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Abstract

We propose a theory of unsecured consumer credit where: (i) borrowers have the legal option

to default; (ii) defaulters are not exogenously excluded from future borrowing; (iii) there is free

entry of lenders; and (iv) lenders cannot collude to punish defaulters. In our framework, limited

credit or credit at higher interest rates following defaultarises from the lender’s optimal response

to limited information about the agent’s type and earnings realizations. The lender learns from

an individual’s borrowing and repayment behavior about histype and encapsulates his reputation

for not defaulting in a credit score. We take the theory to data choosing the parameters of the

model to match key data moments such as the overall and subprime delinquency rates. We test

the theory by showing that our underlying framework is broadly consistent with the way credit

scores affect unsecured consumer credit market behavior. The framework can be used to shed light

on household consumption smoothing with respect to transitory income shocks and to examine the

welfare consequences of legal restrictions on the length oftime adverse events can remain on one’s

credit record.



1 Introduction

It is well known that lenders use credit scores to regulate the extension of consumer credit. People

with high scores are offered credit on more favorable terms.People who default on their loans

experience a decline in their scores and, therefore, lose access to credit on favorable terms. People

who run up debt also experience a decline in their credit scores and have to pay higher interest

rates on new loans. While credit scores play an important role in the allocation of consumer credit,

credit scoring has not been adequately integrated into the theoretical literature on consumption

smoothing and asset pricing. This paper attempts to remedy this gap.1

We propose a theory of unsecured consumer credit where: (i) borrowers have the legal option

to default; (ii) defaulters are not exogenously excluded from future borrowing; (iii) there is free en-

try of lenders; and (iv) lenders cannot collude to punish defaulters. We use the framework to try to

understand why households typically face limited credit orcredit at higher interest rates following

default and why this changes over time. We show such outcomesarise from the lender’s opti-

mal response to limited information about the agent’s type and earnings realizations. The lender

learns from an individual’s borrowing and repayment behavior about his type and encapsulates his

reputation for not defaulting in a credit score.

The legal environment surrounding the U.S. unsecured consumer credit market is characterized

by the following features. Individual debtors have can file for bankruptcy under Chapter 7 which

permanently discharges net debt (liabilities minus assetsabove statewide exemption levels). A

Chapter 7 filer is ineligible for a subsequent Chapter 7 discharge for 6 years. During that period,

the individual is forced into Chapter 13 which is typically a3-5 year repayment schedule followed

by discharge. Over two-thirds of household bankruptcies inthe U.S. are Chapter 7. The Fair Credit

Reporting Act requires credit bureaus to exclude the filing from credit reports after 10 years (and

all other adverse items after 7 years).

1One important attempt to remedy this deficiency in the consumption smoothing literature is Gross and Souleles
[15]. That paper empirically tests whether consumption is excessively sensitive to variations in credit limits taking
into account a household’s risk characteristics embodied by credit scores.
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Beginning with the work of Athreya [2], there has been a growing number of papers that have

tried to understand bankruptcy data using quantitative, heterogeneous agent models (for example

Chatterjee, et. al. [8], Livshits, et. al. [20]). For simplicity, these models have assumed that

an individual is exogenously excluded from borrowing whilea bankruptcy remains on his credit

record. This exclusion restriction is often modelled as a Markov process and calibrated so that on

average the household is excluded for 10 years, after which the Fair Credit Reporting Act requires

that it be stricken from the household’s record. This assumption is roughly consistent with the

findings by Musto [21] who documents the following important facts: (1) households with low

credit ratings face very limited credit lines (averaging around $215) prior to and $600 following the

removal of a bankruptcy flag; (2) for households with medium and high credit ratings, their average

credit lines were a little over $800 and $2000 respectively prior to the year their bankruptcy flag

was removed from their record; and (3) for households with high and medium credit ratings, their

average credit lines jumped nearly doubled to $2,810 and $4,578 in the year that the bankruptcy

flag was removed from their record.2

While this exogenous exclusion restriction is broadly consistent with the empirical facts, a

fundamental question remains. Since a Chapter 7 filer is ineligible for a subsequent Chapter 7

discharge for 6 years (and at worst forced into a subsequent Chapter 13 repayment schedule), why

don’t we see more lending to those who declare bankruptcy? Iflenders believe that the Chapter 7

bankruptcy signals something relatively permanent about the household’s unobservable character-

istics, then it may be optimal for lenders to limit future credit. But if the circumstances surrounding

bankruptcy are temporary (like a transitory, adverse income shock), those individuals who have just

shed their previous obligations may be a good future credit risk. Competitive lenders use current

repayment and bankruptcy status to try to infer an individual’s future likelihood of default in order

to correctly price loans. There is virtually no existing work embedding this inference problem into

a quantitative, dynamic model.

Given commitment frictions, it’s important for a lender to assess the probability that a borrower

2These numbers are actually drawn from Table III, panel A of Musto’s Wharton working paper #99-22.
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Figure 1: Delinquency Rates in the Population
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will fail to pay back – that is, assess the risk of default. In the U.S., lenders usecredit scores

as an index of the risk of default. The credit scores most commonly used are produced by a

single company, the Fair Isaac and Company, and are known as FICO scores.3 These scores range

between 300 and 850, where a higher score signals a lower probability of default. Scores under

620, which account for roughly one quarter of the populationwith scores, are called “subprime”.4

There is ample empirical evidence that households with subprime credit scores are more likely

to default. Figure1 provides one such example. As discipline on our theory, we require our

framework to match key credit market facts like that in Figure1.

A FICO score aggregates information from an individual’s credit record like his payment his-

tory (most particularly the presence of adverse public records such as bankruptcy and delinquency)

and current amounts owed.5 It’s also worth noting the kinds of information that are not used in

3Over 75% of mortgage lenders and 80% of the largest financial institutions use FICO scores in their evaluation
and approvals process for credit applications.

4http://www.privacyrights.org/fs/fs6c-CreditScores.htm.
5The score also takes into account the length of a person’s credit history, the kinds of credit accounts (retail credit,

installment credit etc.) and the borrowing capacity (or line of credit) on each account.
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credit scores. By law, credit scores cannot use informationon race, color, national origin, sex, and

marital status. Further, FICO scores do not use age, assets,salary, occupation, and employment

history.

These scores appear to affect the extension of consumer credit in four primary ways.

1. Credit terms (e.g. interest rates) improve with a person’s credit score.

2. The presence of adverse public records (e.g. a bankruptcy) lowers an individual’s score and

removal can substantially raise it.

3. Taking on more debt (paying off debt) tends to lower (raise) credit scores.

4. Credit scores are mean reverting.

The Fico website (http://www.myfico.com/myfico/Credit Central/LoanRates.asp) documents

the negative relationship between FICO scores and average interest rates on loans. Item 2 is con-

sistent with evidence provided in Musto [21], as well as Fisher, et. al. [13]. Using data from the

PSID and SCF, Fisher, et. al. document that a higher percentage of post-bankruptcy households

were denied access to credit. Musto found (p.735) “there is astrong tenth year effect for the best

initial credits...these consumers move ahead of 19% of the nonfiler population in apparent credit-

worthiness when their flags are removed.” Furthermore, he states (p.740) “...the boost translates to

significant new credit access for these filers over the ensuing year”. Items 1 and 2 taken together

imply that an individual who fails to pay back an unsecured loan will experience an adverse change

in the terms of (unsecured) credit. Thus, a failure to pay back a loan adversely impacts the terms

of credit and may result in outright denial of credit. Item 3 is consistent with the advice given

by FICO for improving one’s credit score.6 Item 3 in conjunction with item 1 indicates that even

absent default, the terms of credit on unsecured credit worsen as an individual gets further into

debt – people face a rising marginal cost of funds. Item 4 is documented by Musto [21].

6To improve a score, FICO advises to “Keep balances low on credit card and ‘other revolving credit”’ and “[p]ay
off debt rather than moving it around”. Source:www.myfico.com/CreditEducation/ImproveYour Score
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These facts suggest the following characterization of the workings of the unsecured consumer

credit market. Given the inability of borrowers to commit topay back, lenders condition the terms

of credit (including whether they lend at all) on an individual’s credit history encapsulated by a

credit score. Individuals with higher scores are viewed by lenders as less likely to default and

receive credit on more attractive terms. A default may signal something about the borrower’s

future ability to repay and leads to a drop in the individual’s credit score. Consequently, post-

default access to credit is available on worse terms and may not be available at all. Even absent

default, greater indebtedness may signal something about the borrower’s future ability to repay

which subsequently leads to a lower credit score and worse terms of credit.

There is now a fairly substantial literature (beginning with Kehoe and Levine [19]) on how

and to what extent borrowing can occur when agents cannot commit to pay back. This literature

typically assumes that a default triggers permanent exclusion from credit markets. A challenge

for this literature is to specify a structure with free entryof lenders and where lenders cannot col-

lude to punish defaulters that can make quantitative sense of the characterization of a competitive

unsecured consumer credit market with on-the-equilibrium-path default offered in the previous

paragraphs. This paper take steps toward meeting this challenge.7 We consider an environment

with a continuum of infinitely-lived agents who at any point in time may be one of two types

that affect their earnings realizations and preferences. An agent’s type is drawn independently

from others and follows a persistent two-state Markov process. Importantly, a person’s type and

earnings realizations are unobservable to the lender.8

These people interact with competitive financial intermediaries that can borrow in the inter-

national credit market at some fixed risk-free rate and make one-period loans to individuals at

an interest rate that reflects that person’s risk of default.9 Because differences in earnings distri-

butions and preferences bear on the willingness of each typeof agent to default, intermediaries

7In Chatterjee, et.al. [9] we show that credit can be supported even in a finite horizon model where trigger strategies
cannot support credit.

8Ausubel [4] documents adverse selection in the credit market both withrespect to observable and unobservable
household characteristics.

9Our earlier paper Chatterjee, et. al. [8] shows that there is not a big gain to relaxing the fixed risk-free rate
assumption.
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must form some assessment of a person’s type which is an inputinto his credit score. We model

this assessment as a Bayesian inference problem: intermediaries use the recorded history of a

person’s actions in the credit market to update their prior probability of his or her type and then

charge an interest rate that is appropriate for that posterior. The fundamental inference problem

for the lender is to assess whether a borrower or a defaulter is a chronically “risky” type or just

experiencing a temporary shortfall in earnings. A rationalexpectations equilibrium requires that

a lender’s perceived probability of an agent’s default mustequal the objective probability implied

by the agent’s decision rule. Incorporating this equilibrium Bayesian credit scoring function into a

dynamic incomplete markets model is the main technical challenge of our paper.

We model the pricing of unsecured consumer loans in the same fashion as in our predecessor

paper Chatterjee,et.al. [8]. As in that paper, all one-period loans are viewed as discount bonds and

the price of these bonds depend on the size of the bond. This isnecessary because the probability of

default (for any type) will depend on the size of the bond (i.e., on the person’s liability). If the bond

price is independent of the size of the loan and other characteristics, as it is in Athreya [2], then

large loans which are more likely to be defaulted upon must besubsidized by small loans which are

less likely to be defaulted upon. But with competitive credit markets, such cross subsidization of

pooling contracts will fail to be an equilibrium. This reasoning is corroborated by recent empirical

work by Edelberg [12] who finds that there has been a sharp increase in the cross-sectional variance

of interest rates charged to consumers.

In Chatterjee,et.al. [8], we also assumed that the price of a one-period bond depended on

certain observable household type characteristics like whether households were blue or white collar

workers. Here we assume those characteristics are not observable but instead assume that the bond

depends on the agent’s probability of repayment, in other words, his credit score. The probability

of repayment depends on the posterior probability of a person being of a given typeconditional

on selling that particular sized bond. This is necessary because the two types will not have the

same probability of default for any given sized bond and a person’s asset choice is potentially

informative about the person’s type. With this asset marketstructure, competition implies that the
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expected rate of return on each type of bond is equal to the (exogenous) risk-free rate.

