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Abstract

We propose new methods for evaluating predictive densities. First, we propose

new Kolmogorov-Smirnov and Cramér-von Mises-type tests for correct speci�cation of

predictive densities that are robust to dynamic misspeci�cation and to the presence

of instabilities. In addition, we o¤er a simple way of testing for distributional change

in predictive densities even if they are mis-speci�ed. Our results indicate that our

tests are well sized and have good power in detecting misspeci�cation and time varia-

tion (individually and jointly) in predictive densities. An empirical application to the

density forecasts of the Survey of Professional Forecasters shows the usefulness of our

methodology.
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1 Introduction

Predictive densities provide a measure of uncertainty around mean forecasts, thus enabling

researchers to quantify the risk in forecast-based decisions. For example, they are useful

tools for central banks and policymakers, as they enable them to take into account forecast

uncertainty in their economic decisions. It is therefore important to have tools to evaluate

whether predictive densities are correctly speci�ed. Diebold et al. (1998, 1999) introduced

the probability integral transform (PIT, Rosenblatt, 1952) to economics and �nance as a tool

to test whether a predictive distribution matches that of the true (and unobserved) distribu-

tion that generates the data. Subsequent contributions extended their PIT methodology to

account for parameter estimation error and dynamic misspeci�cation. The former requires

an adjustment to the PIT to account for the uncertainty associated with parameter estima-

tion. Dynamic misspeci�cation implies that the information available to a researcher spans

only a subset of the information the true model is in fact conditioned on. Among recent con-

tributions, Bai (2003) and Hong and Li (2003) propose tests for correct speci�cation aimed at

correcting for parameter estimation error; the former based on martingalization techniques

and the latter in a non-parametric approach using the generalized cross-spectrum; and Cor-

radi and Swanson (2006a) propose tests robust to both parameter estimation error as well

as dynamic misspeci�cation. See Corradi and Swanson (2006b) for an extensive overview of

estimation and inference for predictive densities, and Corradi and Swanson (2006c, 2007) for

empirical applications.1

The main objective of this paper is to provide new methodologies for testing the cor-

rect speci�cation of density forecasts that are robust to both dynamic misspeci�cation as

well as instabilities. Regarding the robustness to dynamic misspeci�cation, we propose a

PIT approach where parameter estimation error is maintained under the null hypothesis,

as in Amisano and Giacomini (2007). Maintaining parameter estimation error under the

null hypothesis has two advantages: (i) there is no need to correct the statistics for the

parameter estimation error, since that is maintained under the null hypothesis; and (ii) the

asymptotic distributions of the test statistics for density forecasts at the one-step-ahead

horizon are nuisance parameter free even in the presence of dynamic misspeci�cation. Thus,

the critical values can be directly tabulated.2 However, our approach is very di¤erent from

1See Price (2001) for applications of predictive densities to policymaking.
2From a conceptual point of view our tests are concerned only with the distributional assumptions of

(potentially misspeci�ed) models since the null hypothesis involves parameter estimates rather than their

pseudo-true values. However, the evaluation still involves comparing the density forecast with the true
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Amisano and Giacomini (2007): the latter focus on model selection by comparing the rela-

tive performance of competing models�predictive densities, whereas we focus on evaluating

the absolute performance of a model�s predictive density. We derive our tests within classes

of tests commonly used in the literature, such as the Kolmogorov-Smirnov and Cramér-von

Mises-type tests.

Regarding the robustness to instabilities, one of the important assumptions for the valid-

ity of the tests proposed by Diebold et al. (1998, 1999), Bai (2003) and Corradi and Swanson

(2006a) is stationarity (i.e. absence of structural breaks), which we relax in this paper. In

particular, we propose a speci�cation test robust to instabilities by extending the PIT ap-

proach to test whether the predictive density is correctly speci�ed at each point in time.

In addition, we also propose a predictive density instability test that detects distributional

change in the predictive densities even if the densities are misspeci�ed.

We show that all our proposed test statistics have good size properties in small sam-

ples. In addition, our forecast density test robust to instabilities has good power to detect

misspeci�cation of the forecast distribution even when the misspeci�cation a¤ects only a

sub-sample.

When misspeci�cation of the predictive density is detected, it is an important step to

understand the source of the misspeci�cation, that is whether the null hypothesis is rejected

due to the lack of uniformity or independence. Lack of uniformity refers to a situation

where, on average, the unconditional probability that the realizations are compatible with

the model�s predictive density is incorrect. Lack of independence refers to a situation where,

even if on average realizations are compatible with the model�s predictive density, the pattern

of the rejections is non-random. To uncover the source of the misspeci�cation, we: (i) propose

new tests of uniformity robust to violations of independence; (ii) discuss some tests of serial

correlation robust to violations of uniformity that are available in the literature and could be

used. All the tests can be applied to either one-step-ahead or multiple-steps-ahead forecast

densities.

Our approach is primarily related to Diebold et al. (1998, 1999) and especially Corradi

and Swanson (2006a): we test the null hypothesis of correct speci�cation of density forecasts,

although in a way robust to the presence of dynamic misspeci�cation, parameter estimation

error, and possibly instability. Our approach is also related to Inoue (2001). Inoue (2001)

developed techniques to test whether the in-sample empirical distribution of a model is con-

stant over time. There are two important di¤erences between Inoue�s (2001) approach and

realized observations.
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ours: we focus on the out-of-sample evaluation of densities (as opposed to in-sample tests)

and our null hypothesis is di¤erent: it involves testing whether the true predictive distribu-

tion matches that implied by a model at each point in time (rather than whether the forecast

distribution has changed over time, as in Inoue, 2001). However, we also discuss a modi�ed

statistic for testing the constancy of the predictive density over time. Our approach is more

distantly related to Rossi (2005): she jointly tests the hypothesis of stability of the para-

meters as well as that the parameters satisfy a certain restriction in-sample. The approach

taken in this paper is similar in that we focus on testing a joint null hypothesis of stability

in the predictive distribution as well as correct speci�cation of the predictive distribution.

However, it is very di¤erent for two reasons: �rst, because it focuses on prediction, which

require a di¤erent approach than in-sample tests; second, because it focuses on predictive

density tests, which are very di¤erent from tests on parameters.

We provide an empirical application of our proposed tests to the density forecasts pro-

vided in the Survey of Professional Forecasters (SPF). Our test uncovers that the forecast

densities of both output growth and in�ation are mis-speci�ed. In addition, we �nd evidence

of instabilities in the forecast densities. Our results indicate that the predictive density of

the output growth is mis-speci�ed both before and after the early 1990s, although very di¤er-

ently over time. The implications of the predictive density evaluation for in�ation are similar.

There are breaks detected for both the density nowcast, as well as the one-year-ahead density

forecast of in�ation.

The paper is organized as follows. Section 2 introduces the notation and de�nitions.

Section 3 presents results for tests of correct speci�cation of density forecasts robust to

dynamic misspeci�cation. Section 4 presents results for tests of correct speci�cation of

density forecasts robust to both dynamic misspeci�cation and instabilities, and Section 5

discusses how to disentangle lack of uniformity from lack of independence. Section 6 provides

Monte Carlo evidence on the performance of our tests in small samples, and Section 7 presents

the empirical results. Section 8 concludes.

