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Abstract

We propose a theory of unsecured consumer credit where:ofipwers have the legal option
to default; (ii) defaulters are not exogenously excludeanfifuture borrowing; (iii) there is free
entry of lenders; and (iv) lenders cannot collude to punistaulters. In our framework, limited
credit or credit at higher interest rates following defaurises from the lender’s optimal response
to limited information about the agent’s type and earnirgmizations. The lender learns from
an individual’s borrowing and repayment behavior abouttyy& and encapsulates his reputation
for not defaulting in a credit score. We take the theory taddtoosing the parameters of the
model to match key data moments such as the overall and subpi¢linquency rates. We test
the theory by showing that our underlying framework is bigambnsistent with the way credit
scores affect unsecured consumer credit market behaverfraimework can be used to shed light
on household consumption smoothing with respect to trarnysibcome shocks and to examine the
welfare consequences of legal restrictions on the lengiimef adverse events can remain on one’s

credit record.



1 Introduction

It is well known that lenders use credit scores to regulatesttiension of consumer credit. People
with high scores are offered credit on more favorable tersople who default on their loans
experience a decline in their scores and, therefore, lassado credit on favorable terms. People
who run up debt also experience a decline in their creditescand have to pay higher interest
rates on new loans. While credit scores play an importagtinoihe allocation of consumer credit,
credit scoring has not been adequately integrated intohberétical literature on consumption

smoothing and asset pricing. This paper attempts to rentésigap!

We propose a theory of unsecured consumer credit whereor(ipwers have the legal option
to default; (ii) defaulters are not exogenously excludedifuture borrowing; (iii) there is free en-
try of lenders; and (iv) lenders cannot collude to punistadiérs. We use the framework to try to
understand why households typically face limited creditredit at higher interest rates following
default and why this changes over time. We show such outcamsgs from the lender’s opti-
mal response to limited information about the agent’s type @arnings realizations. The lender
learns from an individual’s borrowing and repayment bebaabout his type and encapsulates his

reputation for not defaulting in a credit score.

The legal environment surrounding the U.S. unsecured eoesaoredit market is characterized
by the following features. Individual debtors have can fiebankruptcy under Chapter 7 which
permanently discharges net debt (liabilities minus assletve statewide exemption levels). A
Chapter 7 filer is ineligible for a subsequent Chapter 7 dispd for 6 years. During that period,
the individual is forced into Chapter 13 which is typicallg& year repayment schedule followed
by discharge. Over two-thirds of household bankruptcigkeérlJ.S. are Chapter 7. The Fair Credit
Reporting Act requires credit bureaus to exclude the filiogrf credit reports after 10 years (and

all other adverse items after 7 years).

1One important attempt to remedy this deficiency in the comtion smoothing literature is Gross and Souleles
[15]. That paper empirically tests whether consumption is ssiwely sensitive to variations in credit limits taking
into account a household’s risk characteristics embodyertddit scores.



Beginning with the work of Athreya?], there has been a growing number of papers that have
tried to understand bankruptcy data using quantitativesrbgeneous agent models (for example
Chatterjee, et. al. §], Livshits, et. al. RQ]). For simplicity, these models have assumed that
an individual is exogenously excluded from borrowing whaléankruptcy remains on his credit
record. This exclusion restriction is often modelled as akda process and calibrated so that on
average the household is excluded for 10 years, after whcFair Credit Reporting Act requires
that it be stricken from the household’s record. This asdionps roughly consistent with the
findings by Musto 21] who documents the following important facts: (1) houselsolith low
credit ratings face very limited credit lines (averaginguard $215) prior to and $600 following the
removal of a bankruptcy flag; (2) for households with mediunah bigh credit ratings, their average
credit lines were a little over $800 and $2000 respectivelyrgo the year their bankruptcy flag
was removed from their record; and (3) for households wigfhlaind medium credit ratings, their
average credit lines jumped nearly doubled to $2,810 arl7/84in the year that the bankruptcy

flag was removed from their recofd.

While this exogenous exclusion restriction is broadly ¢stest with the empirical facts, a
fundamental question remains. Since a Chapter 7 filer isgibé for a subsequent Chapter 7
discharge for 6 years (and at worst forced into a subsequaayit€r 13 repayment schedule), why
don’t we see more lending to those who declare bankruptcighdfers believe that the Chapter 7
bankruptcy signals something relatively permanent allmihbusehold’s unobservable character-
istics, then it may be optimal for lenders to limit futuredite But if the circumstances surrounding
bankruptcy are temporary (like a transitory, adverse ireshock), those individuals who have just
shed their previous obligations may be a good future créskt ICompetitive lenders use current
repayment and bankruptcy status to try to infer an indiviiddature likelihood of default in order
to correctly price loans. There is virtually no existing wembedding this inference problem into

a quantitative, dynamic model.

Given commitment frictions, it's important for a lender &sass the probability that a borrower

2These numbers are actually drawn from Table IlI, panel A osidis Wharton working paper #99-22.



Figure 1: Delinquency Rates in the Population
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will fail to pay back — that is, assess the risk of default. e 1J.S., lenders useredit scores
as an index of the risk of default. The credit scores most contynused are produced by a
single company, the Fair Isaac and Company, and are knowtC&3 $cores. These scores range
between 300 and 850, where a higher score signals a lowealpitibp of default. Scores under
620, which account for roughly one quarter of the populatiith scores, are called “subprimé”.
There is ample empirical evidence that households with rsoigpcredit scores are more likely
to default. Figurel provides one such example. As discipline on our theory, vgglire our

framework to match key credit market facts like that in Fegiir

A FICO score aggregates information from an individualsdit record like his payment his-
tory (most particularly the presence of adverse publicn@seuch as bankruptcy and delinquency)

and current amounts owédlt’s also worth noting the kinds of information that are nsed in

30ver 75% of mortgage lenders and 80% of the largest finantssitutions use FICO scores in their evaluation
and approvals process for credit applications.

“http://ww. privacyrights.org/fs/fs6c-CreditScores. htm

5The score also takes into account the length of a persordit tistory, the kinds of credit accounts (retail credit,
installment credit etc.) and the borrowing capacity (oelof credit) on each account.


http://www.privacyrights.org/fs/fs6c-CreditScores.htm.

credit scores. By law, credit scores cannot use informatrorace, color, national origin, sex, and
marital status. Further, FICO scores do not use age, assdsy, occupation, and employment

history.

These scores appear to affect the extension of consumetiorémlir primary ways.

1. Credit terms (e.g. interest rates) improve with a pessorédit score.

2. The presence of adverse public records (e.g. a bank)dptegrs an individual's score and

removal can substantially raise it.
3. Taking on more debt (paying off debt) tends to lower (datsedit scores.

4. Credit scores are mean reverting.

The Fico website (http://www.myfico.com/myfico/Credit @at/LoanRates.asp) documents
the negative relationship between FICO scores and avendgrest rates on loans. Item 2 is con-
sistent with evidence provided in Must®l], as well as Fisher, et. al18]. Using data from the
PSID and SCF, Fisher, et. al. document that a higher pegemtipost-bankruptcy households
were denied access to credit. Musto found (p.735) “therestsamng tenth year effect for the best
initial credits...these consumers move ahead of 19% of diméilar population in apparent credit-
worthiness when their flags are removed.” Furthermore,dtes(p.740) “...the boost translates to
significant new credit access for these filers over the egsygar”. Items 1 and 2 taken together
imply that an individual who fails to pay back an unsecurethlwill experience an adverse change
in the terms of (unsecured) credit. Thus, a failure to paklzaloan adversely impacts the terms
of credit and may result in outright denial of credit. Items3cionsistent with the advice given
by FICO for improving one’s credit scofeltem 3 in conjunction with item 1 indicates that even
absent default, the terms of credit on unsecured creditemoas an individual gets further into

debt — people face a rising marginal cost of funds. Item 4 @udeented by Musta[l].

6To improve a score, FICO advises to “Keep balances low oritazatt and ‘other revolving credit” and “[p]lay
off debt rather than moving it around”. Source:www.myfiamgCreditEducation/ImproveYour Score



These facts suggest the following characterization of tbekimgs of the unsecured consumer
credit market. Given the inability of borrowers to commii@y back, lenders condition the terms
of credit (including whether they lend at all) on an indivads credit history encapsulated by a
credit score. Individuals with higher scores are vieweddyyders as less likely to default and
receive credit on more attractive terms. A default may digeanething about the borrower’s
future ability to repay and leads to a drop in the individsatedit score. Consequently, post-
default access to credit is available on worse terms and robpenavailable at all. Even absent
default, greater indebtedness may signal something aheutdrrower’s future ability to repay

which subsequently leads to a lower credit score and worsestef credit.

There is now a fairly substantial literature (beginninghMtehoe and Levinel9]) on how
and to what extent borrowing can occur when agents cannotnitolm pay back. This literature
typically assumes that a default triggers permanent eixsiusom credit markets. A challenge
for this literature is to specify a structure with free entfylenders and where lenders cannot col-
lude to punish defaulters that can make quantitative sefntbe @haracterization of a competitive
unsecured consumer credit market with on-the-equilibspath default offered in the previous
paragraphs. This paper take steps toward meeting thiseolgafl We consider an environment
with a continuum of infinitely-lived agents who at any pointtime may be one of two types
that affect their earnings realizations and preferences.agent’s type is drawn independently
from others and follows a persistent two-state Markov psecémportantly, a person’s type and

earnings realizations are unobservable to the Ie¢hder.

These people interact with competitive financial interragds that can borrow in the inter-
national credit market at some fixed risk-free rate and maiteeperiod loans to individuals at
an interest rate that reflects that person’s risk of defalecause differences in earnings distri-

butions and preferences bear on the willingness of eachdf/pgent to default, intermediaries

In Chatterjee, et.al9] we show that credit can be supported even in a finite horizodetwhere trigger strategies
cannot support credit.

8Ausubel f] documents adverse selection in the credit market both repect to observable and unobservable
household characteristics.

%0Our earlier paper Chatterjee, et. aB] Bhows that there is not a big gain to relaxing the fixed riglefrate
assumption.



must form some assessment of a person’s type which is animjouhis credit score. We model
this assessment as a Bayesian inference problem: intearesduse the recorded history of a
person’s actions in the credit market to update their priobgbility of his or her type and then
charge an interest rate that is appropriate for that pastefihe fundamental inference problem
for the lender is to assess whether a borrower or a defasli@rchronically “risky” type or just
experiencing a temporary shortfall in earnings. A ratiaegbectations equilibrium requires that
a lender’s perceived probability of an agent’s default neagtal the objective probability implied
by the agent’s decision rule. Incorporating this equiliomiBayesian credit scoring function into a

dynamic incomplete markets model is the main technicalehgé of our paper.