This is possibly the simplest environment one could imaginethat could make sense of the

observed connection between credit history and the terms ofcredit. Suppose it turns out that,

in equilibrium, one type of person, say typeg, has a lower probability of default. Then, under

competition, the price of a discount bond (of any size) couldbe expected to be positively related to

the probability of a person being of typeg. Further, default will lower theposteriorprobability of

being of typeg because typeg people default less frequently. This provides the basis fora theory

why people with high scores are offered credit on more favorable terms.This would explain the

fact that people with high scores are offered credit on more favorable terms.

There are two strands of existing literature to which our paper is closely related. The first strand

relates to Diamond’s [11] well-known paper on acquisition of reputation in debt markets. Besides

differences in the environment (e.g. preferences in his case are risk neutral), the main difference

is that here the decision to default is endogenous while in Diamond it happens exogenously. The

second strand relates to the paper of Cole, Dow and English [10] on sovereign debt.10 In their

setting a sovereign who defaults is shut out of international credit markets until such time as the

sovereign makes a payment on the defaulted debt. Chapter 7 bankruptcy law, which we consider

here, results in discharge of uncollateralized debt.11 Further, the law does not permit individuals to

simultaneously accumulate assets during the discharge of debt granted by the bankruptcy court.12

Our framework has the ability to address an interesting question that arises from Musto’s em-

pirical work. What are the effects on consumption smoothingand welfare of imposing legal re-

strictions (like the Fair Credit Reporting Act), which requires adverse credit information (like a

bankruptcy) to be stricken from one’s record after a certainnumber of years (10 in the U.S.)?

10Athreya et. al. [3] also consider a signalling model but assume anonymity so that past asset market choices
encapsulated in a type score cannot be used as a prior when calculating posteriors associated with current asset market
choices.

11Given the choice between Chapter 7 and 13, individuals wouldchoose to file Chapter 13 only if they wished to
keep assets they would lose under a Chapter 7 filing. Since borrowers in our model have negative net worth (there is
only one asset), Chapter 7 is always the preferred means to file for bankruptcy.

12This fact rules out the purchase of consumption insurance from savings in the period of discharge studied by
Bulow and Rogoff [7].
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Specifically, Musto p. 726 states that his empirical “results bear on the informational efficiency

of the consumer credit market, the efficacy of regulating this market with reporting limits, and

the quality of postbankruptcy credit access, which in turn bears on the incentive to file in the first

place.” He finds p. 747 “the removal of the flag leads to excessive credit, increasing the eventual

probability of default. This is concrete evidence that the flag regulation has real economic effects.

This is market efficiency in reverse.” We use our model to assess this efficiency concern. In a world

of incomplete markets and private information, flag removalmay provide insurance to impatient

agents in our framework that competitive intermediaries may not be able to provide. Hence ex-

tending the length of time that bankruptcy flags remain on credit records may not necessarily raise

ex-ante welfare. This issue echoes Hart’s [16] examples where the opening of a market in a world

of incomplete markets may make agents worse off and Hirschleifer’s [18] finding regarding the

potential inefficiency of revealing information.

The paper is organized as follows. Section 2 describes a model economy where there are no

restrictions on information about asset market behavior, defines an equilibrium, and discusses ex-

istence. Section 3 describes a model economy where there arerestrictions on what information

on asset market behavior can be kept in an agents credit history. In particular, we assume that

information can be kept only for a finite amount of time and that there are partitions on what asset

transactions are recorded. These restrictions on information are intended to capture the require-

ment that adverse events be stricken from an individual’s credit history and the fact that credit

scores are based on debt transactions rather than assets in the current system. Section 4 estimates

parameters of the model of Section 3 to match certain key moments in the data. Section 5 studies

the properties of the model. Section 6 assesses the welfare consequences of restrictions on asset

market information used by credit scoring agencies like that in the model of Section 3 compares to

the unrestricted case of Section 2. This exercise sheds somelight on the impact of the Fair Credit

Reporting Act.
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2 Model Economy 1

2.1 People, Preferences and Endowments

Time is discrete and indexed byt = 0, 1, 2, . . . There is a unit measure of infinitely-lived people

alive at each date. At each date, a person can be one of two types, denotedit ∈ {g, b}. An

individual of typeg (or b) at timet can become an individual of typeb (or g) at the beginning of

time t + 1 with probabilityΓ{it+1=b,it=g} ∈ (0, 1) (or Γbg ∈ (0, 1)), respectively.13 Let γ denote

the unconditional probability that an individual is of typeg. An individual of typeit draws her

endowmentet independently (across time and agents) from a probability space(E,B(E),Φi),

whereE = [e, e] ⊂ R++ is a strictly positive closed interval andB(E) is the Borel sigma algebra

generated byE. Further, we assumeΦi is absolutely continuous with respect to the Lebesgue

measure onE and the densityφi(ē) > 0 for somei.

Denote the life-time utility from a non-negative stream of current and future consumption

{ct, ct+1, ct+2, . . .} of an individual who is of typeit by Ui(ct, ct+1, ct+2, . . . , θt) whereθt ∈ Θ

is an independent (across time and agents) time preference shock drawn at timet from a finite set

with probability mass functionΛ. For eachi, Ui(ct, ct+1, ct+2, . . . , θt) is defined by the recursion

Ui(ct, ct+1, ct+2, . . . , θt) = ui(ct) + βiθt
∑

j,θt+1

ΓjiUj(ct+1, ct+2, ct+3, . . . , θt+1)Λ(θt+1) (1)

where, for alli, ui(ct) : R+ → R is a bounded, continuous, twice differentiable and strictly

concave function with bounded derivatives andβi ∈ [0, 1).

Importantly, we assume that a person’s typeit, endowmentet, and time preference shockθt are

unobservable to others.
13This is a similar assumption to Phelan [22], who studies reputation acquisition by a government.
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2.2 Default Option and Market Arrangement

There is a competitive credit industry that accepts deposits and makes loans to individuals. We

assume that there is a finite setL ⊂ R of possible loans or deposits (L contains negative and

positive elements as well as0). If an individual takes out a loanℓt+1 < 0 at timet there is some

probability pt that the individual will repayℓt+1 units of goods at timet + 1. If ℓt+1 > 0 then

the individual makes a deposit which we assume that the intermediary promises to pay back with

probabilitypt = 1 for simplicity.

A probability of repaymentpt < 1 reflects the possibility of default on the part of the indi-

vidual. We model the default option to resemble, in procedure, a Chapter 7 bankruptcy filing. If

an individual defaults, the individual’s beginning of period liabilities are set to zero (i.e., the indi-

vidual’s debt is discharged) and the individual is not permitted to enter into new contracts in the

period of default.

There is a competitive market in financial contracts. The unit price of a financial contract

(ℓt+1, pt) is q(ℓt+1, pt). Forℓt+1 < 0, q(ℓt+1, pt) · (−ℓt+1) is the amount received by an individual

at timet who promises to payℓt+1 next period with probabilitypt. Forℓt+1 > 0, q(ℓt+1, 1) · ℓt+1 is

the amount handed over by the individual at timet in return for the certain promise to receiveℓt+1

next period.

As noted earlier, there are two types of people in this economy. Let st ∈ [0, 1] be the prior

probability at timet that a person is of typeg. Beliefs about an individual’s type are important

to lenders because the probability of repayment on a consumer loan may (and will) vary across

types. An important part of the market arrangement is the existence of an agency that collects

information on financial transactions of every individual and, using this information, estimates

the probabilityst that a given individual is of typeg at timet. We call an individual’s estimated

repayment probability the individual’scredit score. We call the agency that computes this score

the credit scoring agency. And, we call the type probabilitys on which the credit score (or the
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repayment probability) is based an individual’stype score.14

Thus the existence of the credit scoring agency implies the presence of two functions that are

part of the market arrangement. First, there is acredit scoring functionp(ℓt+1, ψ) which gives the

estimated probability of repayment on a loanℓt+1 < 0 taken out by an individual with type score

ψ. And, second, there is atype score updating functionψ(dt,ℓt+1)(ℓt, st) which gives an individual’s

type score at the start of next period conditional on having begun the current period with assetℓt

and type scorest and choosing(dt, ℓt+1) – a choice of default corresponds to the 2-tuple(1, 0)

and choice of loan/depositℓt+1 corresponds to the 2-tuple(0, ℓt+1) (the precise definitions of these

functions will be given in the next section).

2.3 Decision Problems

2.3.1 People

Let a current variable, sayat, be denoteda and let next period’s variableat+1 be denoteda′.

In the special case of assets/liabilities we will letℓt+1 be denotedy and ℓt be denotedx. Let

Y = {(d, y) : (d, y) ∈ (0×L) or (d, y) = (1, 0)} be the set of possible(d, y) choices (recall that a

person can borrow or save only if she does not default and if she defaults then she cannot borrow

or save).

Each individual takes as given

• the price functionq(y, p) : {L−− × [0, 1]} ∪ {L+ × {1}} → R,

• the credit scoring functionp(y, s′) : L−− × [0, 1] → [0, 1], and

• the type scoring functionψ(d,y)(x, s) : Y × L× [0, 1] → [0, 1].

14Nothing depends on the assumption that there are only two types. WithI > 2 types, we could letst be aI − 1
length vector (and correspondinglyψ be a vector valued function). Even in this case, the credit scorept is just the
probability of repayment on a loan.
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We can now develop the recursive formulation of an individual’s decision problem. The state

variables for an individual are(i, e, θ, x, s). We begin with the definition of the set of feasible

actions.

Definition 2.1 Given (e, x, s), the set of feasible actionsis a finite setB(e, x, s; q, p, ψ) ⊂ Y

that contains: (i) all(0, y) wherey < 0 such thatc = e + x − q(y, p(y, s′)) · y ≥ 0, where

s′ = ψ(d,y)(x, s); (ii) all (0, y) wherey ≥ 0 such thatc = e+ x− q(y, 1) · y ≥ 0; and (iii) if x < 0

it also contains(1, 0).

Observe that the feasible action set does not depend oni nor θ since these are not directly

known either to financial intermediaries or to the credit scoring agency. The credit scoring agency

assigns probabilityψ to the individual being of typeg and the set of feasible actions does depend

on these probabilities. The dependence of the feasible action set on the functionsp, q andψ is

noted.

We permit randomization so individuals choose probabilities over elements in the set of feasible

actions. We will usem(d,y) ∈ [0, 1] to denote the probability mass on the element(d, y) ∈ Y and

m as the choice probability vector. LetB+(e, x, s; q, p, ψ) ⊆ B(e, x, s; q, p, ψ) denote the set of

(d, y) choices that yield strictly positive consumption.

Definition 2.2 Given(e, θ, x, s) the feasible choice setM(e, θ, x, s; q, p, ψ) is the set of allm ≥

0 such that: (i)m(d,y) = 0 for all (d, y) /∈ B(e, x, s; q, p, ψ); (ii) m(d,y) ≥ ǫ for all (d, y) ∈

B+(e, x, s; q, p, ψ) ; and (iii)
∑

(d,y)∈Y
m(d,y) = 1.

In order to keep the type score updating function well definedacross all actions (thereby avoid-

ing having to supply an exogenous set of off-the-equilibrium-path beliefs), we assume each feasi-

ble probability vectorm assigns at least some small probabilityǫ > 0 on every action that yields

strictly positive consumption. In addition, we will assumethatē+ℓmin−ℓmax > 0. These assump-

tions guarantee that every(d, y) choice yields strictly positive consumption for some agentand,
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therefore, will be chosen with positive probability in any equilibrium. We interpret these outcomes

as people making “tiny mistakes”, similar to the “tremblinghand” assumption made in Selten [23].