2 Notation and De�nitions

We �rst introduce the notation and discuss the assumptions about the data, the models

and the estimation procedure. We are interested in the true but unknown h�step-ahead
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conditional predictive densities for the scalar variable yt denoted by �0 (:).3

We assume that the researcher has divided the available sample of size T + h into an

in-sample portion of size R and an out-of-sample portion of size P , and obtained a sequence

of h�steps-ahead out-of-sample density forecasts, such that R+ P � 1 + h = T + h. Let =t
be the information set at time t and let the sequence of P out-of-sample estimated direct

conditional density forecasts be denoted by
nb�t+h �yt+hj=t; b�t;R�oT

t=R
, which depend on the

in-sample parameter estimates, b�t;R. These parameters are estimated only once, using a
sample including data indexed 1; :::; R (�xed scheme) or re-estimated at each t = R; :::; T

over a window of R data including data indexed t�R+1; :::; t (rolling scheme). In addition
to being parametric (such as a normal distribution), the distribution b�t+h (:) can also be
non-parametric (as in the empirical application in this paper).

Consider the probability integral transform (PIT), which is the cumulative density func-

tion of b�t+h (:) evaluated at the realized value yt+h:
zt+h =

Z yt+h

�1
b�t+h �uj=t; b�t;R� du � b�t+h �yt+hj=t; b�t;R� :

Let

�t+h �
�
1
nb�t+h �yt+hj=t; b�t;R� � ro� r� ;

and consider 	(r) = Pr fzt+h � rg � r and its out-of-sample counterpart:

	P (r) � P�1=2
TX
t=R

�t+h; (1)

where r 2 [0; 1] : Also, let � 2 � � (0; 1) and

	P (�; r) � P�1=2
R+[�P ]X
t=R

�t+h: (2)

In the following sections we �rst present results for the case of one-step-ahead forecasts,

then generalize the tests to the presence of serial correlation. The generalized case could

also apply to the h > 1 step-ahead forecasts. All the proofs are relegated to the Appendix.

3The true conditional forecast density may depend on the forecast horizon. To simplify notation, we omit

this dependence without loss of generality given that the forecast horizon is �xed.
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3 Asymptotic Tests of Speci�cation for Predictive Den-

sities in the Presence of Dynamic Misspeci�cation

This section discusses tests for correct speci�cation of a predictive distribution that allow for

the presence of dynamic misspeci�cation under the null hypothesis. The tests we propose

have an asymptotic distribution that is free of nuisance parameters in the one-step-ahead

forecast case, and their critical values can be tabulated. We also discuss tests that are valid

in the presence of multi-step-ahead forecasts and serial correlation.

In order to maintain parameter estimation error under the null hypothesis, we state our

null hypothesis in terms of estimated parameter values (as in Amisano and Giacomini, 2007).

We focus on testing whether b�t+h �yt+hj=t; b�t;R� = �0 �yt+hj=t; b�t;R�, that is:
H0 : b�t+h �yt+hj=t; b�t;R� = �0 �yt+hj=t; b�t;R� ; (3)

where �0
�
yt+hj=t; b�t;R� � Pr

�
yt+h � yj=t; b�t;R�. The alternative hypothesis, HA, is the

negation of H0.

We are interested in the test statistics:

�CSP = sup
r2[0;1]

	P (r)
2 ; (4)

CCSP =
R 1
0
	P (r)

2 dr: (5)

Note that the �CSP test statistic is basically the same as the V1T test statistic considered

by Corradi and Swanson (2006a) when applied to predictive densities (the latter consider

the absolute value of 	P (r), we consider its square). Note however that we derive the

asymptotic distribution of the test statistic under a di¤erent null hypothesis. Corradi and

Swanson (2006a) focus on the null hypothesis: HCS
0 : b�t+h (yt+hj=t; �0) = �0 (yt+hj=t; �0)

for some �0 2 �; where � is the parameter space. That is, Corradi and Swanson (2006a)

test the hypothesis of correct speci�cation under the pseudo-true parameter value. Thus,

the limiting distribution of their test re�ects parameter estimation error and, therefore, is

not nuisance parameter free. In addition, they allow for dynamic misspeci�cation under the

null hypothesis. This allows them to obtain asymptotically valid critical values even when

the information set may not contain all the relevant past history. Dynamic misspeci�cation

a¤ects the limiting distribution of their test statistic as well, further contributing to the fact

that the limiting distribution depends on nuisance parameters.
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Under our null hypothesis (3) instead, the limiting distribution of the test statistic is

nuisance parameter free. The reason is that we maintain parameter estimation error under

the null hypothesis, which implies that the asymptotic distribution of the test does not

require a delta-method approximation around the pseudo-true parameter value, and hence

parameter estimation error does not a¤ect the asymptotic distribution of the test statistic.

Dynamic misspeci�cation is also maintained under the null hypothesis, and by a similar

reasoning does not a¤ect the asymptotic distribution of our test statistic.

3.1 One-step-ahead Forecasts

Let h = 1. First, we derive the asymptotic distribution of 	P (r) for one-step-ahead forecasts

under Assumption 1.

Assumption 1.

(i) fyt+1;=tgTt=R is mixing with � (j) of size ��= (2�� 1) when � � 1 or � (j) of size

��= (�� 1) ; � > 1 and generated from
n
�0

�
yt+1j=t; b�t;R�oT

t=R
, whose cumulative distribu-

tion function �0 (:) is continuous, di¤erentiable and has a well de�ned inverse;

(ii)
nb�t+1 �yt+1j=t; b�t;R�oT

t=R
has non-zero Jacobian with continuous partial derivatives;

(iii) R <1 as P; T !1.

Theorem 1 (Asymptotic Distribution of 	P (r)) Under Assumption 1 and H0 in eq.

(3): (i) fzt+1gTt=R is i.i.d. U (0; 1); (ii) 	P (r) weakly converges (considered as variables
in the space ([0; 1]� R) to the Gaussian process 	(:), with mean zero and auto-covariance
function E [	 (r1)	 (r2)] = [inf (r1; r2)� r1r2] :

The result in Theorem 1 allows us to derive the asymptotic distribution of the test statis-

tics of interest, presented in Theorem 2. The latter shows that the asymptotic distribution

of our proposed test statistics have the appealing feature of being nuisance parameter free.

Theorem 2 (Correct Speci�cation Tests) Under Assumption 1 and H0 in eq. (8):

�CSP = sup
r2[0;1]

	P (r)
0	P (r)) sup

r2[0;1]
	(r)0	(r) ; (6)

and

CCSP �
R
	P (r)

0	P (r) dr )
R
	(r)0	(r) dr: (7)

Reject H0 at the � � 100% signi�cance level if �CSP > �CS�;P and C
CS
P > CCS�;P : Critical values

for � = 10%; 5% and 1% are provided in Table 1, Panel A.

INSERT TABLE 1 HERE
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3.2 Multi-step-ahead Forecasts

When considering h-steps-ahead forecasts, h > 1 and �nite, an additional problem arises, as

h-steps-ahead forecasts are at least (h� 1) serially correlated. Thus, we need to extend our
results and allow the forecasts to be both serially correlated and potentially mis-speci�ed

under the null hypothesis. Consider the following Assumption:

Assumption 2.