We model the pricing of unsecured consumer loans in the sasieédin as in our predecessor
paper Chatterjeet.al.[8]. As in that paper, all one-period loans are viewed as distbands and
the price of these bonds depend on the size of the bond. Tiksessary because the probability of
default (for any type) will depend on the size of the bond (be the person’s liability). If the bond
price is independent of the size of the loan and other cheniatits, as it is in Athreya?], then
large loans which are more likely to be defaulted upon musubsidized by small loans which are
less likely to be defaulted upon. But with competitive ctadarkets, such cross subsidization of
pooling contracts will fail to be an equilibrium. This reasag is corroborated by recent empirical
work by Edelberg12] who finds that there has been a sharp increase in the crossrsd variance

of interest rates charged to consumers.

In Chatterjeeget.al. [8], we also assumed that the price of a one-period bond defemle
certain observable household type characteristics liketdr households were blue or white collar
workers. Here we assume those characteristics are novab$ebut instead assume that the bond
depends on the agent’s probability of repayment, in othedsidis credit score. The probability
of repayment depends on the posterior probability of a pebsing of a given typeonditional
on selling that particular sized bond. This is necessanalmse the two types will not have the
same probability of default for any given sized bond and a@®s asset choice is potentially

informative about the person’s type. With this asset masieicture, competition implies that the



expected rate of return on each type of bond is equal to thegémous) risk-free rate.

This is possibly the simplest environment one could imagha could make sense of the
observed connection between credit history and the terntseafit. Suppose it turns out that,
in equilibrium, one type of person, say typehas a lower probability of default. Then, under
competition, the price of a discount bond (of any size) cddl@&xpected to be positively related to
the probability of a person being of tyge Further, default will lower th@osteriorprobability of
being of typeg because type people default less frequently. This provides the basis fibvreory
why people with high scores are offered credit on more fasleréerms.This would explain the

fact that people with high scores are offered credit on maverable terms.

There are two strands of existing literature to which ourgeagclosely related. The first strand
relates to Diamond'sl[l] well-known paper on acquisition of reputation in debt nedsgk Besides
differences in the environment (e.g. preferences in hie @as risk neutral), the main difference
is that here the decision to default is endogenous while anidind it happens exogenously. The
second strand relates to the paper of Cole, Dow and Endlighoh sovereign debf In their
setting a sovereign who defaults is shut out of internatioredit markets until such time as the
sovereign makes a payment on the defaulted debt. Chapterkrupacy law, which we consider
here, results in discharge of uncollateralized délfturther, the law does not permit individuals to

simultaneously accumulate assets during the dischargebbfolanted by the bankruptcy cott.

Our framework has the ability to address an interesting tqpethat arises from Musto’s em-
pirical work. What are the effects on consumption smootlang welfare of imposing legal re-
strictions (like the Fair Credit Reporting Act), which reegs adverse credit information (like a

bankruptcy) to be stricken from one’s record after a certaimber of years (10 in the U.S.)?

Oathreya et. al. 8] also consider a signalling model but assume anonymity abghst asset market choices
encapsulated in a type score cannot be used as a prior whettetizlg posteriors associated with current asset market
choices.

1Given the choice between Chapter 7 and 13, individuals woltmbse to file Chapter 13 only if they wished to
keep assets they would lose under a Chapter 7 filing. Singewers in our model have negative net worth (there is
only one asset), Chapter 7 is always the preferred meang tofibankruptcy.

12This fact rules out the purchase of consumption insurarm® favings in the period of discharge studied by
Bulow and Rogoff 7).



Specifically, Musto p. 726 states that his empirical “resbkar on the informational efficiency
of the consumer credit market, the efficacy of regulating tharket with reporting limits, and
the quality of postbankruptcy credit access, which in tugark on the incentive to file in the first
place.” He finds p. 747 “the removal of the flag leads to exeessiedit, increasing the eventual
probability of default. This is concrete evidence that tlag flegulation has real economic effects.
This is market efficiency in reverse.” We use our model to ss#as efficiency concern. In a world
of incomplete markets and private information, flag remawaly provide insurance to impatient
agents in our framework that competitive intermediariey mat be able to provide. Hence ex-
tending the length of time that bankruptcy flags remain oditrecords may not necessarily raise
ex-ante welfare. This issue echoes Hari'§] [examples where the opening of a market in a world
of incomplete markets may make agents worse off and Hirgehke[18] finding regarding the

potential inefficiency of revealing information.

The paper is organized as follows. Section 2 describes alneodaomy where there are no
restrictions on information about asset market behavefinds an equilibrium, and discusses ex-
istence. Section 3 describes a model economy where therestretions on what information
on asset market behavior can be kept in an agents credityigto particular, we assume that
information can be kept only for a finite amount of time and thare are partitions on what asset
transactions are recorded. These restrictions on infeomatre intended to capture the require-
ment that adverse events be stricken from an individuaéslicthistory and the fact that credit
scores are based on debt transactions rather than asdetscurtent system. Section 4 estimates
parameters of the model of Section 3 to match certain key mtsne the data. Section 5 studies
the properties of the model. Section 6 assesses the wetiaseguences of restrictions on asset
market information used by credit scoring agencies likéiththe model of Section 3 compares to
the unrestricted case of Section 2. This exercise sheds lsgimen the impact of the Fair Credit

Reporting Act.



2 Model Economy 1

2.1 People, Preferences and Endowments

Time is discrete and indexed by= 0, 1,2, ... There is a unit measure of infinitely-lived people
alive at each date. At each date, a person can be one of twe,tgpeoted, € {g,b}. An
individual of typeg (or b) at timet¢ can become an individual of tyge(or ¢) at the beginning of
time ¢ + 1 with probability 'y;,,, —,;,—sy € (0,1) (or T, € (0,1)), respectively?® Let v denote
the unconditional probability that an individual is of typeAn individual of typei, draws her
endowmente, independently (across time and agents) from a probabitigcs(E, B(E), ®;),
whereE = [e,e] C R, is a strictly positive closed interval ar# F) is the Borel sigma algebra
generated byw. Further, we assume; is absolutely continuous with respect to the Lebesgue

measure ot and the density;(e) > 0 for some:i.

Denote the life-time utility from a non-negative stream ofrent and future consumption
{¢t, ¢iy1, €y, - ..} Of an individual who is of type, by U;(c, ¢iy1, ¢ito, - - -, 0;) Whered, € ©
is an independent (across time and agents) time preferéock drawn at time from a finite set

with probability mass function. For eachi, U;(c¢;, ¢iy1, ¢iaa, - - -, 0;) is defined by the recursion
Uz‘(Cu Ctt+1, Ct425 - - et) = Uz‘(Ct) + B, Z Fjin(Ct+17 Ct42,Ct435 - -+ 9t+1)A(9t+1) (1)
J,0t+1

where, for alli, u;(¢;) : Ry — R is a bounded, continuous, twice differentiable and syrictl

concave function with bounded derivatives ahd: [0, 1).

Importantly, we assume that a person’s typendowment;, and time preference shoékare

unobservable to others.

3This is a similar assumption to Phela2?], who studies reputation acquisition by a government.



2.2 Default Option and Market Arrangement

There is a competitive credit industry that accepts dep@sitl makes loans to individuals. We
assume that there is a finite setC R of possible loans or deposité (contains negative and
positive elements as well &. If an individual takes out a loaf),; < 0 at timet there is some
probability p, that the individual will repay/;.; units of goods at time + 1. If /,,; > 0 then
the individual makes a deposit which we assume that thenmgeiary promises to pay back with

probabilityp;, = 1 for simplicity.

A probability of repaymenp, < 1 reflects the possibility of default on the part of the indi-
vidual. We model the default option to resemble, in procedarChapter 7 bankruptcy filing. If
an individual defaults, the individual’'s beginning of pmtiliabilities are set to zero (i.e., the indi-
vidual’s debt is discharged) and the individual is not péteai to enter into new contracts in the

period of default.

There is a competitive market in financial contracts. The price of a financial contract
(Cis1,p0) 1S q(lis1, pr). FOrlyy <0, q(le1,pe) - (—li11) is the amount received by an individual
at timet who promises to pa;.; next period with probability;. Forl;,; > 0, ¢(441,1) - 4,11 IS
the amount handed over by the individual at titie return for the certain promise to receife;

next period.

As noted earlier, there are two types of people in this econdret s; € [0, 1] be the prior
probability at timet that a person is of typg. Beliefs about an individual's type are important
to lenders because the probability of repayment on a consloae may (and will) vary across
types. An important part of the market arrangement is thetemce of an agency that collects
information on financial transactions of every individualda using this information, estimates
the probabilitys, that a given individual is of type at timet. We call an individual’s estimated
repayment probability the individualredit score We call the agency that computes this score

the credit scoring agencyAnd, we call the type probability on which the credit score (or the

10



repayment probability) is based an individuaype score

Thus the existence of the credit scoring agency implies tesgmce of two functions that are
part of the market arrangement. First, there et scoring functiom (4,1, ) which gives the
estimated probability of repayment on a loan, < 0 taken out by an individual with type score
. And, second, there istgipe score updating functian‘@-“+1)(¢,, s,) which gives an individual's
type score at the start of next period conditional on haviegun the current period with asget
and type score, and choosindd;, ¢;.1) — a choice of default corresponds to the 2-tufle0)
and choice of loan/depodit, ; corresponds to the 2-tup(e, ¢;.1) (the precise definitions of these

functions will be given in the next section).

2.3 Decision Problems
2.3.1 People

Let a current variable, say;, be denoted: and let next period’s variable, ; be denoted:'.

In the special case of assets/liabilities we will let; be denoted; and /; be denotedr. Let

Y ={(d,y): (d,y) € (0x L) or(d,y) = (1,0)} be the set of possiblgl, y) choices (recall that a
person can borrow or save only if she does not default anckifigifaults then she cannot borrow

or save).

Each individual takes as given

e the price functiony(y,p) : {L__ x [0, 1]} U{L; x {1}} = R,
e the credit scoring functiop(y, s’) : L__ x [0,1] — [0, 1], and

e the type scoring functiog(®¥)(z,s) : Y x L x [0,1] — [0, 1].

“Nothing depends on the assumption that there are only twestyg/ithl > 2 types, we could let, be al — 1
length vector (and correspondinglybe a vector valued function). Even in this case, the creditesg; is just the
probability of repayment on a loan.

11



We can now develop the recursive formulation of an individudecision problem. The state
variables for an individual aréi, e, 0, x,s). We begin with the definition of the set of feasible

actions.

Definition 2.1 Given (e, x, s), the set of feasible actions a finite setB(e, z,s;q,p,v) C Y
that contains: (i) all(0,y) wherey < 0 such thate = e + x — q(y,p(y,s")) -y > 0, where
s' = @) (x,s); (i) all (0,y)wherey > 0suchthat = e+ —q(y,1)-y > 0; and (i) if z < 0

it also containg 1, 0).