Given(i, e, θ, x, s) and the functionsp, q andψ, the current-period return of a typei individual

from choosing a feasible action(0, y) is

R
(0,y)
i (e, x, s; q, p, ψ) =





ui(e+ x− q(y, p(y, ψ(0,y)(x, s)) · y) if y < 0

ui(e+ x− q(y, 1) · y) if y ≥ 0

and the current-period return from choosing(1, 0) (if this choice is feasible) is

R
(1,0)
i (e, x, s : q, p, ψ) = ui(e).

Denote byVi(e, θ, x, s; q, p, ψ) : E × Θ × L× [0, 1] → R the value function of a typei

individual. Then, a currently type-i individual’s recursive decision problem is given by

Vi(e, θ, x, s; q, p, ψ) = max
m∈M(e,θ,x,s;q,p,ψ)

(2)

∑

(d,y)



 R
(d,y)
i (e, x, s; q, p, ψ)

+βiθ
∑

j∈{g,b}, θ′∈Θ Γji
{∫

E
Vj(e

′, θ′, y, ψ(d,y)(x, s); q, p, ψ)Φj(de
′)
}

Λ(θ′)



 ·m(d,y).

Denote the optimal decision correspondence byM∗
i (e, θ, x, s; q, p, ψ) and a given selection from

this correspondence bym∗
i (e, θ, x, s; q, p, ψ).

2.3.2 Financial Intermediary

The (representative) financial intermediary has access to an international credit market where it

can borrow or lend at the risk-free interest rater ≥ 0. The intermediary operates in a competitive

market and takes the price functionq(y, p) as given. The profitπ(y, p) on financial contract of type

13



(y, p) is:

π(y, p) =





(1 + r)−1p · (−y) − q(y, p) · (−y) if y < 0

q(y, 1) · y − (1 + r)−1 · y if y ≥ 0
(3)

Let B(L × [0, 1]) be the Borel sets ofL × [0, 1]. Let A be the set of all measures defined on

the measurable space(L × [0, 1],B(L × [0, 1]). Forα ∈ A, α(y, P ) is the measure of financial

contracts of type(y, P ) ∈ B(L × [0, 1]) sold by the financial intermediary. The decision problem

of the financial intermediary is:

max
α∈A

∫
π(y, p) dα(y, p).

2.3.3 Credit Scoring Agency

We do not explicitly model the process by which the credit scoring agency computes type scores

and credit scores. Instead, we impose restrictions on the outcome of this process. Specifically we

assume that (i)p(y, s′) is the fraction of people with loany and type scores′ who repay and (ii)

ψ(d,y)(x, s) is the fraction of typeg among people who start with assetsx, type scores, and choose

(d, y).

Denoting the fraction of typei agents choosing action(d, y) byP (d,y)
i , we have

P
(d,y)
i (θ, x, s; q, p, ψ) =

∫
m

(d,y)
i (e, θ, x, s; q, p, ψ)Φi(de). (4)

Then, condition (i) implies

p(y, s′) = s′ ·

[

1 −
∑

θ′

Λ(θ′)P (1,0)
g (θ′, y, s′; q, p, ψ)

]

(5)

+(1 − s′) ·

[
1 −

∑

θ′

Λ(θ′)P
(1,0)
b (θ′, y, s′; q, p, ψ)

]
.
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Further, condition (ii) implies

ψ(d,y)(x, s; q, p, ψ) = (6)

(1 − Γbg)

[ ∑
θ Λ(θ)P

(d,y)
g (θ, x, s; q, p, ψ)s

∑
θ Λ(θ)P

(d,y)
g (θ, x, s; q, p, ψ)s+

∑
θ Λ(θ)P

(d,y)
b (θ, x, s, q, p, ψ)(1− s)

]

+Γgb

[ ∑
θ Λ(θ)P

(d,y)
b (θ, x, s; q, p, ψ)(1 − s)

∑
θ Λ(θ)P

(d,y)
g (θ, x, s; p, q, ψ)s+

∑
θ Λ(θ)P

(d,y)
b (θ, x, s; q, p, ψ)(1 − s)

]
.

2.4 Equilibrium

We can now give the definition of a stationary recursive competitive equilibrium.

Definition 2.3 A stationary recursive competitive equilibrium is: (i) a pricing functionq∗(y, p);

(ii) a credit scoring functionp∗(y, s′); (iii) a type scoring functionψ∗ (d,y)(x, s); and (iv) decision

rulesm∗
i (e, θ, x, s; q

∗, p∗, ψ∗) such that

D1. m∗
i (e, θ, x, s; q

∗, p∗, ψ∗) is a selection fromM∗
i (e, θ, x, s; q

∗, p∗, ψ∗),

D2. q∗(y, p) is such thatπ(y, p; q∗(y, p)) = 0 in (3) ∀ (y, p) ,

D3. p∗(y, s′) satisfies condition (5) for m∗
i (e, θ, x, s; q

∗, p∗, ψ∗), i ∈ {g, b},

D4. For all (d, y), ψ∗ (d,y)(x, s) satisfies (6) for m∗
i (e, θ, x, s; q

∗, p∗, ψ∗), i ∈ {g, b}.

2.5 Existence

To simplify the analysis and focus on variables of primary interest, the following preliminary

lemma shows that the price functionq, being a linear function ofp, shares the continuity properties

of the scoring functionsp andψ.
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Lemma 2.1 If the credit scoring functionp = p (y, s′) is continuous in the type scores′ for each

y, and the type scoring functions′ = ψ(d,y) (x, s) is continuous in the current type scores, then the

price functionq = q
(
y, p

(
y, ψ(d,y) (x, s)

))
is continuous ins for each(d, y) andx.

Proof. Follows from the assumed continuity ofp ands′ and the zero profit condition in (3).

Given Lemma2.1, the equilibrium problem reduces to finding a pair of functionsp∗(y, s′) and

s′ = ψ∗(d,y)(x, s) such thatD1-D4 hold. To prove existence we take the following steps.

S1. The functionψ is defined onΩ = {0, 1} × L × L × [0, 1]. Since we want bothψ and

p to share the same domain, we extendp in the following way: Ford = 0 andy < 0,

p(d,y)(x, s′) = p(y, s′) for all x; for d = 0 andy ≥ 0, p(d,y)(x, s′) = 1 for all x ands′; for

d = 1 andy = 0, p(d,y)(x, s′) = 0 for all x ands′. Observe that the extension preserves the

continuity ofp with respect tos′, givend, y, x.

S2. Stack the functions to create the vector valued function:

f : Ω → [0, 1]2 ≡



 f 1(ω)

f 2(ω)



 ≡



 p(ω)

ψ(ω)



 ,

whereω ∈ Ω. LetF be the set of all such functions and letK be the set of all such functions

which are continuous ins (since the other components ofω are discrete, the functions are

trivially continuous in those arguments). Let‖f‖ = max{supω f
1, supω f

2}. Observe that

K is a closed (in the max-sup norm), bounded, and convex subsetof F .

S3. Define an operatorT (f) : K → F in the following way. Givenf ∈ K, solve the individual’s

problem to getm∗
i (e, θ, x, s; f). Then use (5) and (6) to getT 1(f) andT 2(f), respectively

(to getT 2(f) we need to extend the the “output” function over toΩ as in stepS1above).

S4. Prove the following properties regardingT andK: i) T (K) ⊆ K, ii) T is a continuous

operator, and iii)T (K) is an equicontinuous family.
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S5. Use Schauder’s Fixed point theorem to prove the existence ofa fixed pointf such that

T (f) = f.

Note thatΩ is a bounded subset ofR4. Moreover, by definitionK ⊂ C(Ω), whereC(Ω) is

the space of bounded continuous functions onΩ, with the supnorm. The existence proof using

Schauder’s theorem (see for example Stokey and Lucas [24], pg. 520) requires verifying the con-

ditions on the operatorT and the familyT (K) given in stepS4. In the following lemmas, we

verify these conditions. Inspection of equations (4)-(5) which define the operatorT suggests that

the continuity property of the operator is closely related to that of the decision rulem∗
i (e, θ, x, s; f)

through(4).

In Appendix7.1we prove the main existence result.

Theorem 2.1 A recursive competitive equilibrium specified in Definition2.3exists.

A sketch of the proof is as follows. Lemma7.1applies a generalized Theorem of the Maximum

by Ausubel and Deneckere [5] to show that the decision correspondenceM∗
i (e, θ, x, s; f) is a non-

empty, compact valued, upper hemi-continuous correspondence ine ands for a givenf ∈ K. The

generalized version requires only upper hemi-continuity of the feasible choice set. Lemma7.2uses

results in Araujo and Mas-Colell [1] to show thatM∗
i (e, θ, x, s; f) is single valued and continuous

almost everywhere inE for a givenf ∈ K. To establish equicontinuity ofT (K), we will use a Lip-

schitz argument. As an input into this argument, Lemma7.3 proves a local Lipschitz property of

decision rulesm∗
i (e, θ, x, s; f) in s. This result follows from the fact that action set is finite, which

implies that for a small enough change ins there is no change in actions except at a countable num-

ber of earnings levels. Lemma7.4establishes thatP (d,y)
i (θ, x, s; f) is well defined and continuous

in s. Intuitively, integrating overe in equation (4) “smooths out” any discontinuities in the selec-

tionm∗
i (·; f). Lemma7.5establishes thatp∗(y, s′) andψ∗ (d,y)(x, s; f) are continuous ins, which

follows from equations(5), (6) and Lemma7.4. Lemma7.6establishes thatP (d,y)
i (θ, x, s; f) has

Lipschitz constant 1 ins for anyf . The Lemma extends the local Lipschitz property of decision
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rules in Lemma7.3globally toP (d,y)
i (·; f). Intuitively, if P (d,y)

i (·; f) fails to be globally Lipschitz,

there must be some interval ons where the local Lipschitz property is contradicted. Since this

holds for anyf , the family of functions{P (d,y)
i (·; f)}f∈K is uniformly Lipschitz continuous. After

establishing some algebraic properties of Lipschitz functions in Lemma7.7, Lemmas7.8and7.9

prove that{p(·; f)}f∈K and{ψ(d,y)(·; f)}f∈K are also uniformly Lipschitz. Having proven thatf is

Lipschitz then allows us to prove equicontinuity in Lemma7.10. Finally, Theorem2.1establishes

that the conditions for equilibrium in Definition2.3are satisfied.

3 Model Economy 2

Now we describe a model economy where there are restrictionson what information on asset

market behavior can be kept in an agents credit history. In particular, we assume that information

can be kept only for a finite amount of time and that there are partitions on what asset transactions

are recorded. These restrictions on information are intended to capture the requirement that adverse

events be stricken from an individual’s credit history and the fact that credit scores are based upon

data on liabilities rather assets. We also assume that thereare regulatory and technological reasons

that restrict what credit scoring agencies and intermediaries can observe about an individual’s

priors.15

An individual’s history of asset market actions (asset choices and default decisions) at the

beginning of periodt is given by(ℓt, hTt ) wherehTt = (dt−1, ℓt−1, dt−2, ..., ℓt+1−T , dt−T ) ∈ {0, 1}×

L×{0, 1}×...×L×{0, 1} ≡ HT , the set of possible histories of finite lengthT ≥ 1. This definition

directly incorporates the restriction that information can only be kept for a finite number, denoted

T, periods. We formalize the restrictions on observability ofasset transactions via partitions on

L × HT . Because all feasible actions are taken with at least probability ǫ, all feasible(ℓt, h
T
t )

are possible along the equilibrium path. Let the particularsubsets (or blocks) of the partition of

L ×HT be denotedΞT = {H1, ..., Hk} which by the assumptions thatL andT are finite is itself

15For instance, prices which incorporate priors are considered proprietary and are excluded from standard credit
histories.