(i) fyt+h;=tgTt=R is strong mixing with � (j) of size��= (�� 1) ;where
P1

j=1 j
2� (j)�=(4+�) <

1; � 2 [1; 2), and generated from
n
�0

�
yt+hj=t; b�t;R�oT

t=R
, whose cumulative distribution

function �0 (:) is continuous, di¤erentiable and has a well de�ned inverse;

(ii) Pr (�t+h � r1; �t+h+d � r2) = Fd (r1; r2) ; where Fd (:; :) and F (:) are the distribution
functions of the random variable �t+h and F (:) is continuous.

Under serial correlation or h-steps-ahead forecasts, we show that 	P (r) weakly converges

(considered as variables in the space ([0; 1]� R) to the Gaussian process 	(:; :), with mean
zero and an auto-covariance function that depends on the serial correlation.

Theorem 3 (Correct Speci�cation Tests under Serial Correlation) Under Assump-

tions 1(ii), 1(iii) and 2 and H0 in eq. (3), 	P (r) weakly converges (considered as variables

in the space ([0; 1]� R) to the Gaussian process 	(:), with mean zero and auto-covariance
function E

�
	(r1)

0	(r2)
�
= � (r1; r2) ; where � (r1; r2) =

1P
d=�1

[Fd (r1; r2)� F (r1)F (r2)].

Furthermore,

�CSP ) sup
r2[0;1]

�
	(r)0	(r)

	
;

CCSP )
R 1
0

�
	(r)0	(r)

	
dr:

For a given estimate of � (r1; r2), the critical values of �CSP and CCSP can be obtained via

Monte Carlo simulations; alternatively, the asymptotic distributions can be approximated

in small samples using a bootstrap procedure.

However, there are several other solutions proposed in the literature that one could use

within our approach as well. A �rst approach is to discard data by reducing the e¤ective

sampling rate to ensure an uncorrelated sample (Persson, 1974 and Weiss, 1973). This

can be implemented in practice by creating sub-samples of forecast distributions that are

at least h-periods apart. However, this procedure may not be possible in small samples,

since sub-sampling may signi�cantly reduce the size of the sample. In those cases, one may
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implement the procedure in several uncorrelated sub-samples of forecasts that are at least

h-periods apart and then use Bonferroni methods to obtain a joint test without discarding

observations (see Diebold et al., 1998). However, it is well-known that Bonferroni methods

are conservative; thus the latter procedure, while easy to implement, may su¤er from low

power. Alternative approaches include using a block bootstrap to obtain the critical values

(Bai and Ng, 2005, and Corradi and Swanson, 2006c). The relative merits and validity of

these di¤erential approaches remains to be studied further.

4 Predictive Density Speci�cation Tests in the Pres-

ence of Instabilities

This section discusses tests for the correct speci�cation of the forecast density distribution

that allow for dynamic misspeci�cation under the null hypothesis and that can detect mis-

peci�cation in the predictive density even if it arises only in a sub-sample. Again, the tests

that we propose have an asymptotic distribution that is free of nuisance parameters in the

one-step-ahead forecast case, and their critical values can be tabulated. We also discuss tests

that are valid in the presence of multi-step-ahead forecasts and serial correlation.

4.1 One-step-ahead Forecasts

Our interest lies in testing whether b�t+h �yt+hj=t; b�t;R� = �0 �yt+hj=t; b�t;R� at any point in
time t over the out-of-sample portion of the data, that is:

H0 : b�t+h �yt+hj=t; b�t;R� = �0 �yt+hj=t; b�t;R� for all t = R; :::; T; (8)

where �0
�
yt+hj=t; b�t;R� � Pr�yt+h � yj=t; b�t;R�.

The following theorem derives the asymptotic distribution of 	P (�; r) for one-step-ahead

forecasts under Assumption 1.

Theorem 4 (Asymptotic Distribution of 	P (�; r)) Under Assumption 1 and H0 in eq.

(8): (i) fzt+1gTt=R is i.i.d. U (0; 1); (ii) 	P (�; r) weakly converges (considered as variables in
the space

�
[0; 1]2 � R

�
to the Gaussian process 	(:; :), with mean zero and auto-covariance

function E [	 (�1; r1)	 (�2; r2)] = inf (�1; �2) [inf (r1; r2)� r1r2] :4

4	(:; :) is a Kiefer process.
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Again, note that, since we are evaluating the forecast densities at the estimated parameter

values under the null hypothesis, as in Amisano and Giacomini (2007), we do not need to

correct the limiting distributions by parameter estimation uncertainty, unlike the approaches

in Corradi and Swanson (2006b) and Bai (2003).

We introduce the following notation. Let

QP (�; r) � [RPFP (�; r)]0 [RPFP (�; r)] ;

where

FP (�; r) �

26664
P�1=2

R+[�P ]P
t=R

�
1
nb�t+1 �yt+1j=t; b�t;R� � ro� r�

P�1=2
TP

t=R+[�P ]+1

�
1
nb�t+1 �yt+1j=t; b�t;R� � ro� r�

37775 (9)

RP =

"
(1� �) ��
1 1

#
(10)

Again, we consider two types of test statistics: the �rst is a weighted Kolmogorov-

Smirnov-type statistic and the second is a weighted Cramér-von Mises-type statistic:

�P � sup
�2�

sup
r2[0;1]

QT (�; r) (11)

CP �
R
�

R
r
QT (�; r) d�dr: (12)

Theorem 5 (Forecast Density Tests Robust to Instabilities) Under Assumption 1 and

H0 in eq. (8):

�P = sup
�2�

sup
r2[0;1]

QP (�; r)

) sup
�2�

sup
r2[0;1]

�
	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r)

	
;

and

CP �
R
�

R 1
0
QP (�; r) d�dr )

R
�

R 1
0

�
	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r)

	
d�dr:

where 	� (�; r) � 	(�; r) � �	(1; r) is a Gaussian process with zero mean and covariance
function E f	� (�1; r1)	� (�2; r2)g = [inf (�1; �2)� �1�2] [inf (r1; r2)� r1r2] (see Deshayes
and Picard (1986), p.127). Reject H0 at the � � 100% signi�cance level if �P > ��;P and

CP > C�;P : Critical values for � = 10%; 5% and 1% are provided in Table 1, Panel A for

� = [0:15; :::; 0:85].
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Note that one could be interested in testing for correct speci�cation in speci�c parts of

the distribution.5 For example, one might be interested in the tails of the distribution, which

correspond to outliers, for example the left tail where r 2 [0; 0:25], or the right tail where
r 2 [0:75; 1], or both: r 2 f[0; 0:25] [ [0:75; 1]g. Or, one might be interested in the central
part of the distribution, for example r 2 [0:25; 0:75]. We provide critical values for these
interesting cases in Panel B of Table 1.

Note that our test is, by construction, robust to dynamic misspeci�cation. We demon-

strate this property in our Monte Carlo simulations as well.