Observe that the feasible action set does not dependnan ¢ since these are not directly
known either to financial intermediaries or to the creditrswpagency. The credit scoring agency
assigns probability to the individual being of typg and the set of feasible actions does depend
on these probabilities. The dependence of the feasiblerasBt on the functiong, ¢ and is

noted.

We permit randomization so individuals choose probabsitver elements in the set of feasible
actions. We will usen(@¥) € [0, 1] to denote the probability mass on the elemeht) € Y and
m as the choice probability vector. Lét, (e, x, s;q,p,v) C B(e,z, s;q,p,1) denote the set of

(d,y) choices that yield strictly positive consumption.

Definition 2.2 Given (e, 0, x, s) thefeasible choice set/ (e, 0, x, s; ¢, p, ) is the set of alln >
0 such that: (iym(¥) = 0 for all (d,y) ¢ Ble,x,s;q,p,1); (i) m@» > ¢forall (d,y) €
B (e,x,s;q,p,¢) ;and (i) 3-, ey mdy) =1,

In order to keep the type score updating function well defex@dss all actions (thereby avoid-
ing having to supply an exogenous set of off-the-equilibdpath beliefs), we assume each feasi-
ble probability vectorn assigns at least some small probabitity 0 on every action that yields
strictly positive consumption. In addition, we will assuthate+/,,;,, — {nae > 0. These assump-

tions guarantee that evefy, y) choice yields strictly positive consumption for some agamd,

12



therefore, will be chosen with positive probability in argudibrium. We interpret these outcomes

as people making “tiny mistakes”, similar to the “tremblimgnd” assumption made in Selt28].
Given(i, e, 0, x, s) and the functiong, ¢ and, the current-period return of a typéndividual

from choosing a feasible actidn, y) is

ui(e +x — q(y, p(y, v (z,8)) -y) ify <0
ui(e +x —q(y,1)-y) ify>0

R (e, x,8;q,p,1) =
and the current-period return from choosirgo0) (if this choice is feasible) is

R (e x50 q,p,00) = uile).

Denote byV;(e, 0, x,s;q,p,70) : E x © x L x[0,1] — R the value function of a type

individual. Then, a currently typeindividual’s recursive decision problem is given by

Vile,0,z,s,q,p,7¢) = max (2)

meM (e,0,x,5:q,p,%)

.md)

3 R (e, , 554, p, )
(d,y) +05:0 Zje{g,b}, 0'cO Fji {fE ‘/}(6,7 0.y, ¢(d’y)($7 S); q,p, ¢)®j(d€')} A(G')

Denote the optimal decision correspondence\¥(e, 0, x, s; ¢, p, 1) and a given selection from

this correspondence by (e, 6, x, s; q, p, V).

2.3.2 Financial Intermediary

The (representative) financial intermediary has access fatarnational credit market where it
can borrow or lend at the risk-free interest rate 0. The intermediary operates in a competitive

market and takes the price functigty, p) as given. The profit(y, p) on financial contract of type

13



T(y,p) = 3)

q(y, 1) y—(1+r)"-y if y >0

{ (L+7)"p - (—y) — qly.p) - (—y) Ty <0
i)

Let B(L x [0,1]) be the Borel sets of. x [0,1]. Let.A be the set of all measures defined on
the measurable spacé x [0, 1], B(L x [0,1]). Fora € A, a(y, P) is the measure of financial
contracts of typdy, P) € B(L x [0, 1]) sold by the financial intermediary. The decision problem

of the financial intermediary is:

maX/ﬂ(y,p) da(y, p).

acA

2.3.3 Credit Scoring Agency

We do not explicitly model the process by which the creditrsmpagency computes type scores
and credit scores. Instead, we impose restrictions on ttewme of this process. Specifically we
assume that (ip(y, s’) is the fraction of people with loap and type score’ who repay and (ii)

YY) (2, 5) is the fraction of typey among people who start with assetdype scores, and choose
(d,y).

Denoting the fraction of typéagents choosing actiqa, y) by Pi(d’y), we have
P00, 2,54, p. ) = / m™ (e, 6,2, 5:q,p,0) Di(de). @
Then, condition (i) implies
ply.s) = [1 - Z A0 P OO y, s g, p, ¢)] (5)

]-_S ll_ZA P(lo y>5l§qap>¢)]-
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Further, condition (ii) implies

P (2,519, p,0) = (6)
(1-Ty) [ Sy AOP 0,7, 5:0.p,9)s ]
S MO PO, 2,510, p,9)s + g MO) P (0,2, 5,4, p. ) (1 — 5)
o o AOVB (0,2, 519,p.0) (1~ 5) ] |
TS MOV B0, 2,50, q,0)s + 3y AO) R (0,2, 534, p,0) (1 — 5)

2.4 Equilibrium

We can now give the definition of a stationary recursive cditipe equilibrium.

Definition 2.3 A stationary recursive competitive equilibrium is: (i) aiging functiong*(y, p);
(ii) a credit scoring functiorp*(y, s'); (iii) a type scoring function)* (¥ (z, s); and (iv) decision
rulesm?(e, 0, z, s; ¢*, p*,¢*) such that

D1. mi(e, 0, x,s;q*, p*,v*) is a selection from\/;* (e, 0, x, s; ¢*, p*, V"),

D2. ¢*(y, p) is such thatr(y, p; ¢*(y,p)) = 0in 3) V¥ (v, p) ,

D3. p*(y, ') satisfies conditiond) for m} (e, 0, z, s; ¢*, p*, ¥*), i € {g, b},

D4. For all(d,y), v* ¥ (z, s) satisfies §) for m* (e, 0, z, s; ¢*, p*,¥*), i € {g,b}.

2.5 Existence

To simplify the analysis and focus on variables of primarieiast, the following preliminary
lemma shows that the price functignbeing a linear function gf, shares the continuity properties

of the scoring functiong and.
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Lemma 2.1 If the credit scoring functiop = p (y, s’) is continuous in the type scoséfor each
y, and the type scoring functiori = (%) (z, s) is continuous in the current type scorgthen the

price functiong = ¢ (v, p (v, v'*¥ (z, s))) is continuous ins for each(d, y) andz.

Proof. Follows from the assumed continuity pfands’ and the zero profit condition ir8). m

Given Lemma2.1, the equilibrium problem reduces to finding a pair of functip*(y, s') and

s’ = 1*(49) (g, 5) such thaD1-D4 hold. To prove existence we take the following steps.

S1. The functiony is defined on? = {0,1} x L x L x [0,1]. Since we want both) and
p to share the same domain, we extegnah the following way: Ford = 0 andy < 0,
p¥)(x,s") = p(y,s') forall z; ford = 0 andy > 0, p'¥(z,s') = 1 for all z ands’; for
d = 1andy = 0, p(4¥)(x,s") = 0 for all x ands’. Observe that the extension preserves the

continuity of p with respect tas', givend, y, x.

S2. Stack the functions to create the vector valued function:

fl(w) p(w)

f:Q—10,1?=
f(w) (W)

wherew € (). Let F' be the set of all such functions and I€tbe the set of all such functions
which are continuous in (since the other components ©fare discrete, the functions are
trivially continuous in those arguments). Let|| = max{sup, f*,sup, f*}. Observe that

K is a closed (in the max-sup norm), bounded, and convex sabgeét

S3. Define an operatdf(f) : K — F inthe following way. Givery € K, solve the individual’s
problem to getn} (e, 0, z, s; f). Then useg) and @) to getT(f) andT?(f), respectively

(to getT?(f) we need to extend the the “output” function ovefias in stegSlabove).

S4. Prove the following properties regardifgand K: i) T'(K) C K, ii) T is a continuous

operator, and iii)'( K') is an equicontinuous family.
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S5. Use Schauder’s Fixed point theorem to prove the existence fofed pointf such that

T(f) = I

Note that( is a bounded subset d¢t'. Moreover, by definitionx c C(Q), whereC(Q) is
the space of bounded continuous functionstprwith the supnorm. The existence proof using
Schauder’s theorem (see for example Stokey and Lui8sfdg. 520) requires verifying the con-
ditions on the operatdf’ and the family7'(K) given in stepS4 In the following lemmas, we
verify these conditions. Inspection of equatiodl(5) which define the operatdr suggests that
the continuity property of the operator is closely relatethiat of the decision rule:! (e, 0, z, s; f)
through(4).

In Appendix7.1we prove the main existence result.
Theorem 2.1 A recursive competitive equilibrium specified in DefinitibB exists.

A sketch of the proof is as follows. LemnTal applies a generalized Theorem of the Maximum
by Ausubel and DeneckerB][to show that the decision correspondeiég(e, 0, x, s; f) is a non-
empty, compact valued, upper hemi-continuous correspwedi@e ands for a givenf € K. The
generalized version requires only upper hemi-contindithe feasible choice set. Lemrie2uses
results in Araujo and Mas-Colell] to show thatM (e, 6, x, s; f) is single valued and continuous
almost everywhere i for a givenf € K. To establish equicontinuity af(K'), we will use a Lip-
schitz argument. As an input into this argument, Lemfr&proves a local Lipschitz property of
decision rulesn(e, 0, z, s; f) in s. This result follows from the fact that action set is finitehiah
implies that for a small enough changesithere is no change in actions except at a countable num-
ber of earnings levels. LemnYa4 establishes tha‘t’i(d’y)(é), x, s; f) is well defined and continuous
in s. Intuitively, integrating ovee in equation 4) “smooths out” any discontinuities in the selec-
tionm?(-; f). Lemma7.5establishes that*(y, s') andy* (¥ (z, s; f) are continuous i, which
follows from equationg5), (6) and Lemma/.4 Lemma7.6 establishes thaﬁ(d’y) (0,x,s; f) has

Lipschitz constant 1 i for any f. The Lemma extends the local Lipschitz property of decision
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rules in Lemmaér.3globally toPi(d’y)(-; f). Intuitively, if ﬂ(d’y)(~; f) fails to be globally Lipschitz,
there must be some interval anwhere the local Lipschitz property is contradicted. Sirtus t
holds for anyf, the family of functions{E(d’y)(-; f)}rex is uniformly Lipschitz continuous. After
establishing some algebraic properties of Lipschitz fiomstin Lemmar.7, Lemmas/.8and7.9
prove that{p(-; f)} ex and{w (¥ (-; f)} sex are also uniformly Lipschitz. Having proven thats
Lipschitz then allows us to prove equicontinuity in LemihaQ Finally, Theoren®.1establishes

that the conditions for equilibrium in Definitich 3 are satisfied.