18



a finite set. The restriction that data on assets (which we take asℓt ∈ L++) are not included in the

credit scoring agency’s information set is modelled by a measurability assumption that(ℓt, hTt ) is

constant on each block ofΞT . As an example, suppose thatT = 1 andL = {ℓ−, 0, ℓ
1
+, ℓ

2
+} with

ℓ− < 0 < ℓ1+ < ℓ2+. ThenL×HT=1 = {(0, 1), (ℓ−, 0), (0, 0), (ℓ1+, 0), (ℓ2+, 0)} and the measurability

assumption requiresH1 = {(0, 1)}, H2 = {(ℓ−, 0)}, H3 = {(0, 0)} andH4 = {(ℓ1+, 0), (ℓ2+, 0)}.

To conserve on notation, letH(ℓt, h
T
t ) denote one of the partition blocksH1, ..., Hk. We use a

similar notation, that isA(ℓt+1, dt) is a partition block, to denote what an intermediary can observe

regarding an individual’s current actions(ℓt+1, dt). For the case whereL = {ℓ−, 0, ℓ
1
+, ℓ

2
+}, the

partition block is given (coincidentally) byA1 = {(0, 1)}, A2 = {(ℓ−, 0)}, A3 = {(0, 0)} and

A4 = {(ℓ1+, 0), (ℓ2+, 0)}.

How does this change in the environment affect decision problems? Since these informational

restrictions are only on the credit scoring agency (as well as the financial intermediary since it uses

credit scores as an input into its pricing calculations), the individual’s problem is basically identical

to what we had in section2.3.1. In particular, we simply substitutehT for s in the individual state

(i, e, θ, ℓ, s). Note that sincehT is a finite object, the state space is now finite except for exogenous

earnings. We can also define the endogenous measure of individuals across the state space by

µi(e, θ, ℓ, h
T ).

The informational restrictions on the credit scoring agency affect both the credit scoring and

type scoring functions in (5)-(4). In particular now the type scoring function is given by

ψ(ℓ′, d, ℓ, hT ) = (1 − Γbg)

[
P̂g(ℓ

′, d, ℓ, hT ) · sT

P̂g(ℓ′, d, ℓ, hT ) · sT + P̂b(ℓ′, d, ℓ, hT ) · (1 − sT )

]
(7)

+ Γgb

[
P̂b(ℓ

′, d, ℓ, hT ) · (1 − sT )

P̂g(ℓ′, d, ℓ, hT ) · sT + P̂b(ℓ′, d, ℓ, hT ) · (1 − sT )

]

where the prior of an agent’s type is calculated from the population distribution

sT (ℓ, hT ) =
∑

(ℓ̃,h̃T )∈H(ℓ,hT )

[∫

Eg

∑

θ

µg(e, θ, ℓ̃, h̃
T )Φg(de)Λ(θ)

]
(8)
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and

P̂i(ℓ
′, d, ℓ, hT ) =

∑

(ℓ̃′,d̃)∈A(ℓ′,d),(ℓ̃,h̃T )∈H(ℓ,hT )

Pi(ℓ̃
′, d̃, ℓ̃, h̃T ) (9)

Then the credit scoring function is just as before

p(ℓ′, ψ) = ψ(ℓ′, d, ℓ, hT ) ·

[
∑

θ′

∫
[1 −mg(1, 0; e′, θ′, ℓ′, hT ′, q, p, ψ)]Φg(de

′)Λ(θ′)

]
(10)

+(1 − ψ(ℓ′, d, ℓ, hT )) ·

[
∑

θ′

∫
[1 −mb(1, 0; e′, θ′, ℓ′, hT ′, q, p, ψ)]Φb(de

′)Λ(θ′)

]

.

As can be easily seen, the key difference from (6)-(4) simply arises from the measurability

restrictions in (8)-(9) and we use information on the distribution of agents in the economyµ to

construct the “prior” likelihood that an agent with(ℓ, hT ) is of typeg..

4 Moment Matching

According to the Fair Credit Reporting Act, a bankruptcy filing stays on an individual’s credit

record for 10 years. To keep the state space workable, we assumeT = 2 so that a model period

corresponds to 5 years. The discount rateβ for both types is set to be 0.99. The risk-free interest

rater is set to satisfyβ(1 + r) = 1. We assume the time preference shock can take two values

θ ∈ {0, 1} so that agents who receive the low shock are myopic for one period. This implies

we need only pin down one probability, namelyΛ(0). The utility function takes the formu(c) =

c1−ϕ/(1−ϕ). Thus, in this calibration we will abstract from preferencedifferences between types.

We assume that the “tremble” parameter isε = 0.0001. This is the probability that agents will play

a suboptimal but feasible action by mistake.

We assume an earnings process for typei that is Beta-distributed,ei ∼ Be(νi, ηi). Each agent

takes a random draw from an endowment distribution conditional on her type. We use simulated
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method of moments to estimate the parameters of the endowment process for each type to match the

earnings gini index, mean-to-median earnings ratio, autocorrelation of earnings, and the percentage

of earnings for the first to third quintiles. We use data from the PSID 1996-2001 to construct those

statistics. Average annual earnings in the two survey years(1996 and 2001) are calculated and we

multiply these numbers by five to get the average five-year earnings estimates for 1996-2001 and

2001-2005.

The parameters(νi, ηi) for the earnings process are estimated to be(2.6570, 4.0642) for type

g and(1.0153, 24.4051) for type b. These estimated coefficients imply that typeg earn more on

average (0.40) than typeb (0.04). The probability of typeg switching to typeb is estimated to

be 0.0104, while the probability of typeb switching to typeg is 0.0149. This yields an invariant

distribution where 0.59 of agents are typeg. Table1 summarizes the estimated parameter values

and the targeted and predicted earnings statistics. The standard errors are based on a monte carlo

from a simulation with 7500 agents, roughly the same as in thePSID.

Table 1: Earnings Statistics (PSID 1996-2001) and Parameter Values

Statistics Target Model Parameter Estimate (s.e.)
Gini index 0.54 0.50 νb 1.0153 (0.0616)
Mean/median 1.40 1.21 ηb 24.4051 (2.1358)
Autocorrelation 0.67 0.60 νg 2.6570 (0.1440)
1st quintile share 0.17 0.99 ηg 4.0642 (0.2208)
2nd quintile share 6.77 4.52 Γgb 0.0149 (0.0009)
3rd quintile share 14.73 16.30 Γbg 0.0104 (0.0007)

Taking the earnings parameters as given, we then estimate the remaining parameters by match-

ing data moments on delinquency and wealth statistics. The distribution of delinquency rates from

TransUnion in Figure1 allows us to construct the moments for overall and subprime delinquency

rates. Other statistics including the debt-to-earnings ratio, asset-to-earnings ratio, and percentage

in debt are obtained from the 2004 SCF.16

16The credit scoring function in equation (10) is defined after agents make their asset decisions. Therefore, only
agents in debt have a credit score other than 1. To account forthe distribution of credit scores in Figure1, which
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The set of asset choicesL includes one borrowing level (x), zero, and two saving levels (x1

andx2). We estimate the borrowing level to be -0.0033 while the twosaving levels are 0.1078 and

0.5683. Therefore, the five elements inY are{(1, 0), (0,−0.0033), (0, 0), (0, 0.1078), (0, 0.5683)}.

The probability of the time preference shock is estimated tobe 5% for both types. The CRRA co-

efficient is 6.4618. Table2 summarizes the model statistics and parameter values.

Table 2: Model Statistics (TransUnion and SCF) and Parameter Values

Statistics Target Model Parameter Estimates
Overall delinquency rate 29.23% 31.28% x -0.0033
Subprime (bottom27%) del. rate 75.74% 54.56% x1 0.1078
Debt to earnings ratio 0.002 0.001 x2 0.5683
Asset to earnings ratio 1.36 1.35 Λ(0) 0.0500
Percentage in debt 6.7 5.4 ϕ 6.4618

5 Model Properties

Since credit scores are based on observed asset market decisions, we start by listing the equilibrium

decision rules of agents. WithT = 2, there are 13 possible(x, h2) partitions.

If agents experience a time preference shock (i.e.θ = 0), they become perfectly myopic. In

this case, they will default if they are in debt and will borrow if they are not in debt regardless of

their earnings and any other characteristics. If agents do not receive the time preference shock (i.e.,

θ = 1), their decision rules depend on their state/history tuple. When in debt, typeg agents default

for low earnings or save tox1 or x2 with higher earnings, while typeb agents default for a larger

set of low earnings or save tox1. With zero assets, typeg agents continue with zero assets or save

to x1 or x2, while typeb agents borrow when earnings are very low, continue with zeroassets for

intermediate earnings, or save tox1 at high earnings. With savings, both types continue to save.In

includes everyone (even those who have positive net assets), we re-define the credit scoring function as the probability
of repayment if the agent borrows. See the appendix for the formula.
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equilibrium, every action is taken by some agents (i.e. there is no state that is infeasible for both

types of agents).

The decision rules imply the distribution of credit scores graphed in Figure2. As in the data,

the distribution puts more weight on high scores which have lower likelihood of default.

Figure 2: Distribution of credit scores
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Given the earnings distributions, the decision rules also imply certain properties for the type

scoring function: an observation of default is more likely to come from a bad type individual;

an observation of borrowing is more likely to come from a bad type individual too. Since the

credit scoring function depends on the type scoring function via (10), this behavior translates into

implications for credit scores. Figure3 graphs the mapping between type scores and credit scores.

The red dotted line plots the linear regression between the two and illustrates that there is not a

perfect fit. This can be seen from equations (7)-(10). If the equilibrium borrowing actions are
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independent of the state/history tuple, then there is a direct mapping betweensT andψ in (7).

Hence, the higher issT , the higher isψ. Because typeg agents default less often, this translates via

(10) into higherp. However, since the equilibrium borrowing action depends upon the state/history

tuple, the type scores do not map perfectly into credit scores. We can nonetheless still clearly see

from Figure3 that type scores and credit scores are highly positively correlated. The correlation

coefficient weighted by the distribution measure is 0.9948.

One way to test the model is to see if it can predict the four keyproperties of credit score facts

stated in section1. To do so, the dynamics of credit scores need to be constructed.

1. Interest rates fall as a person’s credit score rises.

Since higher credit scores mean a higher probability of repayment and intermediaries earn

zero profits, this implies a negative relation between credit scores and interest rates as in the

data (see Figure4).

2. Default lowers a person’s score, removal raises it.

Default lowers an individual’s type score because typeb are more likely to default than type

g. Figure5 graphs the percentage change in credit scores after default. We can see that the

fact holds for all possible state and history tuples, because all the percentage changes are neg-

ative. On average, credit scores drop by 48% from 0.82 to 0.43after default. Furthermore,

the model prediction is also consistent with the fact documented by Fair Issac Corp,

Someone that had spotless credit and a very high FICO score could expect a huge

drop in their score. On the other hand, someone with many negative items already

listed on their credit report might only see a modest drop in their score.17

For instance, for an agent who has a low credit score at 0.48 before default, her credit score

will drop by 11% after default. However, for an agent who has ahigh credit score at 0.94

before default, her credit score will have a dramatic drop by54% after default.

17http://www.myfico.com/crediteducation/questions/bankruptcy-fico-score.aspx
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Figure 3: Mapping between type scores and credit scores
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Figure 4: Credit scores and interest rates
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Figure 6 graphs the percentage change in credit scores when the default flag is removed

from an agent’s credit history. The blue bars correspond to changes when the agent chooses

to borrow, while the green and red bars corresponds the changes when the agent chooses to

have zero assets or save. As we can see from the graph, agents have higher credit scores once

their default history is erased in most cases except for the state and history tuples(x, 0, 0, 1)

or {(x1, 0, 0, 1), (x, 0, 0, 1)} when they choose to zero assets. These (green) cases, however,

only happen as a consequence of a tremble.