Our proposed tests di¤er substantially from those existing in the literature. In particular,

the test proposed by Corradi and Swanson (2006a) would be a special case of our approach

for RP =
h
1 1

i
instead of eq. (10). Thus, there are two di¤erences between our paper

and theirs: �rst of all the null hypothesis is di¤erent. Second, we are concerned with testing

for the correct speci�cation of the predictive density in the presence of instabilities whereas

they assume stationarity.6

Note that our tests are also di¤erent from Inoue (2001), who tests the null hypothesis of

constancy of in-sample densities over time. His null hypothesis in our out-of-sample context

is:

HI
0 : [�P ]

�1=2
[�P ]P
t=1

I (zt+h � r)� (P � [�P ])�1=2
PP

t=[�P ]+1

I (zt+h � r) = 0;

for � 2 � � (0; 1) : Thus, Inoue (2001) is another special case of our approach where

RP =
h
(1� �) ; ��

i
instead of eq. (10). In other words, our proposed �P and CP

statistics focus on testing the joint null hypothesis of constancy of forecast densities over

time as well as their correct speci�cation. Again, because our null hypothesis is speci�ed in

terms of the estimated parameters, parameter estimation error does not a¤ect the asymptotic

distribution of our tests. In contrast, in Inoue (2001) parameter estimation error matters

because he focuses on an in-sample test where the null hypothesis is evaluated at the true

parameter values.

At the same time, one could consider tests for instabilities in the forecast densities inspired

by Inoue (2001): the Kolmogorov-Smirnov test is:

�IP = sup
�2�

sup
r2[0;1]

("
[�P ]�1=2

[�P ]P
t=1

I (zt+h � r)� (P � [�P ])�1=2
PP

t=[�P ]+1

I (zt+h � r)
#� �
P

��
1� �

P

�
P�1=2

)2
;

5See Franses and van Dijk (2003), Amisano and Giacomini (2007) and Diks, Panchenkob and van Dijk

(2011) for a similar idea in the context of point forecasts and density forecast comparisons.
6In other words, we test the null hypothesis that the PIT is uniform at each point in time, and we

maintain parameter estimation error under the null hypothesis.
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and the Cramér-von Mises test statistic is instead:

CIP =

Z
�

Z 1

0

("
[�P ]�1=2

�P
t=1

I (zt+h � r)� (P � [�P ])�1=2
PP

t=[�P ]+1

I (zt+h � r)
#
� (1� �)P�1=2

)2
d�dr:

We provide critical values for the statistics �IP and C
I
P for testing the constancy of the

forecast density over time for h = 1 in Table 1.

4.2 Multi-step-ahead Forecasts

As previously discussed, in the case of multi-step-ahead forecasts are serially correlated by

construction. Theorem 6 provides the test statistics that can be used in such situations.

Theorem 6 (Density Tests Robust to Instabilities under Correlation) Under Assump-

tions 1(ii), 1(iii) and 2 and H0 in eq. (8):

(a) 	P (�; r) weakly converges (considered as variables in the space
�
[0; 1]2 � R

�
to the

Gaussian process 	(:; :), with mean zero and auto-covariance function E
�
	(�1; r1)

0	(�2; r2)
�
=

inf (�1; �2)� (r1; r2) ; where � (r1; r2) =
1P

d=�1
[Fd (r1; r2)� F (r1)F (r2)];

(b)

�P = sup
�2�

sup
r
QP (�; r) (13)

) sup
�2�

sup
r

n
	� (�; r)0	� (�; r) + e	(1; r)0	(1; r)o ;

CP �
R
�

R
r

QP (�; r) d�dr )
R
�

R
r

�
	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r)

	
d�dr; (14)

where 	� (�; r) � 	(�; r)� �	(1; r) :

For a given estimate of � (r1; r2), the critical values of 	(:; :) can be obtained via Monte

Carlo simulations; alternatively, the asymptotic distribution can be approximated in small

samples using a bootstrap procedure similar to that described in Inoue (2001).

5 Understanding the Sources of the Misspeci�cation

When our test rejects, the rejection could be indicating either a violation of independence,

uniformity or identical distribution. To evaluate the sources of the rejection, we consider the

following tests.

12



First, we suggest to use a test for uniformity robust to violations of independence, which

detects violations of uniformity even if the forecasts were serially correlated. If the researcher

is not worried about instabilities in the sample, (s)he could use the test statistics described

in Theorem 3. If the researcher is worried about instabilities, (s)he could test for uniformity

in a way robust to violation of independence even if it happens in a sub-sample by using the

test statistics described in Theorem 5.

Second, one could test for serial correlation in a way that is robust to uniformity. Among

the tests that could be implemented, one could consider the Ljung-Box Q or Box-Pierce

Q test statistics (Box and Pierce, 1970) or the BDS test proposed by Brock, Dechert and

Scheinkman (1987). The Q tests detect auto-correlation in a linear framework whereas the

BDS test is a non-parametric test of independence and identical distribution against an

unspeci�ed alternative.

6 Monte Carlo Evidence

In this section we analyze the size and power properties of our proposed tests in small samples

for both correctly speci�ed and mis-speci�ed forecasting models.

6.1 Size Analysis

To investigate the size properties of our tests we consider several Data Generating Processes

(DGPs). The forecasts are based on model parameters estimated in rolling windows for

t = R; :::; T + h: We consider several values of R = [50; 10; 200] and P = [50; 100; 200; 1000]

to evaluate the performance of the proposed procedure in �nite samples. The DGPs are the

following:

DGP S1 (Baseline Model): Let yt = � + "t, where "t � iidN (0; 1) and � = 5.7 We

estimate a model with a constant, b�t = R�1 tP
j=t�R+1

yj, t = R; :::; T and use it to produce one-

step-ahead forecasts. To ensure that the null hypothesis (8) holds, namely that the predictive

density evaluated at the estimated (as opposed to true) parameter values is Uniform, we

generate the data under the null hypothesis according to eyt+1 = b�t + �t+1, where �t �
iidN (0; 1) independent of "t.

DGP S2 (Estimated Model): Let yt = � + �1yt�1 + �2yt�2 + 1xt�1 + 2xt�2 + "t. We

parameterize the model according to the realistic situation where the researcher is interested

7The results are unchanged if a di¤erent value of � is considered.
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in forecasting one-quarter-ahead real GDP growth (yt) with a bivariate model that includes

the term spread (xt) in U.S. data from 1959:I-2010:III. The lag length is selected by BIC in-

sample: we �rst choose the best-�tting autoregressive model by BIC, then augment it with

the optimal lags of the variable xt selected again by BIC. The unconditional means of output

growth and term spread are estimated from the data, and are 3.09 and 0.92 respectively.

The process for the term spread (xt) is an AR(p) where the number of lags equals 1. That is,

xt = 0:2 + 0:8xt�1 + �t, where �t � iidN(0; 1:082). The remaining parameters are estimated
as: � = 1:50; �1 = 0:20; �2 = �0:22; 1 = 0:13; 2 = 0:82. In addition, "t � iidN (0; 9:542).
The forecasts are generated under the null hypothesis and are constructed under correct

speci�cation: eyt+1 = �̂+ b�1;tyt + b�2;tyt�1 + b1;txt + b2;txt�1 + �t+1; where the parameters are
estimated by OLS in rolling windows.