3 Model Economy 2

Now we describe a model economy where there are restricdiansghat information on asset
market behavior can be kept in an agents credit history. ttiqodar, we assume that information
can be kept only for a finite amount of time and that there artjpes on what asset transactions
are recorded. These restrictions on information are irgemol capture the requirement that adverse
events be stricken from an individual’s credit history ane fact that credit scores are based upon
data on liabilities rather assets. We also assume thataéneregulatory and technological reasons
that restrict what credit scoring agencies and intermesiatan observe about an individual’'s

priors®®

An individual’s history of asset market actions (asset césiand default decisions) at the
beginning of period is given by(¢;, hT') whereh! = (d;_1,0;_1,d;_o, ..., bss1-7,di_7) € {0,1} X
Lx{0,1}x...xLx{0,1} = HT, the set of possible histories of finite length> 1. This definition
directly incorporates the restriction that informatiom@aly be kept for a finite number, denoted
T, periods. We formalize the restrictions on observabilityae$et transactions via partitions on
L x H”. Because all feasible actions are taken with at least pilifyab, all feasible(¢;, hl)
are possible along the equilibrium path. Let the particalavsets (or blocks) of the partition of
L x H* be denote&” = {H, ..., H,} which by the assumptions thatandT are finite is itself

5For instance, prices which incorporate priors are coneii@roprietary and are excluded from standard credit
histories.
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a finite set. The restriction that data on assets (which weasak < L, . ) are not included in the
credit scoring agency'’s information set is modelled by asneability assumption thdt,, k1) is
constant on each block &”. As an example, suppose thét= 1 andL = {¢_,0, ¢}, (2} with
(- <0<l <% ThenLxH™=' = {(0,1),(¢-,0),(0,0), (¢%,0), (¢%,0)} and the measurability
assumption required; = {(0,1)}, H, = {(¢—,0)}, H; = {(0,0)} andH, = {(¢%.,0), (/3,0)}.
To conserve on notation, |6 (¢;, hI') denote one of the partition blocks;, ..., ;. We use a
similar notation, thatis\(¢,.1, d;) is a partition block, to denote what an intermediary can plese
regarding an individual’s current actiotté ., d;). For the case wheré = {¢_,0, ¢! (%}, the
partition block is given (coincidentally) byi; = {(0,1)}, A = {(¢_,0)}, A3 = {(0,0)} and
As={(64,0),(2,0)}.

How does this change in the environment affect decisionlpr®? Since these informational
restrictions are only on the credit scoring agency (as vediha financial intermediary since it uses
credit scores as an input into its pricing calculationsg,ittdividual’s problem is basically identical
to what we had in sectio®.3.1 In particular, we simply substitute’ for s in the individual state
(i,e,0,¢,s). Note that sincé” is a finite object, the state space is now finite except for erogs
earnings. We can also define the endogenous measure ofdinglisiacross the state space by

wile, 8,0, hT).

The informational restrictions on the credit scoring ageaifect both the credit scoring and

type scoring functions ing)-(4). In particular now the type scoring function is given by

. -
w(£/7 d7 67 hT) - (1 - Fbg) - Pg(f Y d7 ?7 h ) S (7)
Pg<€/’ d, g, hT) . sT + Pb<€/7 d’ 6’ hT) . (1 . ST)
LT B¢, d, 0, h7) - (1= sT)
NP, (0, d, 0,07 - sT + By(¢',d, ¢, hT) - (1 — s7)

where the prior of an agent’s type is calculated from the padpan distribution

Sy =Y [ |3 wle.0,2.07), )5 6) ®)
) 70

(6,hT)eH (¢,nT
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and

By(l',d.0,h") = > Py(0',d.¢,h") ©)

(0", dye A ,d),({,hT)e H(L,hT)

Then the credit scoring function is just as before

p(l.0) = o, d LT [Z / [1—my(1,0;¢, 0, 0. k", 4, p, )|, (d)A@) | (10)
~

_'_(1 - ¢(€/7 d7 6’ hT)) ’ [Z /[1 - mb<17 O; 6,7 8/7 g/’ hT/a q, P, ¢)]®b(d6/)/\(9/)] .

As can be easily seen, the key difference fra@j(@) simply arises from the measurability
restrictions in §)-(9) and we use information on the distribution of agents in tbenemyu to

construct the “prior” likelihood that an agent with h7) is of typeg..

4 Moment Matching

According to the Fair Credit Reporting Act, a bankruptcynfilistays on an individual’s credit
record for 10 years. To keep the state space workable, wenasBu= 2 so that a model period
corresponds to 5 years. The discount rater both types is set to be 0.99. The risk-free interest
rater is set to satisfy3(1 + r) = 1. We assume the time preference shock can take two values
6 € {0,1} so that agents who receive the low shock are myopic for oniegeiThis implies

we need only pin down one probability, namely0). The utility function takes the form(c) =

=% /(1 — ). Thus, in this calibration we will abstract from prefereniifierences between types.
We assume that the “tremble” parameter is 0.0001. This is the probability that agents will play

a suboptimal but feasible action by mistake.

We assume an earnings process for tyfiet is Beta-distributed;; ~ Be(v;, n;). Each agent

takes a random draw from an endowment distribution contilion her type. We use simulated
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method of moments to estimate the parameters of the endavpmueess for each type to match the

earnings gini index, mean-to-median earnings ratio, autetation of earnings, and the percentage
of earnings for the first to third quintiles. We use data fréwe PSID 1996-2001 to construct those
statistics. Average annual earnings in the two survey y@&%6 and 2001) are calculated and we
multiply these numbers by five to get the average five-yeaniegs estimates for 1996-2001 and

2001-2005.

The parameterg;, n;) for the earnings process are estimated t@dhe570, 4.0642) for type
g and (1.0153,24.4051) for typeb. These estimated coefficients imply that typearn more on
average (0.40) than type(0.04). The probability of type switching to typeb is estimated to
be 0.0104, while the probability of tygeswitching to typey is 0.0149. This yields an invariant
distribution where 0.59 of agents are typeTablel summarizes the estimated parameter values
and the targeted and predicted earnings statistics. Thdatherrors are based on a monte carlo

from a simulation with 7500 agents, roughly the same as ifPBiD.

Table 1: Earnings Statistics (PSID 1996-2001) and Paramet®alues

Statistics Target Model Parameter Estimate (s.e.)
Gini index 0.54 0.50 Uy 1.0153 (0.0616)
Mean/median 1.40 1.21 i 24.4051 (2.1358)

Autocorrelation 0.67 0.60 Vg 2.6570 (0.1440)
1st quintile share  0.17  0.99 Mg 4.0642 (0.2208)
2nd quintile share  6.77 452 Ty 0.0149 (0.0009)
3rd quintile share  14.73  16.30 I, 0.0104 (0.0007)

Taking the earnings parameters as given, we then estimatentiaining parameters by match-
ing data moments on delinquency and wealth statistics. ®tetalition of delinquency rates from
TransUnion in Figurd allows us to construct the moments for overall and subprieteguency
rates. Other statistics including the debt-to-earnings rasset-to-earnings ratio, and percentage
in debt are obtained from the 2004 SCF.

18The credit scoring function in equatioad) is defined after agents make their asset decisions. Therefoly
agents in debt have a credit score other than 1. To accoutldadistribution of credit scores in Figule which
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The set of asset choicdsincludes one borrowing levek], zero, and two saving level3(
andz,). We estimate the borrowing level to be -0.0033 while the $awaing levels are 0.1078 and
0.5683. Therefore, the five element&imre{(1,0), (0, —0.0033), (0, 0), (0,0.1078), (0, 0.5683)}.
The probability of the time preference shock is estimatdaet6% for both types. The CRRA co-

efficient is 6.4618. Tabl2 summarizes the model statistics and parameter values.

Table 2: Model Statistics (TransUnion and SCF) and ParameteValues

Statistics Target Model Parameter Estimates
Overall delinquency rate 29.23% 31.28% =« -0.0033
Subprime (botton27%) del. rate  75.74% 54.56% T, 0.1078
Debt to earnings ratio 0.002 0.001 = 0.5683
Asset to earnings ratio 1.36 1.35 A(0) 0.0500
Percentage in debt 6.7 5.4 ® 6.4618

5 Model Properties

Since credit scores are based on observed asset markébdgomge start by listing the equilibrium

decision rules of agents. Witfi = 2, there are 13 possible, 1?) partitions.

If agents experience a time preference shock (i.e- 0), they become perfectly myopic. In
this case, they will default if they are in debt and will bawrd they are not in debt regardless of
their earnings and any other characteristics. If agentoticeceive the time preference shock (i.e.,
6 = 1), their decision rules depend on their state/history tupleen in debt, type agents default
for low earnings or save @, or 7, with higher earnings, while typeagents default for a larger
set of low earnings or save 1y. With zero assets, typgagents continue with zero assets or save
to 7, or Ty, while typeb agents borrow when earnings are very low, continue with assets for

intermediate earnings, or savertpat high earnings. With savings, both types continue to dave.

includes everyone (even those who have positive net asaets@-define the credit scoring function as the probability
of repayment if the agent borrows. See the appendix for thradta.
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equilibrium, every action is taken by some agents (i.e.el®no state that is infeasible for both

types of agents).

The decision rules imply the distribution of credit scoreapied in Figur@. As in the data,

the distribution puts more weight on high scores which haweel likelihood of default.

Figure 2: Distribution of credit scores
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Given the earnings distributions, the decision rules aisply certain properties for the type
scoring function: an observation of default is more likebycdome from a bad type individual;
an observation of borrowing is more likely to come from a bggetindividual too. Since the
credit scoring function depends on the type scoring fumctia (10), this behavior translates into
implications for credit scores. FiguBgraphs the mapping between type scores and credit scores.
The red dotted line plots the linear regression betweenwibeand illustrates that there is not a

perfect fit. This can be seen from equatioids((L0). If the equilibrium borrowing actions are
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independent of the state/history tuple, then there is adir@pping between’ and in (7).
Hence, the higher is’, the higher is). Because type agents default less often, this translates via
(20) into higherp. However, since the equilibrium borrowing action depernasrithe state/history
tuple, the type scores do not map perfectly into credit scdée can nonetheless still clearly see
from Figure3 that type scores and credit scores are highly positivelyetated. The correlation

coefficient weighted by the distribution measure is 0.9948.

One way to test the model is to see if it can predict the fourgkeyperties of credit score facts

stated in sectiod. To do so, the dynamics of credit scores need to be constructe

1. Interest rates fall as a person’s credit score rises.

Since higher credit scores mean a higher probability ofyeant and intermediaries earn
zero profits, this implies a negative relation between ¢i®mbires and interest rates as in the

data (see Figuréd).

2. Default lowers a person’s score, removal raises it.

Default lowers an individual's type score because typee more likely to default than type
g. Figure5 graphs the percentage change in credit scores after defdeltan see that the
fact holds for all possible state and history tuples, beeallshe percentage changes are neg-
ative. On average, credit scores drop by 48% from 0.82 to 843 default. Furthermore,

the model prediction is also consistent with the fact docuwee by Fair Issac Corp,

Someone that had spotless credit and a very high FICO scard eapect a huge
drop in their score. On the other hand, someone with manythegigems already

listed on their credit report might only see a modest droghigitt score!’