As in Musto [21], we can compute the changes in percentile of the distribution of credit

scores following a removal of the bankruptcy flag from one’s record. Musto [21] categorized

bankrupt households according to their initial post-default percentage in the distribution of

credit scores and kept track of them for ten years (the lengthof time the bankruptcy record

stays in their credit history by the FCRA). SinceT = 2, there is not a lot of variation in

26



Figure 5: Percentage change in credit score after default
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state/history tuples after default; here it is simply(0, (1, x, 0)) and this falls within the first

quintile of the distribution. After two model periods when their default record is erased, an

individual’s new credit score on average increases 6% in one5-year period (1.2% annually).

Musto found that for individuals in the first quintile of credit scores, they jumped ahead

of 5% of households post default annually. However, these households are not the group in

which people are mostly affected by the information restriction. If we raiseT > 2 we should

find more heterogeneity in post default scores which would map to Musto’s dataset better.

3. Taking on more debt (paying off debt) tends to lower (raise) credit scores.

Figure7 graphs the percentage change in credit score after an agent takes on more debt. In

the model, since borrowing only arises when hit withθ = 0 (except in one unlikely event)

andθ shocks are iid, assessment following borrowing rises sincethe population proportion

of good types is 0.59. This makes it hard to match the prediction that increasing indebtedness

lowers scores. On average, credit scores rise by 3% from 0.76to 0.78 after households go

into debt. Obviously, the sparse parameterization of the model does not match this fact well.
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Figure 6: Percentage change in credit score after default flag removal
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(d, y) = (x,0)
(d, y) = (0,0)
(d, y) = {(x̄1,0), (x̄2,0)}
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{(x̄1, 0, 0, 1), (x̄2, 0, 0, 1)}

On the other hand, the percentage change in credit score after an agent pays off her debt is

graphed in Figure8. The model predicts the fact well when when an agent chooses zero

assets after paying off her debt as illustrated by the red bars. The fact does not hold when

an agent choose to save after paying off her debt as illustrated by the blue bars (this case,

however, is a suboptimal but feasible action). On average, credit scores rise by 59% from

0.49 to 0.78 after agents pay off debt.

4. Scores are mean reverting.

Figure9 graphs the average credit score given current credit scoresusing the equilibrium de-
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Figure 7: Percentage change in credit score after borrowing
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cision rules. 18 It can be seen that agents with lower (higher) credit scores tend to have higher

(lower) credit scores next period. Therefore, the linear regression line has a flatter slope at 0.8 than

the 45 degree line.

6 Policy Experiment

Here we use the model to address a question about the welfare consequences of imposing legal

restrictions (like the Fair Credit Reporting Act), which requires adverse credit information (like a

18The average next-period credit score given(x, hT ) is calculated as

∑
i

[∫
Ei

∑
θ,(d,y) p(x, ψ(x, 0, d, y, l, d

−1))mi(d, y; e, θ, x, h
T )µi(e, θ, l, h

T )Φi(de)Λ(θ)
]

∑
i

[∫
Ei

∑
θ µi(e, θ, l, hT )Φi(de)Λ(θ)

]
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Figure 8: Percentage change in credit score after paying offdebt
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bankruptcy) to be stricken from one’s record after a certainnumber of years (10 in the U.S.). As

discussed in the introduction, in a world of incomplete markets and private information, flag re-

moval may provide insurance to impatient agents in our framework that competitive intermediaries

may not be able to provide. Hence extending the length of timethat a bankruptcy flag remains on

one’s credit record may not necessarily raise ex-ante welfare. This issue is similar to Hart’s [16]

examples where the opening of a market in a world of incomplete markets may make agents worse

off and Hirschleifer’s [18] finding regarding the potential inefficiency of revealing information.

To assess this question, we compute consumption equivalents using the following formulas.

Say the EPDV of utility starting in state(i, e, θ, x, hT ) for a givenT is given by

Vi(e, θ, x, h
T=2;T = 2) = Ei

[
∞∑

t=0

(βθ)t
ct(i, e, θ, h

T=2;T = 2)1−ϕ

1 − ϕ

]
.
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Figure 9: Mean reversion of credit scores
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To assess how much a typei agent with earningse and time preference shockθ in history(x, hT=2)

would be willing to pay forever to be in a regime whereT = ∞ and there are no partitions, for

each(i, e, θ, x, hT=2) we computeλi(e, θ, x, hT=2) such that

Vi(e, θ, x, h
∞;∞) = Ei

[
∞∑

t=0

(βθ)t
[
(1 + λi(e, θ, x, h

T=2))ct(i, e, θ, x, h
T=2;T = 2)

]1−ϕ

1 − ϕ

]

= (1 + λi(e, θ, x, h
T ))1−ϕVi(e, θ, x, h

T=2;T = 2)

or

λi(e, θ, x, h
T=2) =

[
Vi(e, θ, x, h

∞;∞)

Vi(e, θ, x, hT=2;T = 2)

]1/(1−ϕ)

− 1.

Then the total welfare gain/loss is given by

∑

i,e,θ,x,hT=2

λi(e, θ, x, h
T=2)µi(e, θ, x, h

T=2).
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We use the same parameterization in the calibrated model forthe T = ∞ world with no

partitions. As a whole, the economy is worse off without the legal restriction (specifically, the

welfare loss is0.0001). Table3 reports the average consumption equivalents by types and time

preference shock. Typeg on average would prefer to lift the legal restriction on information, while

typeb on average are worse off and must be compensated if the legal restriction is removed.

Table 3: CE by types and shocks

θ\i g b
1 0.0420e-3 -0.5266e-3
0 0.0650e-3 -0.1072e-3
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7 Appendix

7.1 Existence Proof

We start by showing in Lemma7.1 that the decision correspondenceM∗
i (e, θ, x, s; f), which is

a member of the simplex over{0, 1} × L with full support on the feasible setB(e, θ, x, s; f),

is well-defined and has standard properties. We apply a generalized Theorem of the Maximum

by Ausubel and Deneckere [5] because the standard continuity assumption of the feasible choice

correspondence is not satisfied in our environment due to thepresence of strictly positive trembles.

In particular, the feasible choice set is not necessarily lower hemi-continuous ine, s, f . To see why,

consider a sequencepn converging top, such that there is an action̂y that delivers strictly positive

consumption for allpn but delivers zero consumption forp. Then, everymi(·; pn) ∈ Mi(·; pn)

assigns at leastǫ probability weight tôy (i.e.,m(0,ŷ)
i (·; pn) ≥ ǫ) but there exists at least one feasible

m̃i(·; p) ∈ Mi(·; p) which assigns zero probability tôy (i.e., m̃(0,ŷ)
i (·; p) = 0). Therefore, there

does not exist any feasible sequence ofmi(·; pn) that converges tõmi(·; p).

Lemma 7.1 The decision correspondenceM∗
i (e, θ, x, s; f) is a non-empty, compact valued, upper

hemi-continuous correspondence ine, s, andf, for each(θ, x) , andi ∈ {g, b}.

Proof. We verify the hypotheses of the Generalized Theorem of the Maximum by Ausubel and

Deneckere [5].

Claim 1: The feasible choice setM(e, θ, x, s; f) is non-empty for each(e, θ, x, s; f). This

is because the default option is always feasible for individuals with debt (i.e. those who start

with x < 0) and that an individual with positive assets can always afford positive amounts of

consumption.

Claim 2:M(e, θ, x, s; f) is a compact valued correspondence since the feasible choice set is a

closed simplex.

36



Claim 3: To show thatM(e, θ, x, s; f) is uhc, pick arbitrary sequences(en, sn, fn) → (e, s, f)

andmn ∈ M(en, θ, x, sn; fn), and find a subsequence(enk
, snk

, fnk
) such thatmnk

→ m and

m ∈ M(e, θ, x, s; f), where the convergence offn to f is in the sup-norm metric. To prove

the claim, supposem does not belong inM(e, θ, x, s; f). Then there exists(d, y) such that

m(d,y) > 0 for some(d, y) not in B(e, x, s; f). Since every element of the sequence is a prob-

ability vector, the limit must be a probability vector also.Hence, the only way this vector can

be infeasible is if it assigns positive weight to some point with negative consumption, i.e.,c =

e + x − q(y, p(y, ψ(d,y)(x, s; f) < 0. But this implies that for sufficiently largen, cn = en + x −

q(y, p(y, ψ(d,y)(x, sn; fn) < 0. Hencem(d,y)
n = 0 for all sufficiently largen, which contradicts

m(d,y) > 0.

Claim 4: The objective function in the decision problem is continuous ine, s, andf for each

(θ, x). To see this, define the following operatorT̂ corresponding to the optimization problem:

(T̂ V )i(e, θ, x, s; f) = max
m∈M(e,θ,x,s;f)

∑

(d,y)

[R
(d,y)
i (e, θ, x, s, f)

+βiθ
∑

j∈{g,b},θ′

Γji

∫

E

Vj(e
′, θ′, y, ψ(d,y)(x, s); f)Φj(de

′)Λ(θ′)] ·m(d,y).

LetZ = E × Θ × L× [0, 1] denote the product space. Observe thatZ is a compact set, since it is

a product of finite number of compact sets.

LetB(Z) denote the space of bounded functions defined overZ, and similarlyC(Z) denote the

space of continuous functions. Moreover,C (Z) ⊆ B (Z) since a continuous function defined over

a compact set is bounded. The space of continuous and boundedfunctionsC(Z) endowed with the

sup norm defines a complete metric space. SinceZ is compact,R is a bounded function for each

(θ, x). Starting with a bounded functionV ∈ B(Z), the operator̂T updates to another bounded

function T̂ V. This also holds true for aV ∈ C(Z), since a continuous function on a compact

domain is bounded, so that̂T : C(Z) → B(Z). Next we show that the operator mapsC(Z) into

itself using the generalized Maximum Theorem, which will yield existence and uniqueness of the

value function and that the choice correspondence has the properties given in the statement of the
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current lemma.

Given aV ∈ C(Z) consider the terms in the objective function. Sinceq is continuous ins,

by Lemma2.1, R is continuous ins. Moreover,R is also continuous ine since current utility

is continuous in current consumption and the latter is linear in e. Moreover, sinceV ∈ C(Z) is

continuous ins′ ands′ := ψ ∈ K is a continuous function ofs, thenV = T̂ V is continuous in

s. Furthermore,V ∈ C(Z) does not depend on the current endowmente because the transition

probabilitiesΓji do not depend one and next period’s drawe′ is independent. Therefore, being a

sum of continuous functions, the objective function is continuous.

Together Claims 1 to 4 constitute the hypotheses of the Theorem of Maximum in Ausubel and

Deneckere [5]. One consequence of this theorem is thatT̂ V is continuous ine, s for each(θ, x).

Therefore, the operator̂T mapsC(Z) into itself. Moreover, this operator is monotone and is a

contraction of modulus less than one, which are Blackwell’ssufficient conditions to establish that

T̂ is a contraction. Therefore, existence and uniqueness of a fixed pointV of T̂ in C(Z) follows

from the contraction mapping theorem. The other important consequence of the theorem is that the

choice correspondenceM∗
i (·, θ, x, ·; f) is a non-empty, compact valued and upper hemi-continuous

(uhc) correspondence ine, s for each(θ, x).

We next use some results by Araujo and Mas-Colell [1] to show thatM∗
i is single-valued and

continuous except at a set of points of Lebesgue measure zeroin Ei. We establish:

Lemma 7.2 M∗
i (e, θ, x, s; f) is single valued and continuous almost everywhere (a.e.) inEi for

each(θ, x, s, f).

Proof. Fixing (θ, x, s, f) we verify that Assumptions1 to 4 and the Sondermann Condition on

pages115−116 of Araujo and Mas-Colell [1] are satisfied for the objective function corresponding

to the individual optimization problem

F (m, e) :=
∑

(d,y)

[R
(d,y)
i (e, θ, x, s, f) + βiθWi(y, ψ

(d,y)(x, s))]m(d,y).
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where

Wi(y, ψ
(d,y)(x, s)) =

∑

j∈{g,b},θ′

Γji

∫

E

Vj(e
′, θ′, y, ψ(d,y)(x, s))Φj(de

′)Λ(θ′) ∀ i ∈ {g, b}

with m and e in the roles ofx ∈ X anda ∈ E , respectively, as well asΦi in the role of the

probability measureν, in the statement of Theorem 1 of Araujo and Mas-Colell. If the conditions

hold for our model economy, then we can conclude that theM∗
i (e, θ, x, s; f) is single-valued almost

everywhere ine.