The estimated model in both DGPs S1 and S2 are correctly speci�ed. We consider also

a DGP where the model is mis-speci�ed:

DGP S3 (Misspeci�cation): The data generating process is exactly that of DGP S2,

except the null hypothesis is constructed under misspeci�cation: eyt+1 = �̂ + �̂2;tyt�1 +

̂2;txt�1 + �t+1.

DGPs S1-S3 are based on one-step-ahead forecast densities. To investigate the case of

h-steps ahead forecast densities and the presence of serial correlation, we consider DGPS4.

DGP S4 (Serial Correlation): The data is generated by yt = �+"t+�"t�1, where � = 0:2

and "t � iidN (0; 1). The null hypothesis is constructed based on eyt = �̂+ "t + �"t�1, where
"t � iidN (0; b�2).
The results are shown in Tables 2 and 3. Panel A in Table 2 considers the forecast density

test robust to instabilities (�P ; CP ); panel B considers tests for the correct speci�cation of

the forecast density (�CSP ; C
CS
P ); and panel C considers tests for instabilities in the forecast

densities over time (�IP ; C
I
P ). Table 2 shows that all our test performs very well in �nite

samples, with only very mild under-rejections for small values ofR and P for the Kolmogorov-

Smirnov-type test. Table 3 shows that in the case of serial correlation, the asymptotic

distribution of the Kolmogorov-Smirnov-type test in Theorem 6 approximated using HAC-

consistent variance estimates tends to over-reject in �nite samples, although mildly; the

Cramér-von Mises-type test instead performs fairly well.

INSERT TABLES 2 AND 3 HERE
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6.2 Power Analysis

To investigate the power properties of our tests, we consider three DGPs. In each of the

DGPs, the researcher evaluates whether the forecasts are compatible with a normal distrib-

ution. The DGPs are:

DGP P1: The data are generated from a �21 distribution, and the researcher tests whether

it is normal: eyt = b�t + (1� c) �1;t + c ��22;t � 1�p2, where �1;t and �2;t are iidN (0; 1) and
independent of each other;8

DGP P2: The data are generated from a normal distribution whose parameters change

over time: yt = �t + "t, where "t � iidN (0; �t) and �t = �1 = 5; �t = �1 = 1 for

t = 1; 2; :::; T � T1 and �t = c�1; �t = c�1 for t = T � T1 + 1; :::; T ; T1 is chosen to
be at the middle of the out of sample period P . We report results for various values of

c = 0; 0:01; :::; 0:03:

DGP P3: The shape of the distribution in the data changes over time from a chi-square

to a normal: eyt = b�t + �1;t � 1 (t > T1) + ���22;t � 1�p2� � 1 (t � T1), where �1;t and �2;t are
iidN (0; 1), independent of each other.

The results are shown in Table 4. The table shows that, across all designs, our proposed

density forecast tests robust to instabilities (�P ; CP ) have good power properties in detecting

misspeci�cation in the forecast density, even when it only appears in parts of the sample.

On the other hand, the other tests may lack power: Panel A shows that the instability

tests (�IP ; C
I
P ) have no power to detect misspeci�cation in the forecast density when the

misspeci�cation is constant over time; the correct speci�cation tests (�CSP ; C
CS
P ) do instead

detect misspeci�cation, and have higher power than the density forecast tests robust to

instabilities. At the same time, Panel B shows that the correct speci�cation tests have no

power to detect mis-speci�cations in the forecast distribution in the presence of instabilities,

although the instability tests would detect instabilities, and with a higher power than the

density tests robust to instabilities.

INSERT TABLE 4 HERE
8Note that

�
�22;t � 1

�p
2 is a chi-squared distribution with zero mean and variance one, that is, it has the

same mean and variance as the normal distribution we have under the null hypothesis, although the shape

is di¤erent.
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7 Evaluation of the SPF Density Forecasts

Diebold et al. (1999) evaluate density forecasts of in�ation based on the mean probability

forecasts provided in the Survey of Professional Forecasters (SPF). In particular, they assess

whether realized in�ation rates are consistent with the description of uncertainty implied by

the mean probability distribution forecasts of the survey. Interestingly, the authors note the

presence of time variation and emphasize that in their sample the distribution has shifted

from overestimating a large negative shock to overestimating large shocks of either sign. They

provide results based on sub-sample analysis where the break date is chosen exogenously.

We conduct a formal test of correct speci�cation for the SPF forecast densities taking

into account the presence of time variation. In addition to in�ation, we also investigate

the conditional density forecasts of output growth. We use real GNP/GDP and GNP/GDP

de�ator as measures of output and prices. The mean probability distribution forecasts are

obtained from the Survey of Professional Forecasters, which are publicly available from the

Federal Reserve Bank of Philadelphia. The realized values of in�ation and output growth are

based on the real-time data set for macroeconomists, again, available through the Federal

Reserve Bank of Philadelphia.9 In this data set, forecasters are asked to assign a probabil-

ity value (over pre-de�ned intervals) of year-over-year in�ation and output growth for the

current (nowcast) and following (one-year-ahead) calendar years. The forecasters update

the assigned probabilities for the nowcasts and the one-year-ahead forecasts on a quarterly

basis. The probability distribution provided by the SPF is discrete. We base our results on

a continuous approximation with a �tted normal distribution.

The data on the probability distribution forecasts is complicated since the questionnaire

has changed over time in various dimensions: there have been changes in the de�nition

of the variables, the intervals over which probabilities have been assigned, as well as the

time horizon for which forecasts have been made. To eliminate these problematic issues, we

truncate the data set and consider the mean probability distribution forecasts for the period

1981:III-2009:IV.10 We use the year-over-year growth rates from the second data revision to

evaluate the density forecasts. In order to do so, we only look at the �rst quarter vintage

of the real GNP/GDP and GNP/GDP de�ator, and calculate the year-over-year growth

9The data are available at http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-

professional-forecasters/ and http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-

data/.
10The changes in the interval range for the real GDP in 2009 have been re-adjusted to make it consistent

with that of the year before.

16



rates for the past year. For example, the growth rate of real output for 1981 is obtained

by looking at the 1982:I vintage of the data and applying the following transformation:

100[ln(y1981:IV ) � ln(y1980:IV )], where y1981:IV denotes the value of the GDP in the fourth
quarter of 1981. We test whether the density nowcasts and one-step-ahead forecasts of

output growth and in�ation provided in the SPF are in fact normal with a mean and variance

obtained with a normal kernel �t over the full sample.

The empirical results are shown in Table 5. The table shows three di¤erent results. Panel

A considers the results of the tests of correct speci�cation robust to instabilities proposed

in this paper (the �P ; CP tests). Panel B considers the null hypothesis of correct forecast

speci�cation only (the �CSP ; C
CS
P tests), while Panel C considers the hypothesis of instabilities

only (the �IP ; C
I
P tests). The test statistics consistently reject the respective null hypotheses

under both independence and serial correlation. The only exception is the nowcast of in�a-

tion. In this case the instability-only test fails to reject the null hypothesis of time variation

under independence; however, it rejects it when we allow for serial correlation under the

null. In other words, once we allow for serial correlation under the null, we detect changes in

the distribution of the PITs over time with all our test statistics, and we reject the correct

speci�cation of the forecast density in both output growth and in�ation.