For instance, for an agent who has a low credit score at 0.#8ebdefault, her credit score
will drop by 11% after default. However, for an agent who hdsgh credit score at 0.94

before default, her credit score will have a dramatic drop4f6 after default.

Yht t p: // ww. nyfi co. cont credi t educat i on/ quest i ons/ bankr upt cy-fi co- score. aspx
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Figure 3: Mapping between type scores and credit scores

Equilibrium mapping between type scores and credit scores
1 T T T T T T T T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.4 05 0.6
Type score (sT)

25

0.7 0.8 0.9 1



Figure 4: Credit scores and interest rates
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Figure 6 graphs the percentage change in credit scores when theltdédguis removed
from an agent’s credit history. The blue bars correspondhémges when the agent chooses
to borrow, while the green and red bars corresponds the elsamigen the agent chooses to
have zero assets or save. As we can see from the graph, ageatsigher credit scores once
their default history is erased in most cases except forttte and history tuplege, 0,0, 1)
or{(z1,0,0,1),(z,0,0,1)} when they choose to zero assets. These (green) cases, howeve

only happen as a consequence of a tremble.

As in Musto R1], we can compute the changes in percentile of the distobutif credit
scores following a removal of the bankruptcy flag from onetsord. Musto21] categorized
bankrupt households according to their initial post-ditfparcentage in the distribution of
credit scores and kept track of them for ten years (the leofjtime the bankruptcy record

stays in their credit history by the FCRA). Sin€e= 2, there is not a lot of variation in
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Figure 5: Percentage change in credit score after default
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state/history tuples after default; here it is simfy(1, z, 0)) and this falls within the first
quintile of the distribution. After two model periods wheretr default record is erased, an
individual’s new credit score on average increases 6% irbeyear period (1.2% annually).
Musto found that for individuals in the first quintile of ciedcores, they jumped ahead
of 5% of households post default annually. However, theseséloolds are not the group in
which people are mostly affected by the information resic If we rais€l’ > 2 we should

find more heterogeneity in post default scores which would todMusto’s dataset better.

. Taking on more debt (paying off debt) tends to lower (natsedit scores.

Figure7 graphs the percentage change in credit score after an a@stdn more debt. In
the model, since borrowing only arises when hit with= 0 (except in one unlikely event)
andd shocks are iid, assessment following borrowing rises sinegopulation proportion
of good types is 0.59. This makes it hard to match the pregti¢hat increasing indebtedness
lowers scores. On average, credit scores rise by 3% fromt0.06/8 after households go

into debt. Obviously, the sparse parameterization of thdehdoes not match this fact well.
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Figure 6: Percentage change in credit score after default fiaremoval
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On the other hand, the percentage change in credit scoreaaftegent pays off her debt is
graphed in Figuré8. The model predicts the fact well when when an agent chocses z
assets after paying off her debt as illustrated by the resl. bHne fact does not hold when
an agent choose to save after paying off her debt as illestiay the blue bars (this case,
however, is a suboptimal but feasible action). On averaglitcscores rise by 59% from

0.49 to 0.78 after agents pay off debt.

4. Scores are mean reverting.

Figure9 graphs the average credit score given current credit scsiag the equilibrium de-
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Figure 7: Percentage change in credit score after borrowing

N
3

(0,0,0,0)  (0,0,0,1)

N
=]
T

{(0,0,1,0), (0,0, %2,0)}

[
o
T
L

[
o
T
|

ol
T
L

o

L L L L L
0.415 0.42 0.425 0.43 0.435
Credit score

percentage change in credit score

o
~
hey

8o ({2}.0.0,0)
60— =

({2}.0.0.1)

L ({},0,{z}.0) i
20 I ({1,0,2,0)

L L L L L
0.5 0.6 0.7 08 0.9 1
Credit score

percentage change in credit score

cision rules. 8 It can be seen that agents with lower (higher) credit scaed to have higher
(lower) credit scores next period. Therefore, the linegression line has a flatter slope at 0.8 than

the 45 degree line.

6 Policy Experiment

Here we use the model to address a question about the wetfasequences of imposing legal

restrictions (like the Fair Credit Reporting Act), whichgreres adverse credit information (like a

18The average next-period credit score givenh’) is calculated as

Zi [fEL Ze,(d,y) p(£7 w(g’ 07 d7 Y, la d—l))mi (da y;e, 97 z, hT)Mi (6, 97 l7 hT)(I)i (de)/\(@)}
5 [fio, Sasale 0,1, 17)@:(de)A(6)]
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Figure 8: Percentage change in credit score after paying offebt
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bankruptcy) to be stricken from one’s record after a cenmimber of years (10 in the U.S.). As
discussed in the introduction, in a world of incomplete neéskand private information, flag re-
moval may provide insurance to impatient agents in our fxaomk that competitive intermediaries
may not be able to provide. Hence extending the length of tirmea bankruptcy flag remains on
one’s credit record may not necessarily raise ex-ante veelfghis issue is similar to Hart'sLf)]
examples where the opening of a market in a world of incorepterkets may make agents worse

off and Hirschleifer’s 18] finding regarding the potential inefficiency of revealimgarmation.

To assess this question, we compute consumption equisaleitg the following formulas.

Say the EPDV of utility starting in statg, e, 0, =, k') for a givenT' is given by

cailiye,0,hT=2T = 2)t=%
L—o

Vile,0,2, h"=%T =2) = E; | Y (50)
t=0
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Figure 9: Mean reversion of credit scores
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To assess how much a typagent with earningsand time preference shoékn history (z, h7=2)
would be willing to pay forever to be in a regime whéfe= oo and there are no partitions, for

each(i, e, 0, z, hT=2) we compute\;(e, 8, x, hT=2) such that

S (poy L Xl bom W )erli e, T = 2)) 77
1=
t=0

= (14 N(e, 0,2, A7) =?Vi(e, 0,2, h"=% T = 2)

‘/72(67 97 €, hOO’ OO) = Ez

or

Vi(e, 0,z h*;00) 1079

— 1.
Vile, 0,2, 5T = 2)

)\i(ea 97 x, hT:2) = |:
Then the total welfare gain/loss is given by

Z )\i(€,9,£)ﬁ', hT:z)Mi(eveagj? hT:z)'

i,e,0,2,hT=2
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We use the same parameterization in the calibrated modeh&f = oo world with no

partitions. As a whole, the economy is worse off without tegal restriction (specifically, the

welfare loss i9).0001). Table3 reports the average consumption equivalents by types ared ti

preference shock. Typeon average would prefer to lift the legal restriction on mfiation, while

typeb on average are worse off and must be compensated if the Esjettion is removed.

Table 3: CE by types and shocks

O\i g b
1 | 0.0420e-3 -0.5266e-B
0 | 0.0650e-3 -0.1072e-B
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7 Appendix

7.1 Existence Proof

We start by showing in Lemma@.1 that the decision correspondent§ (e, 6, z, s; f), which is

a member of the simplex ovd0, 1} x L with full support on the feasible s&¥(e, 6, x, s; f),

is well-defined and has standard properties. We apply a gkzent Theorem of the Maximum
by Ausubel and Denecker&][because the standard continuity assumption of the feashmice
correspondence is not satisfied in our environment due tprésgence of strictly positive trembles.
In particular, the feasible choice set is not necessantgtdiemi-continuous in, s, f. To see why,
consider a sequenge converging tg, such that there is an actigrthat delivers strictly positive

consumption for allp,, but delivers zero consumption for Then, everym;(-; p,) € M;(+; pn)
(0,9)

assigns at leastprobability weight toy (i.e.,m; *’(-; p,) > ¢€) but there exists at least one feasible
m;(+;p) € M;(-;p) which assigns zero probability # (i.e., mgo’@)(-;p) = 0). Therefore, there

does not exist any feasible sequence®f-; p,) that converges to:;(-; p).

Lemma 7.1 The decision correspondengé*(e, 0, x, s; f) is a non-empty, compact valued, upper

hemi-continuous correspondencerirs, and f, for each(0, z) , andi € {g, b}.

Proof. We verify the hypotheses of the Generalized Theorem of theam by Ausubel and

Deneckere§)].

Claim 1: The feasible choice sét/ (e, 0, x, s; f) is non-empty for eaclie, 0, x, s; f). This
is because the default option is always feasible for indiald with debt (i.e. those who start
with x < 0) and that an individual with positive assets can alwaysrdffaositive amounts of

consumption.

Claim 2: M (e, 0, z, s; f) is a compact valued correspondence since the feasibleecheids a

closed simplex.
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Claim 3: To show thaf\/ (e, 6, z, s; f) is uhc, pick arbitrary sequences,, s,., f.) — (e, s, f)
andm,, € M(e,,0,x,s,; f,), and find a subsequencge,, , s, f.,) such thatn,, — m and
m € Mf(e,0,x,s; f), where the convergence ¢f, to f is in the sup-norm metric. To prove
the claim, suppose: does not belong inV/(e, 0, z,s; f). Then there exist$d,y) such that
m(v) > ( for some(d,y) not in B(e, z, s; f). Since every element of the sequence is a prob-
ability vector, the limit must be a probability vector alsblence, the only way this vector can
be infeasible is if it assigns positive weight to some poiithwegative consumption, i.ec, =
e+ — qly, p(y, v (z, s; f) < 0. But this implies that for sufficiently large, ¢, = e, + = —
qly, ply, V9 (z, s, f.) < 0. Hencem'™ = 0 for all sufficiently largen, which contradicts

my) > (.

Claim 4: The objective function in the decision problem istouous ine, s, and f for each

(0, z). To see this, define the following operatﬁlcorresponding to the optimization problem:

fvl . — (d7y)
(TV)ilebws:f) = max > [R5(e,0,2.5.f)
(dy)
40030 Ty [ V(000 o 5)s NN - ),
i€{g,b},0' g

LetZ = E x © x L x [0, 1] denote the product space. Observe tha a compact set, since it is

a product of finite number of compact sets.

Let B(Z) denote the space of bounded functions defined gyand similarlyC'(Z) denote the
space of continuous functions. Moreow€r(Z) C B (Z) since a continuous function defined over
a compact set is bounded. The space of continuous and bofurdzibnsC'(Z) endowed with the
sup norm defines a complete metric space. Sinéce compact,R is a bounded function for each
(0, x). Starting with a bounded functioi € B(Z), the operatofl’ updates to another bounded
function 7V. This also holds true for & € C(Z), since a continuous function on a compact
domain is bounded, so that: C'(Z) — B(Z). Next we show that the operator map$Z) into
itself using the generalized Maximum Theorem, which wi8lgi existence and uniqueness of the

value function and that the choice correspondence has tipeegies given in the statement of the
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current lemma.