1. Assumption 1: that(X ×X)\∆ is a Lindelöf space, where∆ = {(x, y) ∈ X ×X : x = y},

which is necessary for a countable open cover, holds. In our case the set of all feasible

choices isX :=
⋃
i∈{g,b}M i whereM i := Mi(ei, θ, x, s, f). To see this note thate1 < e2

implies thatMi(e
1, θ, x, s, f) ⊆ Mi(e

2, θ, x, s, f) for i ∈ {g, b} ande ∈ Ei. Note also that

X is compact and so is the product spaceX ×X. Moreover,X ×X\∆ is compact, being a

closed subset of a compact set. Consequently,X×X\∆ is a Lindelöf space, since thewhich

is latter is a weakening of compactness (See section 7.2 of Gemignani [14]).

2. Assumption 2: thatF : X × E → R is a continuous function, holds. As shown in Claim 4

of Lemma7.1the objective function is continuous.

3. Assumption 3: that for everyi, x ∈ X anda ∈ E , ∂ai
F (x, a) exists and depends contin-

uously onx anda - holds. To see this, dropping thei index for notational ease, note that

a small change ine has an effect only in the current period through its direct effect on the

set of consumption choices. Continuation values are unaffected by a small change ine. This

is because the transition probabilitiesΓji do not depend one and the next period’s drawe′

is independent. Therefore,∂Fe(m, e) = ∂eRi =
∑

(d,y) u
′(c(d,y)) ·m(d,y), which by the as-

sumption thatu(·) is continuously differentiable inc, by the fact that consumption is linear

in e, and linearity inm implies that the expression varies continuously ine andm.

4. Assumption 4: thatν is a product probability measure, each factor being absolutely contin-

uous with respect to Lebesgue measure, holds. By assumptionour probability measureΦi is
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absolutely continuous with respect to the Lebesgue measure.

5. Sondermann Condition (SC): that ifF (x, a) = F (y, a),x 6= y, then∂ai
(F (x, a)−F (y, a)) 6=

0 for some i, holds. Suppose, to the contrary thatF (m, e) = F (m̂, e) andm 6= m̂ implies

that ∂Fe(m, e) :=
∑

(d,y) u
′(c(d,y))m(d,y) =

∑
(d,y) u

′(c(d,y))m̂(d,y) =: ∂Fe(m̂, e) for all e.

This means that
∑

(d,y) u
′(c(d,y))

(
m(d,y) − m̂(d,y)

)
= 0. Since

∑
(d,y)

(
m(d,y) − m̂(d,y)

)
= 0

because bothm andm̂ are probability vectors that sum to1, the sub-vectoru′(c(d,y)) com-

posed of all(d, y) for which
(
m(d,y) − m̂(d,y)

)
6= 0 must be proportional to the unit sub-

vector. This is because both the unit sub-vector and theu′(c(d,y)) sub-vector are both orthog-

onal to
(
m(d,y) − m̂(d,y)

)
. But, provided there is at least one pair of actions in this sub-vector,

say(d, y) and(d̃, ỹ) for which c(d,y) 6= c(d̃,ỹ), this proportionality will contradict the strict

concavity ofu. Hence,∂e(F (m, e) − F (m̂, e)) 6= 0.

Together, items 1 to 5 verify that for each(θ, x, s) the hypotheses for Theorem 1 of Araujo and

Mas-Colell [1] are satisfied. Consequently,M∗
i (e, θ, x, s; f) is single-valued a.e inEi.

Next we show that the uhc correspondenceM∗
i that is a.e. single-valued inEi is continuous

a.e. inEi. To see this, we pick an arbitrary convergent sequence in thedomainen → e and show

thatM∗(en, ·) → M∗
i (e, ·) in e a.e. LetM∗ be single-valued ate andM∗(e) be the value. By upper

hemi-continuity there exists a subsequence such thatenk
→ e andM∗(enk

, ·) → M∗(e). Since

the limit of any such subsequence is unique, the original sequence converges to the same limit,

that is,M∗(en, ·) → M∗(e). This shows thatM∗(e, ·) is continuous at the set of points where it is

single-valued. But the latter set has probability one. Therefore,M∗(e, ·) is continuous ine a.e.

Hence, the claim of the lemma follows.

Since we will establish equicontinuity using a Lipschitz condition, the next lemma proves that

small changes ins satisfy a Lipschitz condition on decision rules with Lipschitz constant 1 almost

everywhere. Given upper hemicontinuity in Lemma7.1and single-valuedness a.e. ine in Lemma

7.2, the result follows from the finite action set.
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Lemma 7.3 For a given(θ, x, f) and anys, there exists aδs(f) > 0 such that for anys′ 6= s and

|s− s′| ≤ δs(f), |m
∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)| ≤ |s− s′| a.e. inEi.

Proof. For a given(θ, x, f), suppose to the contrary that there existss ands′ 6= s such that for

anyδs(f) > 0 with |s− s′| < δs(f) and an associated positive measure setEi(s, s
′; f),

|m
∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)| > |s− s′| for eache ∈ Ei(s, s

′; f), (11)

whereE(s, s′; f) is a set ofe for which bothm∗(d,y)
i (e, θ, x, s; f) andm∗(d,y)

i (e, θ, x, s′; f) are

single-valued. The latter is possible sincem∗(d,y)
i (·, s; f) is single-valued a.e. ine both ats ands′

by Lemma7.2.

The following steps lead to the desired contradiction.

Step1.Sinces 6= s′, (11) implies thatm∗(d,y)
i (e, θ, x, s; f) 6= m

∗(d,y)
i (e, θ, x, s′; f) for eache ∈

Ei(s, s
′; f). This further implies that

|m
∗(d,y)
i (e, s; f) −m

∗(d,y)
i (e, s′; f)| ≥ ǫ for eache ∈ Ei(s, s

′; f), (12)

whereǫ is the tremble parameter. This follows sincem∗(d,y)
i (e, θ, x, s; f) andm∗(d,y)

i (e, θ, x, s′; f)

are single valued for eache ∈ Ei(s, s
′; f), the action set has a finite number of elements, and

the smallest possible difference in probability mass assigned to actions isǫ.

Step2.Sincem∗(d,y)
i (e, θ, x, s; f) is single-valued ine by Lemma7.2, uhc ofm∗(d,y)

i (e, θ, x, s; f) at

s by Lemma7.1implies that for an open ball of radiusǫ/2 aroundm∗(d,y)
i (e, θ, x, s; f) there

exists an open ball of radiuŝδs(f) > 0 arounds such that

|m
∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)| ≤ ǫ/2 (13)

for everys′ such that|s− s′| < δ̂s(f).
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Step3.Since (11) must hold for anyδs(f) > 0, if we pick s′ in (Step1) satisfying|s − s′| < δ̂s(f)

then (13) in (Step2) contradicts (12).

Next we prove thatP (d,y)
i (θ, x, s; f) in equation (4) is well defined. Given the continuity result

of Lemma7.2, the next lemma also establishes the continuity ofPi (·) in s. Intuitively, the integral

“smooths out” the discontinuities inm∗
i (·, θ, x, s; f).

Lemma 7.4 Given the measureΦi, observable characteristics(θ, x, s) and price and scoring func-

tionsf, the measureP (d,y)
i (θ, x, s; f) of individuals choosing(d, y) given in equation (4) is well de-

fined for alli. Further,P (d,y)
i (θ, x, s; f) is continuous ins for each(d, y), x, f := (ψold, pold) ∈ K

andi ∈ {g, b}.

Proof. For the first part of the lemma, we know by Lemma7.1 thatM∗
i (e, θ, x, s; f) is a

compact valued and uhc correspondence. From the MeasurableSelection Theorem (Stokey and

Lucas, Theorem 7.6), there exists a functionm∗
i (e, θ, x, s; f), measurable with respect toB(Ei),

such thatm∗
i (e, θ, x, s; f) ∈ M∗

i (e, θ, x, s; f). Furthermore,m∗
i (e, ·) ≤ 1 andΦi is a probability

measure. Thereforem∗(d,y)
i is Φi integrable and

∫
m

∗(d,y)
i (e, θ, x, s; f)Φi(de) exists.

For the second part of the proof, fixθ, x andf . Pick ê and ŝ. Assume thatM∗
i (ê, θ, x, ŝ; f)

is single-valued. Thereforem∗
i (ê, θ, x, ŝ; f) = M∗

i (ê, θ, x, ŝ; f). Let sn → ŝ. We claim that

m∗
i (ê, θ, x, sn; f) → m∗

i (ê, θ, x, ŝ; f). Suppose not, then for anyǫ > 0 there exists a subsequence

m∗
i (ê, θ, x, snk

) such that|m∗
i (ê, θ, x, snk

) −m∗
i (ê, θ, x, ŝ)| > ǫ for all nk. Butm∗

i (ê, θ, x, snk
) is a

selection fromM∗
i (ê, θ, x, snk

). So, by the uhc ofM∗
i , the subsequence must contain a subsequence

converging to a point inM∗
i (ê, θ, x, ŝ; f). But the latter contains onlym∗

i (ê, θ, x, ŝ; f). Thus

there must be someN such that|m∗
i (ê, θ, x, sN) −m∗

i (ê, θ, x, ŝ)| < ǫ, a contradiction. Therefore,

m∗
i (ê, θ, x, sn; f) → m∗

i (ê, θ, x, ŝ; f).

Now considerP (d,y)
i (θ, x, sn; f) =

∫
m

∗(d,y)
i (e, θ, x, sn; f)Φi(de). Then (i)m∗(d,y)

i (e, θ, x, sn; f)

→m
∗(d,y)
i (e, θ, x, s; f) for all e for whichm∗(d,y)

i (e, θ, x, s; f) is single-valued, and therefore, fore
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a.e., and (ii)m∗
i (e, θ, x, sn; f) ≤ 1. Therefore, by the Lebesgue Dominated Convergence Theorem,

limn P
(d,y)
i (θ, x, sn; f) = limn

∫
m

∗(d,y)
i (e, θ, x, sn; f)Φi(de) =

∫
limm

∗(d,y)
i (e, θ, x, sn; f)Φi(de) =

∫
m

∗(d,y)
i (e, θ, x, s; f)Φi(de) = P (d,y)

i (θ, x, s; f).

Given the continuity ofPi (·) in s by Lemma7.4, the new scoring functionsψnew = T 1(f) and

pnew = T 2(f), which are obtained from the old scoring functionsf := (ψold, pold) by applying the

operatorT as defined in equations(5) and(6), are continuous ins. This is because from(5) and

(6) the new scoring functions are continuous functions ofPi (·) . This result is summarized in the

following Lemma7.5 and will be used below in Lemma7.6 to show the continuity properties of

T.

Lemma 7.5 ψnew = T 1(f) andpnew = T 2(f) is continuous ins, for each(d, y, θ, x), f := (ψold, pold) ∈ K

andi ∈ {g, b}.

The next lemma establishes thatP
(d,y)
i (·, s) has Lipschitz constant 1. The proof uses the fact

from Lemma7.3 that small changes ins yield small changes in decision rules a.e. for anys. We

show in the first part of the proof that this implies that smallchanges ins yield small changes in

P at anys and then extend this to all changes ins via an argument similar to a nondifferentiable

version of the Mean Value Theorem. In particular, the standard Mean Value Theorem is often

used to prove theorems that make global conclusions about a function on an interval starting from

local hypotheses about derivatives at points of the interval. Here we extend that idea to make

global conclusions about the Lipschitz constant without assuming differentiability ofP . Further,

the lemma establishes that the family of functions{P (·; f)}f∈K is uniformly Lipschitz continuous,

which uses the following:

Definition 7.1 (Uniform Lipschitz Continuity) We say that the family of functions{P (·; f)}f∈K

is uniformly Lipschitz continuous if each function in the family is Lipschitz continuous and has the

same Lipschitz constant for anyf ∈ K.