INSERT TABLE 5 HERE

Our results are important in the light of the �nding that survey forecasts are reportedly

providing the best forecasts of in�ation. For example, Ang, Bekaert and Wei (2007) �nd

that survey forecsts outperform other forecasting methods (including the Phillips curve, the

term structure and ARIMA models) and that, when combining forecasts, the data put the

highest weight on survey information. Our results imply that survey forecasts still are not

providing a correct forecast for the whole distribution of in�ation.

Panel A in Figure 1 plots the empirical distribution of the PITs of output growth for both

the density nowcast (left-hand panel) and the one-year-ahead density forecast (right-hand

panel). In addition to the PITs, we also provide the 95% con�dence interval (dotted lines)

using a crude approximation with a binomial distribution as in Diebold, Tay and Wallis

(1999).11 The �gure gives a visual representation for the misspeci�cation in the PITs of the

output growth: both density nowcast and one-year-ahead density forecasts are mis-speci�ed,

and suggest that the survey typically underpredicts future large realizations of output growth.

11Since the binomial is a discrete distribution, the probability values at the bands might deviate from

being exactly 0.025 and 0.975. The bands indicate statistical signi�cance for each bin separately, not jointly.
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Figure 2, Panel A, shows instead the PITs for in�ation. The density nowcast, depicted on

the left, seems to be mis-speci�ed: it overpredicts large positive and negative surprises in

in�ation. However the one-year-ahead density forecast, depicted on the right, seems to be

closer to a uniform distribution with mild underprediction of a large positive surprise.

INSERT FIGURES 1 AND 2 HERE

The joint test as well as the instability tests indicate a potential break. Though in this

paper we are not concerned with the consistency or the uncertainty associated with the

break date, we still take the break dates implied by the joint test and consider visual plots

of the PITs over the sub-samples to get further insights. The joint test suggests a break in

1991:IV and 1990:IV for the density nowcasts and one-year-ahead forecasts of output growth,

respectively, which are roughly consistent with the date the survey switched from collecting

GNP �gures to GDP �gures. On the other hand, when predicting in�ation, the implied

breaks are around 1985:III for the nowcast, and 1998:II for the one-year-ahead in�ation

forecast. We then divide the sample according to the likely time of the break, and then plot

the PITs in the corresponding sub-samples.

Panel B in Figure 1 plots the PITs for output growth before and after the conjectured

break date. Interestingly, Panel B shows that, in the case of output growth nowcasts, the

rejections a¤ect both sub-samples, although very di¤erently: before 1992, the rejection is due

to the fact that too many realizations fall in the middle of the sample than those expected

based on normality. After 1992, forecasters seem to underpredict output growth, as too

many realizations end up being in the tail than an estimated normal distribution would have

suggested. Looking at the one-year-ahead forecast of output growth, depicted in Panel C,

the misspeci�cation appears to a¤ect the forecasts before and after the break in a roughly

similar way: there are many realization in the middle of the distribution and in the right tail.

The behavior of in�ation is di¤erent. The PITs for the in�ation density nowcast appear to

have moved from having many surprise realizations in the middle of the distribution to being

better calibrated after 1985:III. The PITs for one-year-ahead forecasts, on the other hand,

show an increasing degree of misspeci�cation after 1998, leading to heavy underprediction

of low levels of in�ation.
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8 Conclusions

This paper proposes new tests for predictive density evaluation. They are designed to main-

tain parameter estimation error under the null hypothesis and are robust to the presence of

mis-speci�cation as well as instabilities. The techniques are based on Kolmogorov-Smirnov

and Cramér-von Mises-type test statistics. We provide critical values for the test statistics

on the whole density forecasts as well as test statistics that focus on speci�c parts of the

density. An empirical application of the proposed methodologies to the Survey of Profes-

sional Forecasters uncovers that both their output growth and in�ation density forecast are

misspeci�ed and �nds signi�cant evidence of time-variation in the density forecasts.
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9 Appendix A. Proofs

First, we will prove Theorems 4, 5 and 6. The proof of Theorems 1, 2 and 3 follow as a

special cases.

Proof of Theorem 4. (i) The joint predictive density of fyt+1gTt=R can be decomposed
as: b� (yT+1; :::; yR+1j=R) = b�T+1 (yT+1j=T ) b�T (yT j=T�1) :::b�R+1 (yR+1j=R). Let q (zR+1; :::; zT+1)
denote the joint density of the probability integral transforms. By using the change of vari-

ables formula,

q (zR+1; :::; zT+1) =

��������
(@yR+1=@zR+1) ::: (@yR+1=@zT+1)

::: ::: :::

(@yT+1=@zR+1) ::: (@yT+1=@zT+1)

���������
� �0

�b��1T+1 (zT+1) j=T��0 �b��1T (zT ) j=T�1
�
:::�0

�b��1R+1 (zR+1) j=R�
= (@yR+1=@zR+1) ::: (@yT=@zT ) (@yT+1=@zT+1)�

� �0
�b��1T+1 (zT+1) j=T��0 �b��1T (zT ) j=T�1

�
:::�0

�b��1R+1 (zR+1) j=R� ;
where the last equality holds because the Jacobian is lower triangular provided we are in a

conditional forecasting framework.

Then since
�

1
@zR+1=@yR+1

�
= 1b�R+1(b��1R+1(zR+1)) ;

q (zR+1; :::; zT+1) =
�0

�b��1R+1 (zR+1) j=R�b�R+1 �b��1R+1 (zR+1)� � :::�
�0

�b��1T (zT ) j=T�1
�

b�T �b��1T (zT )
� �

�
�0

�b��1T+1 (zT+1) j=T�b�T+1 �b��1T+1 (zT+1)� :
Under H0 : b�t+1 �yt+1j=t; b�t;R� = �0

�
yt+1j=t; b�t;R� then zt is U (0; 1) (see Theorem 2.1.10

in Casella and Berger, 2002) and given that each of the ratios are the probability distrib-

ution of the corresponding z (since, as shown by Diebold et al. (1998), the distribution of

zR+1, by the change of variable formula, is
���@[�0(zR+1)]�1@zR+1

��� b� �[�0 (zR+1)]�1� = �0([�0(zR+1)]�1)b�([�0(zR+1)]�1)
) then their product is a multivariate U (0; 1) distribution for fzt+1gTt=R ; which implies that
fzt+1gTt=R is iidU (0; 1).

(ii) UnderH0, zt+1 is uniformly distributed on [0; 1]. Then, from Proposition 1 in Shorack and
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Wellner (1986, p. 131), 	P (�; r) = P�1=2
R+[�P ]P
t=R

�
1
nb�t+1 �yt+1j=t; b�t;R� � ro� r� weakly

converges (considered as variables in the space
�
[0; 1]2 � R

�
to the Kiefer process 	� (:; :),

with mean zero and auto-covariance functionE [	� (�1; r1)	� (�2; r2)] = inf (�1; �2) [inf (r1; r2)� r1r2].