Given aV € C(Z) consider the terms in the objective function. Sigds continuous ins,
by Lemma2.1, R is continuous ins. Moreover, R is also continuous im since current utility
is continuous in current consumption and the latter is line&. Moreover, sincd” € C(Z) is
continuous ins’ ands’ := ¢ € K is a continuous function of, thenV = TV is continuous in
s. FurthermoreV/ € C(Z) does not depend on the current endowmehecause the transition
probabilitiesl";; do not depend oa and next period’s draw’ is independent. Therefore, being a

sum of continuous functions, the objective function is candus.

Together Claims 1 to 4 constitute the hypotheses of the Bmeof Maximum in Ausubel and
Deneckere]. One consequence of this theorem is that is continuous ire, s for each(0, z).
Therefore, the operatd? mapsC(Z) into itself. Moreover, this operator is monotone and is a
contraction of modulus less than one, which are BlackwsliBicient conditions to establish that
T is a contraction. Therefore, existence and uniqueness réd fiointV’ of 7 in C(Z) follows
from the contraction mapping theorem. The other importansequence of the theorem is that the
choice correspondendé; (-, 0, x, -; f) is a non-empty, compact valued and upper hemi-continuous

(uhc) correspondence i s for each(, z). m

We next use some results by Araujo and Mas-Colglt¢ show that)/ is single-valued and

continuous except at a set of points of Lebesgue measur@ezélkoWe establish:

Lemma 7.2 M} (e, 0, x, s; f) is single valued and continuous almost everywhere (a.eB; ifor

each(0, z, s, f).

Proof. Fixing (0, z, s, f) we verify that Assumption$ to 4 and the Sondermann Condition on
pagesl15—116 of Araujo and Mas-Colell]] are satisfied for the objective function corresponding

to the individual optimization problem

F(m,e) =Y [R"(e,0,3,5,f) + BIWi(y, " (z, 5))|m V).
(dy)
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where

VI/Z(?/) w(d7y) (l', S)) = Z F]Z / ‘/j(elv 9,7 Y, w(d7y) (l', S))q)] (de/)A(el) \V/Z € {gv b}
j€{g.b}.¢0 E
with m ande in the roles ofr € X anda € &, respectively, as well a®; in the role of the
probability measure, in the statement of Theorem 1 of Araujo and Mas-Colell. & tonditions
hold for our model economy, then we can conclude thabitiee, 6, x, s; f) is single-valued almost

everywhere ire.

1. Assumption 1: thatX x X)\A is a Lindelof space, wherd = {(z,y) € X x X : x = y},
which is necessary for a countable open cover, holds. In ase the set of all feasible
choices isX := U,c( 4 M,; whereM,; := M;(e;,0,x, s, f). To see this note that! < ¢?
implies thatM;(e!, 0, x, s, f) € M;(e* 0,x,s, f) fori € {g,b} ande € E;. Note also that
X is compact and so is the product spacex X . Moreover,X x X\A is compact, being a
closed subset of a compact set. ConsequeRitly, X'\ A is a Lindeldf space, since thewhich

is latter is a weakening of compactness (See section 7.2 oigbani [L4]).

2. Assumption 2: that’ : X x £ — R is a continuous function, holds. As shown in Claim 4

of Lemma7.1the objective function is continuous.

3. Assumption 3: that for every x € X anda € &, 0,,F(z, a) exists and depends contin-
uously onz anda - holds. To see this, dropping thiendex for notational ease, note that
a small change im has an effect only in the current period through its diret#atfon the
set of consumption choices. Continuation values are uctaffidby a small change in This
is because the transition probabilities do not depend on and the next period’s draw
is independent. ThereforéF.(m,e) = 0.R; = 3, u/(c*¥) - m'*¥), which by the as-
sumption that.(-) is continuously differentiable in, by the fact that consumption is linear

in e, and linearity inm implies that the expression varies continuously andm.

4. Assumption 4: that is a product probability measure, each factor being absiglgbntin-

uous with respect to Lebesgue measure, holds. By assuntptiggrobability measur®; is

39



absolutely continuous with respect to the Lebesgue measure

5. Sondermann Condition (SC): thathf(z, a) = F(y,a), x # y, thend,,(F(z,a)—F(y,a)) #
0 for some i, holds. Suppose, to the contrary thétn, ¢) = F(m,e) andm # m implies
thatoF,(m,e) == >, u! () )m(dy) = > (dy) u (M) = 9F,(m, e) for all e.
This means thad~ , ) /() (m@¥) — m(*¥)) = 0. Since}” , (M) — ) =0
because botm and are probability vectors that sum 19 the sub-vectot/(c(4¥)) com-
posed of all(d, y) for which (m@¥ — m(®v)) =£ 0 must be proportional to the unit sub-
vector. This is because both the unit sub-vector and/tfi&’¥)) sub-vector are both orthog-
onal to(m!®¥) — (@), But, provided there is at least one pair of actions in thisgector,
say (d,y) and (d, ) for which ¢(*¥) = (9 this proportionality will contradict the strict
concavity ofu. Hence 0. (F(m,e) — F(m,e)) # 0.

Together, items 1 to 5 verify that for eath =, s) the hypotheses for Theorem 1 of Araujo and

Mas-Colell [1] are satisfied. Consequenti; (e, 0, z, s; f) is single-valued a.e if;.

Next we show that the uhc correspondemndcg that is a.e. single-valued if; is continuous
a.e. inE;. To see this, we pick an arbitrary convergent sequence iddh®ine,, — e and show
thatM*(e,, ) — M} (e, ) inea.e. LetM* be single-valued atand M *(e) be the value. By upper
hemi-continuity there exists a subsequence suchedhat- e and M*(e,,,-) — M*(e). Since
the limit of any such subsequence is unique, the originaleece converges to the same limit,
that is,M*(e,,-) — M*(e). This shows thal/*(e, -) is continuous at the set of points where it is

single-valued. But the latter set has probability one. &feee,M* (e, -) is continuous ire a.e.
Hence, the claim of the lemma follows

Since we will establish equicontinuity using a Lipschitaddion, the next lemma proves that
small changes in satisfy a Lipschitz condition on decision rules with Lipgzltonstant 1 almost
everywhere. Given upper hemicontinuity in Lemiha and single-valuedness a.e.eitn Lemma

7.2 the result follows from the finite action set.
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Lemma 7.3 For a given(#, x, f) and anys, there exists a,(f) > 0 such that for any’ # s and

s — §'| < 6,(f), |mi (e, 0,z s f) —m (e, 0,3, 8 f)| < |s — s'| a.e. inE;.

Proof. For a given(d, =, f), suppose to the contrary that there existéxds’ # s such that for

anyds(f) > 0with |s — §'| < d5(f) and an associated positive measure/$ét, s'; f),
m; (e, 0,51 ) — m{ P (e,0,3,5; f)| > |s — 5'| for eache € Ei(s,s'; f), (11)

where E(s, s'; f) is a set ofe for which bothm ™" (e, 6, z, s: f) and m““Y (e, 0, z, s'; f) are
single-valued. The latter is possible sirmé(d’y)(-, s; f) is single-valued a.e. iaboth ats ands’

by Lemma7.2

The following steps lead to the desired contradiction.

Stepl.Sinces # s, (11) implies thatm ™Y (e, 0, 2, s; ) # m; Y (e, 0, z,s'; f) for eache €
E;(s,s'; f). This further implies that

m; Y (e, 5 f) = m;“Y(e,s'; f)] > e foreache € Ei(s,s'; ), (12)

wheree is the tremble parameter. This follows sirmé(d’y)(e, 0,2,s;f) andm;k(d’y)(e, 0,2,5; f)
are single valued for eache E;(s, s'; f), the action set has a finite number of elements, and

the smallest possible difference in probability mass a&sigo actions is.

StepZ.Sincemf(d’y)(e, 0,x, s; f) is single-valued ire by Lemma7.2, uhc ofmj(d’y)(e, 0,x,s; f)at
s by Lemma7.limplies that for an open ball of radiug2 arounmnj(d’y)(e, 0,z,s; f)there

exists an open ball of radius(f) > 0 arounds such that

m; " (e,0, 2,5 f) —mi (e, 0,2, 5'; f)| < ¢/2 (13)
for everys’ such thats — s'| < 6,(f).
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Step3.Since (1) must hold for any,(f) > 0, if we pick s’ in (Step) satisfying|s — s'| < 5s(f)
then (L3) in (Step2 contradicts 12).

Next we prove thaﬁ(d’y)(e, x, s; f) in equation 4) is well defined. Given the continuity result
of Lemma?7.2 the next lemma also establishes the continuitiaf) in s. Intuitively, the integral

“smooths out” the discontinuities im; (-, 0, z, s; f).

Lemma 7.4 Given the measur®;, observable characteristi¢$, =, s) and price and scoring func-
tions f, the measurePi(d’y) (0, z, s; f) of individuals choosingd, y) given in equationd) is well de-
fined for alli. Further, P (6, z s; f) is continuous irs for each(d, y), z, f = (¢4, p?4) € K
andi € {g,b}.

Proof. For the first part of the lemma, we know by Lemid that M (e, 0, z,s; f) is a
compact valued and uhc correspondence. From the Meas\Baldetion Theorem (Stokey and
Lucas, Theorem 7.6), there exists a functiof(e, 6, x, s; f), measurable with respect 8(E;),
such thatn (e, 0, x,s; f) € M (e, 0,x,s; f). Furthermorem?(e,-) < 1 and®, is a probability

measure. Therefore,“* is @, integrable and m;*" (¢, 6, z, s; f)®;(de) exists.

For the second part of the proof, fixz and f. Pické ands. Assume thatV//(é, 0, x, s; f)
is single-valued. Thereforeuf(é,0,z,5; f) = M} (é,0,x,8; f). Lets, — 5. We claim that
mi(é,0,x,s,; f) — mi(é,0,z,5; f). Suppose not, then for ary> 0 there exists a subsequence
m;(é, 0, x,s,, ) suchthaim?(é,0,z,s,, ) —mi(é 6, x,5)| > eforall n,. Butmj(é, 0, x,s,,)isa
selection fromM/; (¢, 0, z, s,,, ). S0, by the uhc of/;*, the subsequence must contain a subsequence
converging to a point inV/;(é,0,z, s; f). But the latter contains onlyxf(é,0, z, 3; f). Thus
there must be som& such thatm; (¢, 6, x, sy) — m;(é, 0, x, $)| < ¢, a contradiction. Therefore,

myi(e,0,x, 5, f) — mj(e,0,z,3 f).