43



Lemma 7.6 For any given(θ, x, s) and anyf ∈ K, |P
(d,y)
i (θ, x, s; f)−P

(d,y)
i (θ, x, s′; f)| ≤ |s−s′|

whenevers 6= s′.

Proof. First we establish that for any givens andf , there exists aδs(f) such that|P (d,y)
i (θ, x, s; f)−

P
(d,y)
i (θ, x, s′; f)| ≤ |s − s′| whenever|s − s′| ≤ δs(f) ands 6= s′ To see this, fix an f. For any

s, s′ with s 6= s′,

|P
(d,y)
i (θ, x, s; f) − P

(d,y)
i (θ, x, s′; f)|

=

∣∣∣∣

∫

E

(
m

∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)

)
Φ(de)

∣∣∣∣

≤

∫

E

∣∣∣m∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)

∣∣∣Φ(de), (14)

where the equality follows from the definition ofP (·) and the inequality follows from the Jensen’s

inequality since| · | is a convex function. By Lemma7.3, there exists aδs(f) > 0 such that

|m
∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s′; f)| ≤ |s− s′| a.e. whenever|s− s′| ≤ δs(f). For suchs

ands′,
∫
E

∣∣∣m∗(d,y)
i (e, θ, x, s; f) −m

∗(d,y)
i (e, θ, x, s; f)

∣∣∣Φ(de) ≤ |s− s′| , which from (14) implies

that|P (d,y)
i (θ, x, s; f) − P

(d,y)
i (θ, x, s′; f)| ≤ |s− s′| whenever|s− s′| ≤ δs(f).

Next we extend the argument to alls 6= s′ and not just those where|s − s′| ≤ δs(f). In

particular, for any givenf, fix s, s′ ∈ [0, 1] with s 6= s′ and assume without loss of generality that

s′ > s. For an arbitraryz ∈ ℜ define a functiongz : [0, 1] → ℜ as a product in the following way:

gz(s̃) := z·

(
P

(d,y)
i (θ, x, s̃; f) − P

(d,y)
i (θ, x, s; f) − (s̃− s)

P
(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)
.

Note that by construction,gz(s) = gz(s
′) = 0. Since by Lemma7.4we haveP (d,y)

i (θ, x, s; f) is a

continuous function ofs, gz is continuous iñs. Moreover, restricted to a compact subset[s, s′] of

[0, 1], gz is also continuous iñs on that subset. Therefore, by the Weierstrass Theorem (Aliprantis

and Border [6], page 40), there exists an interior pointξ ∈ (s, s′) at whichgz attains a maximum

or a minimum. Therefore, there are two cases to consider depending on whetherξ is a minimum

or a maximum.
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Case1.gz attains a minimum atξ. If ξ is a minimum,

lim inf
s̃n→ξ
s̃n>ξ

gz(s̃n) − gz(ξ)

s̃n − ξ
≥ 0. (15)

This holds because thelim inf is well-defined and for each̃sn, the numerator is non-negative

sinceξ is a minimum and the denominator is non-negative since the sequence of{s̃n} was

chosen such that̃sn > ξ. Using the definition of the functiongz the latter implies that

gz(s̃) − gz(ξ) = z ·
(
P

(d,y)
i (θ, x, s̃; f) − P

(d,y)
i (θ, x, ξ; f)

)

− z ·

(

(s̃− ξ)
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)

≥ 0

or, for anys′

z
(
P

(d,y)
i (θ, x, s̃; f) − P

(d,y)
i (θ, x, ξ; f)

)
≥ z

(

(s̃− ξ)
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)

.

In particular, this condition for anỹs > ξ and linearity imply that

z ·

(
P

(d,y)
i (θ, x, s̃; f) − P

(d,y)
i (θ, x, ξ; f)

s̃− ξ

)

≥ z ·

(
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)

.

Since this condition is true for anỹs > ξ, then for any sequence ofs̃n converging toξ from

above we know

lim inf
s̃n→ξ
s′n>ξ

z·

(
P

(d,y)
i (θ, x, s̃n; f) − P

(d,y)
i (θ, x, ξ; f)

s̃n − ξ

)

≥ z·

(
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)

.

(16)
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Moreover, by the definition of the absolute value function| · |,

z ·

(
P

(d,y)
i (θ, x, s̃n; f) − P

(d,y)
i (θ, x, ξ; f)

s̃n − ξ

)
≤ |z|

∣∣∣P (d,y)
i (θ, x, s̃n; f) − P

(d,y)
i (θ, x, ξ; f)

∣∣∣
|s̃n − ξ|

.

(17)

Sinces̃n → ξ, for sufficiently largen′s we have|s̃n − ξ| < δfξ and hence by the first part

of this proof we know
|P (d,y)(s̃n)−P (d,y)(ξ)|

|s̃n−ξ|
≤ 1. From (17), the latter implies that for all

sufficiently largen’s, z ·

(
P

(d,y)
i (θ,x,s̃n;f)−P

(d,y)
i (θ,x,ξ;f)

s̃n−ξ

)
≤ |z| , which combined with (16)

yields the desired inequality

|z| ≥ z ·

(
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

)

. (18)

Case2.If, on the other hand,ξ is a maximum, then by an analogous argument we can show (15) for

a sequencẽsn converging toξ from below,

lim inf
s̃n→ξ
s̃n<ξ

gz(s̃n) − gz(ξ)

s̃n − ξ
≥ 0.

Using this condition and following an analogous argument made in Case1establishes that

(18) also holds inCase2.

We have established that for an arbitraryz the condition in (18) holds. Therefore, the condition

holds for anyz. In particular, it holds forz =

(
P

(d,y)
i (θ,x,s′;f)−P

(d,y)
i (θ,x,s;f)

s′−s

)
; that is,

∣∣∣∣∣
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

∣∣∣∣∣ ≥

∣∣∣∣∣
P

(d,y)
i (θ, x, s′; f) − P

(d,y)
i (θ, x, s; f)

s′ − s

∣∣∣∣∣

2
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or, equivalently,

∣∣∣∣
P

(d,y)
i

(θ,x,s′;f)−P
(d,y)
i

(θ,x,s;f)

s′−s

∣∣∣∣ ≤ 1. Rearranging now shows that for any givenf ∈

K,
∣∣∣P (d,y)

i (θ, x, s′; f) − P
(d,y)
i (θ, x, s; f)

∣∣∣ ≤ |s′ − s|. The uniform Lipschitz property follows from

the independence of this condition from a particularf .

Having established thatP is Lipschitz for anyf , we now need to establish thatf , or in par-

ticularψ andp which are functions ofP , are also Lipschitz. The next lemma establishes certain

properties of functions of Lipschitz functions.

Lemma 7.7 If g : [0, 1] → [0, 1] and ĝ : [0, 1] → [0, 1] are Lipschitz continuous functions with

the same Lipschitz constantZ, then: (i) their producth := gĝ is also Lipschitz continuous with

Lipschitz constant is 2Z; and (ii) their sumh := g+ ĝ is also Lipschitz continuous and its Lipschitz

constant is 2Z.

Proof. Part (i). We must show that there exists aẐ > 0 such that for anys, s′ with s 6= s′

|h(s) − h(s′)| ≤ Ẑ|s− s′| andẐ = 2Z. Note that

| h(s) − h(s′) | = | g(s)ĝ(s) − g(s′)ĝ(s′) |

= | g(s)ĝ(s) − g(s)ĝ(s′) + g(s)ĝ(s′) − g(s′)ĝ(s′) |

≤ | g(s)ĝ(s) − g(s)ĝ(s′) | + | g(s)ĝ(s′) − g(s′)ĝ(s′) |

= g(s)| ĝ(s) − ĝ(s′) | + ĝ(s′)| g(s) − g(s′) |

≤ (g(s) + ĝ(s′))Z| s− s′ |

≤ Ẑ| s− s′ |, whereẐ = 2Z.

The first equality follows from the definition ofh. The second by adding and substracting a term.

The third equality follows sinceg(s) and ĝ(s) are non-negative. The first inequality uses the

triangle inequality, the second uses the fact thatg and ĝ are Lipschitz continuous with Lipschitz

constantZ. The last inequality uses the fact thatg andĝ take values in[0, 1]. Part (ii). A similar

(even simpler) argument to above.
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Lemma 7.8 {ψ(d,y)(x, s; f)}f∈K is uniformly Lipschitz continuous.

Proof. By Lemma7.6, P (d,y)
i (θ, x, s; f) is uniformly Lipschitz continuous. By Lemma7.7,

hi(s; f) := P
(d,y)
i (θ, x, s; f) · s is Lipschitz continuous since bothP (d,y)

i (θ, x, s; f) and the iden-

tity map s → s are both Lipschitz continuous. Note that from the definitionof ψ(d,y)(x, s; f)

in (6), it is of the form hi(s;f)

ĥi(s;f)
wherehi(s; f) and ĥi(s; f) are Lipschitz continuous (by Lemma

7.7 being finite sums of functions of the formP (d,y)
i (θ, x, s; f) · s). Moreover,hi(s; f) belongs

to a family that is uniformly Lipschitz continuous. This is becausehi ∈ {P
(d,y)
i (θ, x, ·; f) ·

s}{f∈K} where{P (d,y)
i (·; f)}{f∈K} is a uniformly Lipschitz continuous family and the mapping

s → P
(d,y)
i (·, s; f)s is Lipschitz continuous. Therefore,hi(·) and ĥi(·) with Lipschitz constants

κ andκ̂ belong to uniformly Lipschitz continuous families with a constant, say,κ ≥ max{κ, κ̂}.

Consider

|ψ(s) − ψ(s′)| =

∣∣∣∣∣
h(s)

ĥ(s)
−
h(s′)

ĥ(s′)

∣∣∣∣∣

=

∣∣∣∣∣
h(s)ĥ(s′) − ĥ(s)h(s′)

ĥ(s)ĥ(s′)

∣∣∣∣∣

≤

∣∣∣h(s)ĥ(s′) − ĥ(s)h(s′)
∣∣∣

D

=

∣∣∣h(s)ĥ(s′) − h(s′)ĥ(s′) + h(s′)ĥ(s′) − ĥ(s)h(s′)
∣∣∣

D

≤
ĥ(s′) |h(s) − h(s′)| + h(s′)

∣∣∣ĥ(s) − ĥ(s′)
∣∣∣

D

≤
(ĥ(s′) + h(s′))κ |s− s′|

D

≤ κ̃ |s− s′| , whereκ̃ =
2κ

D

whereD := inf{(d,y)∈{0,1}×L}{P
(d,y)
g (θ, x, s)}. The first and second equalities are effectively by

definition and the third follows by adding and subtracting a term. The first inequality uses the

fact thatP (d,y)
g (θ, x, s) > 0 since all actions are feasible for a typeg agent given the assumption

ēg+ℓmin−ℓmax > 0. The second inequality is a consequence of applying the triangle inequality and
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recognizing thathi andĥ are non-negative. The third inequality results from Lipschitz continuity

of hi andĥ with the same constant. Finally, the last inequality follows from the fact thathi andĥ

take values in[0, 1]. This shows that{ψ(d,y)(·; f)}{f∈K} is a uniformly Lipschitz continuous family.

Lemma 7.9 {p(y, s′; f)}{f∈K} is uniformly Lipschitz continuous.

Proof. From its definition in (5), p(y, s′; f) is a finite sum of terms involvingP (0,y)
i (x, s; f) or

the identity maps → s or the product of the two. Since the identity map is uniformlyLipschitz

continuous and so isPi by Lemma7.6, their product is also uniformly Lipschitz continuous by

Lemma7.7. Lemma7.7applied to the sum of these functions establishes that{p(·; f)}{f∈K} is a

uniformly Lipschitz continuous family.