Proof of Theorem 5. Eqs. (9) and (10) imply:

RPFP (�; r) �

266664
"
(1� �)P�1=2

R+[�P ]P
t=R

�t+1 � �P�1=2
TP

t=R+[�P ]+1

�t+1

#

P�1=2

"
R+[�P ]P
t=R

�t+1 +
TP

t=R+[�P ]+1

�t+1

#
377775

=

26664
"
P�1=2

R+[�P ]P
t=R

�t+1 � P�1=2
TP

t=R+[�P ]+1

�t+1

#
P�1=2

TP
t=R

�t+1

37775
)
 
[	 (�; r)� �	(1; r)]

	 (1; r)

!
=

 
	� (�; r)

	 (1; r)

!
:

Thus, by the Continuous Mapping theorem,

[RPFP (�; r)]
0 [RPFP (�; r)]

) 	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r) :

Proof of Theorem 6. Theorem 6 follows from Inoue (2001), since 	P (�; r) weakly

converges (considered as variables in the space
�
[0; 1]2 � R

�
) to Gaussian process 	(:; :) :

Proof of Theorem 1. The proof of Theorem 1 follows from the proof of Theorem 4 by

setting �1 = �2 = 1:

Proof of Theorem 2. The proof of Theorem 2 follows from the proof of Theorem 5 by

setting �1 = �2 = 1:

Proof of Theorem 3. Theorem 3 is a special case of Theorem 6 when �1 = �2 = 1:
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10 Appendix B. Tables and Figures

Table 1. Critical Values

� : 0.01 0.05 0.10 0.01 0.05 0.10

Panel A. Tests on the Whole Distribution

Density Test Robust to Instabilities (��;P ,C�;P ) 2.4484 1.6720 1.3699 0.7648 0.4753 0.3759

Correct Speci�cation Test (�CS�;P , C
CS
�;P ) 2.2685 1.4792 1.1552 0.7286 0.4440 0.3353

Instability Test (�I�;P , C
I
�;P ) 0.7785 0.5860 0.5050 0.1193 0.0773 0.0617

Panel B. Tests on Speci�c Parts of the Distribution

Density Tests Robust to Instabilities ��;P C�;P

Right Tail r 2 (0; 0:25] 1.3078 0.8662 0.6523 0.5481 0.3237 0.2367

Right Half r 2 (0; 0:50] 2.2168 1.5447 1.2243 0.8793 0.5719 0.4176

Left Half r 2 [0:50; 1) 2.3026 1.5248 1.2348 0.9710 0.5814 0.4463

Left Tail r 2 [0:75; 1) 1.5355 0.9984 0.7666 0.7494 0.4282 0.3219

Center r 2 [0:25; 0:75] 2.3751 1.7033 1.3818 1.1399 0.7412 0.5453

Tails r 2 f(0; 0:25] [ [0:75; 1)g 1.6140 1.1267 0.9100 0.4711 0.3120 0.2504

Correct Speci�cation Tests �CS�;P CCS�;P

Right Tail r 2 (0; 0:25] 1.1552 0.8200 0.5202 0.5202 0.3038 0.2163

Right Half r 2 (0; 0:50] 2.0000 1.3448 1.0082 0.8368 0.5401 0.3802

Left Half r 2 [0:50; 1) 2.0808 1.3122 1.0368 0.9387 0.5409 0.4017

Left Tail r 2 [0:75; 1) 1.3448 0.8450 0.6050 0.7252 0.4031 0.2935

Center r 2 [0:25; 0:75] 2.1632 1.5138 1.1552 1.1029 0.6877 0.4983

Tails r 2 f(0; 0:25] [ [0:75; 1)g 1.4621 0.9800 0.7688 0.4466 0.2877 0.2275

Instability Tests �I�;P CI�;P

Right Tail r 2 (0; 0:25] 0.4484 0.3080 0.2517 0.0781 0.0494 0.0372

Right Half r 2 (0; 0:50] 0.7021 0.5139 0.4380 0.1240 0.0806 0.0630

Left Half r 2 [0:50; 1) 0.7360 0.5367 0.4447 0.1364 0.0890 0.0691

Left Tail r 2 [0:75; 1) 0.4956 0.3446 0.2889 0.1044 0.0641 0.0484

Center r 2 [0:25; 0:75] 0.7696 0.5918 0.4978 0.1770 0.1122 0.0875

Tails r 2 f(0; 0:25] [ [0:75; 1)g 0.5213 0.3853 0.3284 0.0687 0.0478 0.0390

Note. Panel A rep orts critica l values for the test statistics �P and CP at the 1%; 5% and 10% nom inal sizes (� = 0:01; 0:05 and 0:10). Panel B

rep orts critica l values for the sam e statistics for sp eci�c parts of the d istributions, ind icated in the second column. The number of M onte Carlo

rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002 and 0:05, resp ectively.
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Table 2. Size Properties - I.I.D. Case

Panel A: Forecast Density Test Robust to Instabilities

DGP S1

�P CP

P R : 50 100 200 50 100 200

50 0.05 0.05 0.05 0.06 0.06 0.06

100 0.05 0.06 0.05 0.06 0.06 0.05

200 0.05 0.05 0.05 0.06 0.05 0.06

500 0.05 0.05 0.06 0.06 0.06 0.06

1000 0.05 0.06 0.05 0.06 0.06 0.06

DGP S2

�P CP

P R : 50 100 200 50 100 200

50 0.05 0.05 0.05 0.06 0.06 0.06

100 0.05 0.05 0.05 0.06 0.06 0.05

200 0.05 0.05 0.05 0.06 0.05 0.06

500 0.05 0.06 0.05 0.05 0.06 0.06

1000 0.06 0.06 0.05 0.06 0.06 0.06

DGP S3

�P CP

P R : 50 100 200 50 100 200

50 0.05 0.05 0.05 0.06 0.05 0.06

100 0.05 0.06 0.05 0.06 0.06 0.06

200 0.06 0.06 0.05 0.06 0.06 0.05

500 0.06 0.05 0.06 0.06 0.05 0.06

1000 0.05 0.06 0.06 0.06 0.06 0.06

Note. The tab le rep orts empirica l rejection frequencies for the test statistics �P and CP at the 5% nom inal size for various values of P and

R . The number of M onte Carlo rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002 and 0:05, resp ectively.
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Panel B: Correct Speci�cation Tests

DGP S1

�CSP CCSP

P R : 50 100 200 50 100 200

50 0.05 0.04 0.04 0.06 0.06 0.06

100 0.04 0.05 0.04 0.06 0.06 0.05

200 0.05 0.05 0.05 0.06 0.05 0.06

500 0.05 0.05 0.05 0.05 0.06 0.06

1000 0.05 0.06 0.05 0.06 0.06 0.05

DGP S2

�CSP CCSP

P R : 50 100 200 50 100 200

50 0.05 0.05 0.05 0.06 0.05 0.06

100 0.04 0.04 0.04 0.06 0.05 0.05

200 0.04 0.05 0.05 0.06 0.05 0.06

500 0.05 0.05 0.05 0.05 0.06 0.06

1000 0.05 0.06 0.05 0.06 0.06 0.05

DGP S3

�CSP CCSP

P R : 50 100 200 50 100 200

50 0.04 0.04 0.05 0.06 0.05 0.06

100 0.05 0.05 0.04 0.06 0.06 0.05

200 0.05 0.05 0.04 0.06 0.06 0.05

500 0.05 0.05 0.05 0.06 0.05 0.06

1000 0.06 0.06 0.05 0.06 0.06 0.06

Note. The tab le rep orts empirica l rejection frequencies for the test statistics �CSP and CCSP in eqs. (4) and (5) at the 5% nom inal size for

various values of P and R . The number of M onte Carlo rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002

and 0:05, resp ectively.
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Panel C: Instability Tests

