) (1 )] /p p p p p p n− − + −   , is asserted to be t distributed. In fact, 
the t distribution is not strictly valid here. But for the present large sample size, 50, 000n > , this is of little 
consequence since the t and standard normal distributions are virtually identical. 
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consistent with the view that agglomeration economies associated with the scale of labor markets 
(e.g., externalities associated with pooling and matching of skilled workers) is important for 
innovative activity.   

While the global K-function analysis indicates that there is very significant clustering of R&D 
locations relative to manufacturing employment, it provides little more information other than 
the spatial scale (distances) at which clustering appears to be most significant.  Local K-function 
analysis is useful for identifying the location and extent of specific concentrations of labs.  In this 
paper, we introduce a novel way to identify clusters, called the multiscale core-cluster approach.  
The local K-function analysis identified four major clusters (one each in Boston, New York-
Northern New Jersey, Philadelphia-Wilmington, and Washington, DC).  These four clusters 
roughly correspond to the size of the secondary mode of clustering (approximately at a distance 
of 40 miles) identified by the global K-function.  We also found that R&D labs tend to 
concentrate along major highways and often at or near junctions of major highways. Each of 
these clusters has distinct characteristics, especially in terms of the mix of industries the R&D 
labs serve. 

In the final section of the paper, we apply a familiar test for potentially identifying localized 
knowledge spillovers using patent citations. Jaffe, Trajtenberg and Henderson (1993) found 
evidence of localization of patent citations at the level of individual states or CMSAs. We verify 
that this occurs for much smaller scales using tests based on our 5- and 10-mile buffer clusters. 
This suggests that our multiscale core-cluster approach is identifying economically significant 
location patterns that may be related to knowledge spillovers that attenuate with distance.  
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INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50
Metal Mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5227 0.1674 0.4149
Oil and Gas Extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5137 0.0906 0.2286
Food 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480
Textile Mill 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446
Apparel 23 5 0.5036 0.5063 0.5082 0.5101 0.5399 0.7230 0.9088
Paper 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058
Printing & Publishing 27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.7040
Chemicals 28 420 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020 0.0001
Petroleum Refining 29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358
Rubber Products 30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965
Stone, Clay, Glass, And Concrete Products 32 36 0.0002 0.0008 0.0032 0.0011 0.1041 0.7385 0.6886
Primary Metal Industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881
Fabricated Metal Products 34 44 0.0004 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571
Industrial And Commercial Machinery 35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867
Electronics 36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423
Transportation Equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744
Measuring, Analyzing, And Controlling Instruments 38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778
Miscellaneous Manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093
Business Services 73 137 0.0004 0.0052 0.0166 0.0055 0.0004 0.0001 0.0022
† Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated than overall labs at the 5% level of significance. Light grey indicates 
significantly  more dispersed than overall labs at the 5% level of significance.

Miles
TABLE 1: Concentration of Labs by Industry (P -values)†
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Column A B C D E F G H I J K L

Cluster
Originating 

Patents
Citing 

Patents
From Same 

Cluster
Percent 
(C/B)

Matched 
Citing 

Patents*
From Same 

Cluster*
Percent 

(F/E)
Control 
Patents

From Same 
Cluster

Percent 
(I/H)

Location 
Differential 

(G/J) t  Statistic
Framingham-Marlborough-Westborough, MA 419 5,171 194 3.75 2,517 81 3.22 2,517 7 0.28 11.6 16.7
Boston-Cambridge-Waltham-Woburn, MA 2,657 29,584 1,228 4.15 16,874 794 4.71 16,874 282 1.67 2.8 14.3
Princeton, NJ 916 9,756 347 3.56 6,528 270 4.14 6,528 40 0.61 6.8 17.7
Parsippany-Basking Ridge, NJ 1,714 16,503 591 3.58 10,223 410 4.01 10,223 54 0.53 7.6 17.8
Greenwich, CT-White Plains, NY-Montvale, NJ 963 8,010 328 4.09 4,958 198 3.99 4,958 18 0.36 11.0 18.5
Wilmington, DE 513 2,686 60 2.23 2,691 56 2.08 2,691 15 0.56 3.7 10.7
King of Prussia, PA 726 4,053 105 2.59 3,372 93 2.76 3,372 24 0.71 3.9 12.5
Chantilly-Sterling, MD 218 3,773 81 2.15 1,455 37 2.54 1,455 3 0.21 12.3 14.8
Columbia-Rockville-Mc Lean, MD 976 10,623 299 2.81 5,914 199 3.36 5,914 60 1.01 3.3 13.0

All 5 Mile Clusters 9,105 90,159 3,233 3.59 54,532 2,138 3.92 54,532 503 0.92 4.3 15.4

Column A B C D E F G H I J K L

Cluster
Originating 

Patents
Citing 

Patents
From Same 

Cluster
Percent 
(C/B)

Matched 
Citing 

Patents*
From Same 

Cluster*
Percent 

(F/E)
Control 
Patents

From Same 
Cluster

Percent 
(I/H)

Location 
Differential 

(G/J) t  Statistic
Boston 4,894 54,834 2,269 4.14 31,529 1,364 4.33 31,529 777 2.46 1.8 9.2
New York 7,727 73,020 2,672 3.66 46,741 1,763 3.77 46,741 1,205 2.58 1.5 6.3
Philadelphia 1,976 11,288 269 2.38 9,677 241 2.49 9,677 98 1.01 2.5 9.5
Washington 1,827 21,082 548 2.60 11,308 318 2.81 11,308 126 1.11 2.5 10.3

All 10 Mile Clusters 16,424 160,224 5,758 3.59 99,255 3,686 3.71 99,255 2,206 2.22 1.7 7.8
*: The subset of citing patents for which we obtained a similar control patent. See text for details. 

Control GroupTreatment Group
TABLE 2: Localization Test for 5 Mile Buffer Clusters

TABLE 3: Localization Test for 10 Mile Buffer Clusters
Treatment Group Control Group

*: The subset of citing patents for which we obtained a similar control patent. See text for details. 

 



 

 

 

 

 

 

Figure 1. Location of R&D Labs 
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Mfg Employment 

Figure 3. Manufacturing Employment 
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Figure 2. R&D Locations 
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Figure 5.  Industry Z-Scores 
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Figure 7. Union of the Top 10 SATSCAN Clusters 

Figure 6. Local K-Function P-values at d = 5 Miles 
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Figure 8.  Boston Cluster in SATSCAN 
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Figure 9.  Largest New York Cluster in SATSCAN 
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Figure 11.  Central Park Core Clusters 
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Figure 10.  Boston Core Clusters 
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Figure 12.  Multiscale Core Clusters (d = 1,5,10) 

Figure 13.  New York Core Clusters 
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Figure 14.  Philadelphia Core Clusters 
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Figure 15.  Washington, DC, Core Clusters 



 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Pittsburgh Core Clusters 
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Figure 17. Boston Core Points and Major Routes 
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Figure 18. New York City Core Points plus Major Routes 
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Figure 19. Philadelphia –Wilmington Core Points plus Major Routes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Washington, DC – Northern Virginia Core Points plus Major Routes 
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Figure 21. Pittsburgh Core Points plus Major Routes 