Now considerﬂ(d’y)(@,x, Sn; f) = fm;k(d’y)(e,ﬁ,x, Sn; f)®;(de). Then (i)m:(d’y)(e,ﬁ,x, Sn; f)

—m ) (e,0,x,s: f) for all e for whichm ™" (e, 0, z, s; f) is single-valued, and therefore, for
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a.e.,and (iyn}(e, 0, x, s,; f) < 1. Therefore, by the Lebesgue Dominated Convergence Theorem
lim,, Pi(d’y)(e,x, Sp; f) = limnfm;k(d’y)(e,e,x, Sn; [)®;(de) = flimm;k(d’y)(e,e,x, Sn; [)®;(de) =
S mi (e, 02,5 ))®i(de) = P (0,2, 5; f). w

Given the continuity of?, (-) in s by Lemma7.4, the new scoring functiong™ = T (f) and
p"e® = T?(f), which are obtained from the old scoring functighs= (1,°'¢, p°4) by applying the
operator]” as defined in equatior{®) and(6), are continuous ig. This is because frortb) and
(6) the new scoring functions are continuous function®’gdf) . This result is summarized in the
following Lemma7.5and will be used below in Lemm&a6to show the continuity properties of

T.

Lemma 7.5 ¢"v = T(f) andp™ = T?(f) is continuous iy, for each(d, y, 0, z), f := (¥4, p°d) € K
andi € {g,b}.

The next lemma establishes th%ftd’y) (-, s) has Lipschitz constant 1. The proof uses the fact
from Lemma7.3that small changes inyield small changes in decision rules a.e. for anyVe
show in the first part of the proof that this implies that snchlhnges irs yield small changes in
P at anys and then extend this to all changessimia an argument similar to a nondifferentiable
version of the Mean Value Theorem. In particular, the steshdidean Value Theorem is often
used to prove theorems that make global conclusions abauicéidn on an interval starting from
local hypotheses about derivatives at points of the interttlere we extend that idea to make
global conclusions about the Lipschitz constant withosuasing differentiability ofP. Further,
the lemma establishes that the family of functi§#¥-; f)} s is uniformly Lipschitz continuous,

which uses the following:
Definition 7.1 (Uniform Lipschitz Continuity) We say that the family of functio#(-; f)} rex

is uniformly Lipschitz continuous if each function in thenfly is Lipschitz continuous and has the

same Lipschitz constant for arfyc K.
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Lemma 7.6 For any given(, =, s) and anyf € K, |P\** (0, z, s; f)—P\* (8, z, 5", f)| < |s—+|

wheneves # s'.

Proof. First we establish that for any giverandf, there exists &(f) such thatPZ.(d’y)(H, x, s f)—
Pi(d’y)(@,x, s f)] < |s — §'| whenevells — s'| < d,(f) ands # s’ To see this, fix an f. For any

s, s with s #£ ¢,

P 0.2,5.f) — P05 f)
/(m#”@ﬁwﬁﬁww@@Waaayﬁn®w@
E

IN

/%ﬂ“%ﬁmsﬁ—mﬁwwam&ﬁbua (14)
E

where the equality follows from the definition &f-) and the inequality follows from the Jensen’s
inequality since| - | is a convex function. By Lemmd.3, there exists @,(f) > 0 such that
Im: Y (e,0, 3,5 f) —mI (e, 0, x5 )] < |s — | a.e. whenevels — s'| < 6,(f). For suchs

ands’, [, )m:(d’y)(e, 0,2,5 f) —m: " (e,0,x,s: f)| D(de) < |s — |, which from (14) implies
that| P (0, z, s; f) — P (0, z,5'; )| < |s — s'| whenevets — s| < 8,(f).

Next we extend the argument to all# s’ and not just those wherg — s'| < §,5(f). In
particular, for any givery, fix s, s’ € [0, 1] with s # s’ and assume without loss of generality that

s’ > s. For an arbitrary: € R define a functiony. : [0, 1] — R as a product in the following way:

9:(8) := 2 (Pi(d’y)(@,x, 5f) = P 0,25 f) — (5 S)Pi(dw(e’x’ = f;/ = SPi(d’y)((g, o f)> :
Note that by constructiony.(s) = g.(s") = 0. Since by Lemm&.4we havePi(d’y) (0,z,s;f)isa
continuous function o§, g, is continuous irs. Moreover, restricted to a compact subset’] of
0, 1], g. is also continuous iR on that subset. Therefore, by the Weierstrass Theoremréhijs
and Border §], page 40), there exists an interior pofnt (s, s’) at whichg, attains a maximum
or a minimum. Therefore, there are two cases to considemdiépg on whetheg is a minimum

or a maximum.
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Casel. g, attains a minimum &. If £ is a minimum,

lim inf —gz(sﬁ) — 9:(¢)
§~”_’5 Sp — 5
Sn>€

> 0. (15)

This holds because then inf is well-defined and for eac}),, the numerator is non-negative

since¢ is a minimum and the denominator is non-negative since theesee of{ s,,} was

chosen such that, > ¢. Using the definition of the functiog, the latter implies that

0:5) = 0:(0) = =+ (P(6,0,50) = P (6,2,6 )
(dyy) /. (dy) .
— Z<(§—§)PZ (97x75af)_Pi (9,1‘,87f)>20

s’ —s

or, for anys’

(dy) 1.0y _ pldy) .
 (PO90,2.5. )~ F0,2.6:.)) 22((5—03 i W””’S?f)).

s’ —s

In particular, this condition for any > ¢ and linearity imply that

z

(P}d’y)(e,x, 5f) = PO, & f)) .- <Pi(d’y)(9,x,5’; )= B0, f))
1= > .

£ s'—s

Since this condition is true for argy> &, then for any sequence 8f converging tc from

above we know

lim inf 2-
s'r,L_’g
5, >&

(Pfd*” (02,50 1) = "0, 2,6 f)) > (Pf‘*y) (03,55 f) = 0,2, 5: f))
zZ .

Sn—¢& s'—s

(16)
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Moreover, by the definition of the absolute value function

PO, 2, 5,5 ) — B0, 2, €; f)
|§n _€|

Z(ﬂ”@%%p—ﬂmw%&ﬁ>ﬂd
Sn_g a
(17)

Sinces, — &, for sufficiently largen’s we haves, — ¢| < 6? and hence by the first part
|p(d7y)(gn)_p(d’y)(5

of this proof we know | < 1. From (17), the latter implies that for all

15 —€]
@) (g o 5 Y- P (g 2 . _ _ _
sufficiently largen’s, z - | & (9"’”’3”’;2_? @, ’5’”) < |z|, which combined with 16)
yields the desired inequality
P‘(dvy) 0 ropy P'(d,y) 0 .
|Z|ZZ'< 7 (7x787f)/ 7 (7x787f) . (18)
S — S

Case2.1f, on the other hand is a maximum, then by an analogous argument we can shewdr

a sequencg, converging te from below,

~n_’£ S, —
s§n<5 n 6

> 0.

Using this condition and following an analogous argumentieniaa Caselestablishes that

(18) also holds inCase2

We have established that for an arbitraryhe condition in 18) holds. Therefore, the condition
Pi(d,y)(07m73l§f)_Pi(d’y)(evmvs;f)) . that IS

s'—s

holds for anyz. In particular, it holds for: = (

PO, 2,85 f) — P09, 2, 5; f)

s —s

2
>ﬂmﬁaaﬂ—ﬂmﬂaaw

s’ —s
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- Kd,y) /. _ Kd,y) .
or, equivalently,| 202Dk (0xsi])

s'—s

‘ < 1. Rearranging now shows that for any givére

K,

PG,z s f) — P09, 2, s; f)‘ < |s" — s|. The uniform Lipschitz property follows from

the independence of this condition from a particylam

Having established tha? is Lipschitz for anyf, we now need to establish that or in par-
ticular ¢» andp which are functions of?, are also Lipschitz. The next lemma establishes certain

properties of functions of Lipschitz functions.

Lemma 7.7 If g : [0,1] — [0,1] andg : [0,1] — [0, 1] are Lipschitz continuous functions with
the same Lipschitz constadt then: (i) their producth := ¢g is also Lipschitz continuous with
Lipschitz constantis.2; and (ii) their sumh := g+ g is also Lipschitz continuous and its Lipschitz

constantis 2Z.

Proof. Part (i). We must show that there exist&a> 0 such that for any, s’ with s £
\h(s) — h(s)| < Z|s — ¢'| andZ = 2Z. Note that

[ h(s) =h(s) | = [g(s)g(s) = g(s)3(s") |
= 19(s)9(s) = 9(5)3(s") + 9(5)9(s") — 9(s)3(s") |
< [9(5)3(s) = g(9)g(s) [+ 9(s)g(s") — g(s)3(") |
= 9()9(s) = 9(s) |+ 9(s)| g(s) — g(5) |
< (9(s) +9(s))Z] s — '

< Z|s—s'|, whereZ = 2Z.

The first equality follows from the definition @f. The second by adding and substracting a term.
The third equality follows sinceg(s) and g(s) are non-negative. The first inequality uses the
triangle inequality, the second uses the fact thahd g are Lipschitz continuous with Lipschitz
constantZ. The last inequality uses the fact thaand g take values irf0, 1]. Part (ii). A similar

(even simpler) argument to abova.
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Lemma 7.8 {1\@¥) (x, s; f)} sex is uniformly Lipschitz continuous.

Proof. By Lemma7.6, P}d’y)(e,x, s; f) is uniformly Lipschitz continuous. By Lemma?,
hi(s: f) == P60,z s, f) - s is Lipschitz continuous since both“* (4, z, s: f) and the iden-
tity maps — s are both Lipschitz continuous. Note that from the definitadny (@) (x, s; f)

in (6), it is of the form Zg;; whereh,(s; f) andh,(s; f) are Lipschitz continuous (by Lemma
7.7 being finite sums of functions of the forf“* (9, z, s: f) - s). Moreover,h;(s; f) belongs
to a family that is uniformly Lipschitz continuous. This i®dauseh, € {Pi(d’y)(@,x, 5 f) -
stHrek) Where{ﬂ(d’y)(g ) }irexy is a uniformly Lipschitz continuous family and the mapping
s — Pi(d’y)(-, s: f)s is Lipschitz continuous. Thereforé,(-) andh;,(-) with Lipschitz constants

x and# belong to uniformly Lipschitz continuous families with anstant, sayg > max{x, i }.

Consider

[(s) —o(s)| = -

IN

IN

A D
(h(s") + h(s'))R|s — ¢|
D

- . 2K
< Fkls—¢'|, whereir = )

<

where D = inf a1y { e (0, 2, 5)}. The first and second equalities are effectively by
definition and the third follows by adding and subtractinggar. The first inequality uses the
fact thatPg(d’y) (0, z,s) > 0 since all actions are feasible for a typegent given the assumption

eg+lmin—Cmax > 0. The second inequality is a consequence of applying thegieanequality and
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recognizing that; andh are non-negative. The third inequality results from Lipschontinuity
of h; andh with the same constant. Finally, the last inequality foliafrom the fact that; and
take values iff0, 1]. This shows thaf(*¥) (-; f)}cx is @ uniformly Lipschitz continuous family.

n
Lemma 7.9 {p(y, s’; f)}{rexy is uniformly Lipschitz continuous.