We now establish the properties of the operatorT in stepS4. These properties are required by

Schauder’s fixed point theorem which is the key ingredient ofthe main existence result in Theorem

2.1below.

Lemma 7.10 For the operatorT : K → F defined in step 3: (i)T (K) ⊆ K (ii) T (K) is

continuous in the sup-norm; and (iii)T (K) is an equicontinuous family.

Proof. To see part (i), starting with a pair of continuous functionsf = (ψold, pold) ∈ K, the

application of the operatorT through (6) and (4) updates to a new type scoring functionψnew =

T 1(f) which is continuous by lemma7.5and has the properties of the scoring functionψ given in

stepS2. Moreover, the operatorT yields the new credit scoring functionpnew = T 2(f) from (5)

and (4), which is continuous by lemma7.5and has the properties of the credit scoring functionp

given in stepsS1andS2. Therefore,T (f) = (ψnew, pnew) ∈ K. Sincef ∈ K is arbitrary, we have

thatT (K) ⊆ K.

To see part (ii), pick an arbitrary sequence of functions that converges inK, say,fn → f in the

sup-norm. We need to show thatfnewn := Tfn converges tofnew := Tf in the sup-norm, that is
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sups∈[0,1] |f
new
n (s) − fnew(s)| → 0 asn → ∞. By the definition of convergence in the sup-norm,

for an arbitrarys ∈ [0, 1], fn(s) → f(s).

Observe that for an arbitrarys a variation inf(s) as f changes inK and a variation ins

for a givenf has the same effects on the feasible choice set and on the objective function for the

recursive decision problem given by (2). More formally, from Definition2.1(i.e. the condition that

defines the feasible action setB) and Lemma2.1, we know that the budget set varies continuously

with f = (ψ, p) for a givens in a similar way as it varies continuously withs for a givenf by

the continuity ofψ andp in s and that ofq in p. Given that, it therefore follows from Definition

2.2 that these variations have the same continuous effect on thefeasible choice set. By analogous

arguments, they have the same effect on objective function.Therefore, the arguments made in

Lemmas7.1, 7.2, 7.4, and7.5for s for an arbitraryf work analogously forf ∈ K for an arbitrary

s. This shows, in particular, thatfnewn (s) → fnew(s) for eachs. Moreover, since the domain of the

functions is compact, the convergence is uniform and henceTfn → Tf in the sup-norm, showing

the continuity ofT .

To see part (iii), sinceTf(s) = (ψ(s; f), p(s; f)) and T (K) = {ψ(·; f), p(·; f)}{f∈K}, it

follows thatT (K) is a uniformly Lipschitz continuous family by lemmas7.8 and7.9. But es-

tablishing uniform Lipschitz continuity is sufficient for establishing equicontinuity. In particular,

by definition, a family of functionsK is equicontinuous if given anε > 0, there exists a (single)

δ > 0 such that|f(s) − f(s′)| < ε whenever|s − s′| < δ for all f ∈ K (see, for example,

Kolmogorov and Fomin, page 102). But this condition is implied by uniform Lipschitz property.

To see this, letK be a uniformly Lipschitz continuous family, with a Lipschitz constant, say,κ.

Therefore,|f(s) − f(s′)| < κ|s− s′| for all f ∈ K. For a givenε, choosingδ = ε
κ

shows that the

equicontinuity property is satisfied.

Having established the key properties of the operatorT , we end with the main existence result.

Theorem 2.1A recursive competitive equilibrium specified in Definition2.3exists.
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Proof. The set of functionsK as specified in stepS1and stepS2is a convex and closed subset

of a continuous function defined onΩ. These properties ofK together with the properties of the

operatorT as defined in stepS3that are established in Lemma7.10constitute sufficient conditions

for Schauder’s fixed point theorem. Consequently there exists a pair of credit scoringp∗ and type

scoringψ∗ functions that is a fixed point of the operatorT , i.e., T (p∗, ψ∗) = (p∗, ψ∗) . The ex-

istence of a fixed point to this operator establishes the existence of a competitive equilibrium as

specified in Definition2.3. The claim then follows by verifying conditionsD1 to D4 in Definition

2.3. Given a pair of scoring functions(p∗, ψ∗) that is a fixed point of the operatorT, a pricing func-

tion q∗ is found by solving the zero profit condition for each(y, p): π(y, p; q∗(y, p)) = 0, verifying

conditionD2 in Definition2.3. Moreover, given these price and score functions(q∗, p∗, ψ∗) and in-

dividual characteristics(e, θ, x, s), from Definition2.1and2.2,Mi(e, θ, x, s; q
∗, p∗, ψ∗) defines the

feasible choice set. From Lemma7.1, the selectionm∗
i (e, θ, x, s, q

∗, p∗, ψ∗) is feasible and solves

the decision problem in (2), which verifies conditionD1. Finally, by the definition of the operator

T and the existence of a fixed point of that operator, form∗
i (e, θ, x, s, q

∗, p∗, ψ∗), p∗ andψ∗ solves

(5) and (6), respectively, verifying conditionsD3 andD4.

7.2 Algorithm to compute T=∞ equilibrium with no partitions

1. Set grid points for endowments and scores.

(a) There are 220 endowment grid points equally spaced between the bounds of the en-

dowment distribution for each type.

(b) There are twenty score grid points equally spaced between ΓLH and1 − ΓHL.

2. Start iterationj = 1 with a set of initial guesses for the price functionqj(y, p), the credit

scoring functionpj(y, s′), and the type scoring functionψj(d, y, x, s).

3. Given the individual state(e, x, s), solve for the feasible actions setBj(e, x, s; qj, pj, ψj).
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4. Solve forV j
i (e, θ, x, s; qj, pj, ψj ,Wi) by value function iteration. Ifs′ is not on grids, lin-

ear interpolation is used forWi(y, s
′). The solution gives the set of optimal decision rule

mj
i (d, y; e, θ, x, s, q

j, pj, ψj) ∈M j
i (e, θ, x, s; q

j, pj, ψj).

5. Givenmj
i (e, θ, x, s; q

j, pj, ψj), calculateψj+1(d, y; x, s, qj, pj, ψj).

6. Givenψj+1(d, y; x, s, qj, pj, ψj), calculatepj+1(y, s′) andqj+1(y, pj+1).

7. Start iterationj + 1 by usingqj+1(y, p), pj+1(y, s′), andψj+1(d, y, x, s) as the new set of

initial guesses. Repeat until they converge.

8. (optional) Solve for the stationary distributionµi(e, θ, x, s) according tomi(d, y; e, θ, x, s, q, p, ψ)

andψ(d, y, x, s). These distribution are defined recursively by

µi′(e
′, θ′′(d, y, x, s)) =

∑

i,θ

(
Γi′i · f(e′|i′) · Λ(θ′)

∫

e

mi(d, y; e, θ, x, s, q, p, ψ)µi(Φ(de), θ, x, s)

)
.

(19)

7.3 Algorithm to compute T=2 equilibrium with partitions

1. Set grids for endowments. There are 220 endowment grid points equally spaced between the

bounds of the endowment distribution for each type.

2. Create history tupleshT=2 = (d−1, x−1, d−2). The set of history tuples is denoted asH =

{(0, 0, 1), (0, x, 0), (1, x, 0), (0, 0, 0), (0, x1, 0), (0, x2, 0)}.

3. List all possible action/history pairs consistent with the partition that financial intermediaries

can only observe default and borrowing. This will be useful in the later calculations of

updating functions.

We have now four tables and 43 applicable cells. A cell is marked NA if it is not an applicable

action/history pair (for instance, a household can not default with non-negative assets which

is why there are NAs in two rightmost columns in Table 1). Because there are partitions, one
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cell may include more than one possible action/history pair(for instance, in Table 1, the cell

in the fifth row and first column includes the asset/history tuples{(x, 0, x1, 0), (x, 0, x2, 0)}).

In that case, every action/history tuple in that same cell must have the same score due to the

measurability restriction.

• Table 1: For(d, y) = (1, 0),the possible histories are

hT=2\x x 0 {x1, x2}

(0, 0, 1) OK NA NA

(0, x, 0) OK NA NA

(1, x, 0) NA NA NA

(0, 0, 0) OK NA NA

{(0, x1, 0), (0, x2, 0)} OK NA NA

• Table 2: For(d, y) = (0, x),the possible histories are

hT=2\x x 0 {x1, x2}

(0, 0, 1) OK OK OK

(0, x, 0) OK OK OK

(1, x, 0) NA OK NA

(0, 0, 0) OK OK OK

{(0, x1, 0), (0, x2, 0)} OK OK OK

• Table 3: For(d, y) = (0, 0), the possible histories are

hT=2\x x 0 {x1, x2}

(0, 0, 1) OK OK OK

(0, x, 0) OK OK OK

(1, x, 0) NA OK NA

(0, 0, 0) OK OK OK

{(0, x1, 0), (0, x2, 0)} OK OK OK

• Table 4: For(d, y) = {(0, x1), (0, x2)},the possible histories are

53



hT=2\x x 0 {x1, x2}

(0, 0, 1) OK OK OK

(0, x, 0) OK OK OK

(1, x, 0) NA OK NA

(0, 0, 0) OK OK OK

{(0, x1, 0), (0, x2, 0)} OK OK OK

4. Start iterationj = 1 with a set of initial guesses for the price functionqj(y, p), the credit

scoring functionpj(y, ψj(d, y, x, hT=2)), and the type scoring functionψj(d, y, x, hT=2).

5. Given the individual state(e, x, s), solve for the feasible actions setBj(e, x, hT=2; qj, pj, ψj).

6. Solve forV j
i (e, θ, x, hT=2; qj, pj, ψj,Wi) by value function iteration. The solution gives the

set of optimal decision rulemj
i (e, θ, x, h

T=2; qj, pj, ψj) ∈M j
i (e, θ, x, h

T=2; qj, pj, ψj).

7. GivenM j
i (e, θ, x, h

T=2; qj, pj, ψj), solve for stationary distributionµji (e, θ, x, h
T=2).

µji′(e
′, y, d, x, d−1) =

∑

i,θ,(x−1,d−2)

(
Γi′i · f(e′|i′) · Λ(θ′)

∫

e

mi(d, y; e, θ, x, d−1, x−1, d−2, q, p, ψ)µi(Φ(de), θ, x, d−1, x−1, d−2)

)
.

(20)

8. Givenmj
i (e, θ, x, h

T=2; qj, pj , ψj) andµji (e, θ, x, h
T=2), calculateψj+1(d, y; x, hT=2, qj, pj, ψj)

with respect to the partition blocks listed in step 3.

9. Givenψj+1(d, y; x, hT=2, qj, pj, ψj), calculatepj+1(y, ψj+1(d, y; x, hT=2, qj, pj, ψj)) andqj+1(y, pj+1).

10. Start iterationj+1 by usingqj+1(y, p), pj+1(y, ψj+1(d, y, x, hT=2)), andψj+1(d, y, x, hT=2)

as the new set of initial guesses. Repeat until they converge.

11. With the distribution, the type score of an agentsT (x, hT ) can be calculated according to

equation (8).
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7.4 Credit scoring function

We re-define the credit scoring function asp̃ in order to account for the distribution of credit scores

in Figure1 as follows:

p̃(x, hT ) =
p(x, ψ(x, 0, x, hT ))

[
P̂g(x, 0, x, h

T )sT + P̂b(x, 0, x, h
T )(1 − sT )

]

P̂g(x, 0, x, hT )sT + P̂b(x, 0, x, hT )(1 − sT )
. (21)

The denominator is the fraction of agents in tuple(x, hT ) who borrow, and the numerator is the

fraction of agents in the same tuple who borrow and pay back their debt.
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