DGP S1

�IP CIP

P R : 50 100 200 50 100 200

50 0.04 0.04 0.04 0.05 0.05 0.05

100 0.05 0.04 0.04 0.05 0.04 0.05

200 0.05 0.05 0.04 0.05 0.05 0.04

500 0.06 0.05 0.05 0.05 0.05 0.05

1000 0.05 0.05 0.06 0.05 0.05 0.06

DGP S2

�IP CIP

P R : 50 100 200 50 100 200

50 0.04 0.04 0.04 0.05 0.05 0.05

100 0.04 0.05 0.04 0.04 0.05 0.05

200 0.05 0.05 0.05 0.05 0.05 0.05

500 0.05 0.06 0.05 0.05 0.05 0.05

1000 0.05 0.05 0.05 0.05 0.05 0.05

DGP S3

�IP CIP

P R : 50 100 200 50 100 200

50 0.04 0.04 0.05 0.05 0.05 0.05

100 0.05 0.04 0.05 0.05 0.05 0.05

200 0.05 0.05 0.04 0.05 0.05 0.05

500 0.05 0.06 0.05 0.05 0.05 0.05

1000 0.05 0.05 0.06 0.04 0.05 0.05

Note. The tab le rep orts empirica l rejection frequencies for the test statistics �IP and CIP in eqs. (4 .1) and (4.1) at the 5% nom inal size for

various values of P and R . The number of M onte Carlo rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002

and 0:05, resp ectively.
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Table 3. Size Properties - Serially Correlated Case

DGP S4 - Asymptotic Critical Values with HAC Estimates

�P CP

P R : 50 100 200 50 100 200

50 - - - - - -

100 0.07 0.10 0.07 0.04 0.06 0.05

200 0.08 0.11 0.08 0.04 0.06 0.04

500 0.07 0.10 0.07 0.04 0.05 0.04

1000 0.07 0.08 0.08 0.04 0.04 0.05

DGP S4 - Bootstrapped Critical Values

�P CP

P R : 50 100 200 50 100 200

50 0.06 0.06 0.06 0.06 0.06 0.06

100 0.03 0.05 0.08 0.03 0.05 0.07

200 0.06 0.06 0.05 0.06 0.06 0.06

500 0.07 0.08 0.05 0.08 0.07 0.05

1000 0.06 0.05 0.04 0.06 0.06 0.04

Note. The tab le rep orts empirica l rejection frequencies for the test statistics �P and CP in eqs. (13) and (14) at the 5% nom inal size for

various values of P and R . The number of M onte Carlo rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002

and 0:05, resp ectively.
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Table 4. Power Properties

Forecast Density Tests Correct Speci�- Instability

Robust to Instabilities cation Tests Tests

Panel A: DGP P1

c �P CP �CSP CCSP �IP CIP

0 0.06 0.06 0.06 0.06 0.05 0.05

0.10 0.33 0.43 0.35 0.43 0.05 0.04

0.15 0.77 0.92 0.80 0.92 0.05 0.03

0.20 0.99 1.00 0.99 1.00 0.05 0.03

0.25 1.00 1.00 1.00 1.00 0.05 0.03

Panel B: DGP P2

c �P CP �CSP CCSP �IP CIP

0 0.05 0.06 0.05 0.06 0.05 0.04

0.010 0.07 0.07 0.05 0.06 0.22 0.25

0.015 0.11 0.09 0.05 0.05 0.50 0.55

0.020 0.16 0.13 0.06 0.06 0.68 0.75

0.025 0.26 0.19 0.05 0.06 0.87 0.91

0.030 0.45 0.32 0.05 0.06 0.96 0.97

Panel C: DGP P3

T1=T �P CP �CSP CCSP �IP CIP

0 0.05 0.06 0.05 0.06 0.05 0.04

0.075 0.08 0.07 0.08 0.07 0.10 0.08

0.100 0.14 0.11 0.11 0.10 0.17 0.15

0.125 0.23 0.19 0.18 0.15 0.33 0.29

0.150 0.62 0.41 0.40 0.30 0.85 0.66

0.200 0.97 0.82 0.72 0.60 1.00 0.98
Note. The tab le rep orts empirica l rejection frequencies for the test statistics under the alternatives of DGP P1, DGP P2, and DGP P3.

R = 40; P = 960. The number of M onte Carlo rep lications is 5 ,000. The domains for � and r are d iscretized w ith a step sizes of 0:002 and 0:05,

resp ectively.

29



Table 5: SPF�s Mean Probability Forecast Distribution

Series Name: GDP Growth GDP De�ator Growth

Forecast Density Tests Robust to Instabilities

Horizon: �P CP Break �P CP Break

0 6.5825* y 1.9815*y 1991:IV 7.3468*y 1.8374*y 1985:III

1 4.6394* y 1.8545*y 1990:IV 2.9405*y 0.9304*y 1998:II

Correct Speci�cation Tests

�CSP CCSP �CSP CCSP

0 5.6326* y 1.8398*y - 7.2455*y 1.8055*y -

1 4.0699* y 1.7509*y - 2.4640*y 0.7659*y -

Instability Tests

�IP CIP �IP CIP

0 1.1625* y 0.1417*y 1991:III 0.4221y 0.0318y 1998:IV

1 0.8020* y 0.1035*y 1992:IV 1.3129*y 0.1645*y 2001:II

Note. �*� ind icates rejections at 5% sign i�cance levels under indep endence, while `y0 ind icates rejections at 5% sign i�cance levels under seria l

correlation resp ectively. The critica l values under indep endence are as in Table 1, Panel A , while the critica l values under seria l correlation is

simulated conditional to the data implied variance-covariance matrix for the PIT . The domains for � and r are d iscretized w ith a step sizes of

0:002 and 0:05, resp ectively.
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Figure 1. SPF Mean Probability Forecast Distribution - GDP Growth

Panel A: Full Sample (1981:III-2009:IV)
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Panel B: Sub-sample Analysis for Nowcast (1981:III-1991:IV, 1992:I-2009:IV)
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Panel C: Sub-sample Analysis for One-Year Ahead Forecast (1981:I-1990:IV, 1991:I-2009:IV)
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Note: The �gure shows the normalized decile counts of the PIT s and the 95% con�dence intervals approximated under a b inom ial d istribution .
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Figure 2. SPF Mean Probability Forecast Distribution - GDP De�ator Growth

Panel A: Full Sample (1981:III-2009:IV)
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Panel B: Sub-sample Analysis for Nowcast (1981:III-1985:III, 1985:IV-2009:IV)
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Panel C: Sub-sample Analysis for One-Year Ahead Forecast (1981:III-1998:II, 1998:III-2009:IV)
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Note: The �gure shows the normalized decile counts of the PIT s and the 95% con�dence intervals approximated under a b inom ial d istribution .
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