Proof. From its definition in §), p(y, '; f) is a finite sum of terms involvin@’i(o’y) (x,s; f)or
the identity maps — s or the product of the two. Since the identity map is uniforrigschitz
continuous and so i®; by Lemma7.6, their product is also uniformly Lipschitz continuous by
Lemma7.7. Lemma?7.7 applied to the sum of these functions establishes{th@t f)}(scx) is a

uniformly Lipschitz continuous familym

We now establish the properties of the operdtan stepS4 These properties are required by
Schauder’s fixed point theorem which is the key ingrediettheimain existence result in Theorem
2.1below.

Lemma 7.10 For the operator?” : K — F defined in step 3: (if'(K) C K (i) T(K) is

continuous in the sup-norm; and (ilf)( K') is an equicontinuous family.

Proof. To see part (i), starting with a pair of continuous functighs- (¥4, p°d) € K, the
application of the operatdf through 6) and @) updates to a new type scoring functiph®” =
T*(f) which is continuous by lemma5and has the properties of the scoring functiogiven in
stepS2 Moreover, the operatdf yields the new credit scoring functigrit“” = T2(f) from (5)
and @), which is continuous by lemma5and has the properties of the credit scoring funcgion
given in step$SlandS2 Thereforel'(f) = (v, p"*") € K. Sincef € K is arbitrary, we have
that7'(K) C K.

To see part (ii), pick an arbitrary sequence of functions ¢baverges ins, say,f,, — f inthe

sup-norm. We need to show thit” := T'f,, converges tg"“" := T f in the sup-norm, that is
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SUPsepoq [ fn ' (s) — f*“(s)| — 0 asn — oco. By the definition of convergence in the sup-norm,

for an arbitrarys € [0, 1], f.(s) — f(s).

Observe that for an arbitrary a variation inf(s) as f changes inK and a variation ins
for a givenf has the same effects on the feasible choice set and on thaieéjiinction for the
recursive decision problem given i) ( More formally, from Definitior2.1(i.e. the condition that
defines the feasible action s8) and Lemma.1, we know that the budget set varies continuously
with f = (¢, p) for a givens in a similar way as it varies continuously withfor a givenf by
the continuity ofy» andp in s and that ofg in p. Given that, it therefore follows from Definition
2.2that these variations have the same continuous effect diedlséble choice set. By analogous
arguments, they have the same effect on objective funcftidrerefore, the arguments made in
Lemmas/.1, 7.2 7.4, and7.5for s for an arbitraryf work analogously forf € K for an arbitrary
s. This shows, in particular, thaf’<*(s) — f"<*(s) for eachs. Moreover, since the domain of the
functions is compact, the convergence is uniform and h&nGe— T f in the sup-norm, showing

the continuity of7".

To see part (iii), sincé’f(s) = (¥(s; f),p(s; ) and T(K) = {¢(; f),p(5 f)}rexy it
follows that7'(K') is a uniformly Lipschitz continuous family by lemm&s8 and 7.9, But es-
tablishing uniform Lipschitz continuity is sufficient fos&blishing equicontinuity. In particular,
by definition, a family of functiongs” is equicontinuous if given an > 0, there exists a (single)
9 > 0 such that|f(s) — f(s')] < € whenever|s — §'| < ¢ forall f € K (see, for example,
Kolmogorov and Fomin, page 102). But this condition is iraglby uniform Lipschitz property.
To see this, letX be a uniformly Lipschitz continuous family, with a Lipschitonstant, says.
Therefore, f(s) — f(s')| < k[|s — &'| forall f € K. For a givere, choosing) = < shows that the

equicontinuity property is satisfieds
Having established the key properties of the operatawe end with the main existence result.

Theorem 2.1 A recursive competitive equilibrium specified in DefinittB exists.

50



Proof. The set of functiong( as specified in stefland stei2is a convex and closed subset
of a continuous function defined dh These properties ok together with the properties of the
operator!” as defined in stef3that are established in LemridalOconstitute sufficient conditions
for Schauder’s fixed point theorem. Consequently therdsaipair of credit scoring* and type
scoringy* functions that is a fixed point of the operatbr i.e., T' (p*,¥*) = (p*,v¥*). The ex-
istence of a fixed point to this operator establishes theenge of a competitive equilibrium as
specified in Definitior2.3. The claim then follows by verifying conditiori31 to D4 in Definition
2.3 Given a pair of scoring functior(®*, ¢*) that is a fixed point of the operat®t a pricing func-
tion ¢* is found by solving the zero profit condition for eaghp): 7 (y, p; ¢*(y, p)) = 0, verifying
conditionD2 in Definition 2.3. Moreover, given these price and score functigrisp*, ¢*) and in-
dividual characteristice, 0, z, s), from Definition2.1and2.2, M;(e, 0, z, s; ¢*, p*, ©*) defines the
feasible choice set. From Lemnial, the selectiomn (e, 0, x, s, ¢*, p*, ¥*) is feasible and solves
the decision problem ir2], which verifies conditio1. Finally, by the definition of the operator
T and the existence of a fixed point of that operatoryfo(e, 0, x, s, ¢*, p*, ¥*), p* andy* solves

(5) and @), respectively, verifying condition®3 andD4. =

7.2 Algorithm to compute T=co equilibrium with no partitions
1. Set grid points for endowments and scores.

(@) There are 220 endowment grid points equally spaced eette bounds of the en-

dowment distribution for each type.

(b) There are twenty score grid points equally spaced betweg and1l — 'y ;.

2. Start iterationj = 1 with a set of initial guesses for the price functigh(y, p), the credit

scoring functiony’ (y, s’), and the type scoring functiap’ (d, y, z, s).

3. Given the individual staté, z, s), solve for the feasible actions sBt (e, z, s; ¢7, p?, 7).
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4. Solve forV/ (e, 0, x,s;¢7, p?, 47, W;) by value function iteration. 1§’ is not on grids, lin-
ear interpolation is used fdi;(y, s'). The solution gives the set of optimal decision rule

mi(d,y;e, 0,2, 5,¢7,p) 7)€ M](e,0,2,s.¢7,p, 0).
5. Givenm! (e, 0, z,s;¢7,p’,¢7), calculatey’ ™ (d, y; x, s, ¢/, p7, ¥7).
6. Giveny’!(d, y; 2, s,¢7, p’, ¢7), calculatep’™ ' (y, s') andg’ (y, p’ ™).

7. Start iterationj + 1 by usingq’ ™ (y, p), P’ (y, s'), andyt(d, y, x, s) as the new set of

initial guesses. Repeat until they converge.

8. (optional) Solve for the stationary distributigfie, 0, z, s) according ton;(d, y; e, 0, z, s,q, p, V)

andy(d, y, x, s). These distribution are defined recursively by

Mi’(€/7 6//<d7 Y, x, 8)) = Z (FZ/Z ' f(€/|i/) ' A<8/> /ml<d7 yse, 97 z,s,4q,p, w>/~bl<q)(de>7 67 €, 8)) .
i,0 €

(19)

7.3 Algorithm to compute T=2 equilibrium with partitions

1. Set grids for endowments. There are 220 endowment gridgpegqually spaced between the

bounds of the endowment distribution for each type.

2. Create history tuples’=2 = (d_,,x_,,d_5). The set of history tuples is denotedds=
{(07 07 1)7 (Oaga 0)7 (17£7 0)7 (07 07 0)7 (Oafla 0)7 (07527 0)}

3. Listall possible action/history pairs consistent with partition that financial intermediaries
can only observe default and borrowing. This will be usefuthe later calculations of

updating functions.

We have now four tables and 43 applicable cells. A cell is maiKA if it is not an applicable
action/history pair (for instance, a household can notuefith non-negative assets which

is why there are NAs in two rightmost columns in Table 1). Resgathere are partitions, one
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cell may include more than one possible action/history @fairinstance, in Table 1, the cell
in the fifth row and first column includes the asset/histoptea{(z, 0,71, 0), (z,0,7Z5,0)}).
In that case, every action/history tuple in that same ceBitrhave the same score due to the

measurability restriction.

e Table 1: For(d,y) = (1,0),the possible histories are

hT=2\z z 0 7,7}
(0,0,1) OK NA NA
(0,,0) OK NA NA
(1,,0) NA NA NA
(0,0,0) OK NA NA

{(0,%1,0),(0,7,,0)} | OK NA  NA

e Table 2: For(d,y) = (0, z),the possible histories are

hT=2\z z 0 {7, 7}
(0,0,1) OK OK OK
(0, 2, 0) OK OK OK
(1,2,0) NA OK NA
(0,0,0) OK OK OK

{(0,71,0),(0,72,0)} | OK OK  OK
e Table 3: For(d,y) = (0,0), the possible histories are

hT=2\z z 0 {7, 7}
(0,0,1) OK OK OK
(0, 2, 0) OK OK OK
(1,2,0) NA OK NA
(0,0,0) OK OK OK

{(0,71,0),(0,72,0)} | OK OK  OK
e Table 4: For(d,y) = {(0,7,), (0,Z,) } ,the possible histories are
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hTzz\l' Xz O {Tl, Tg}

(0,0,1) OK OK OK
(0, z,0) OK OK OK
(1,2,0) NA OK NA
(0,0,0) OK OK OK

{(0,71,0),(0,7,0)} | OK OK  OK

4. Start iterationj = 1 with a set of initial guesses for the price functigh{y, p), the credit

scoring functiony’ (y, v’ (d, y, z, h*=2)), and the type scoring functiap (d, y, z, h7=2).
5. Giventheindividual state, z, s), solve for the feasible actions st (e, x, h1=2; ¢/, p?, 7).

6. Solve forV/ (e, 0, z, KT=2;, ¢/, p’, 17, W;) by value function iteration. The solution gives the

set of optimal decision rule:’ (e, 6, 2, KT=2;¢7, p/ 7)) € M/ (e, 0,2, k=2, ¢7, p, )7).

7. GivenM (e, 0,2, h"=2; ¢, p/ ,47), solve for stationary distribution (¢, 6, 2, h"=?).

M?/(f/’,» Y, da T, d—l) -
Z (Fl’z . f(€/|'L.,) : A(el) /mz(dv y;e, 97 X, d—17 X_1, d—27 q,DP, ¢)Mz(¢(d€)a 97 x, d—la T—_1, d—2)) .
) e

1,0, (r—1,d—2
(20)

with respect to the partition blocks listed in step 3.
9. Giveny’*(d, y; 2, W72, ¢, p’,4p7), caleulatey’™ (y, v/ (d, y; 2, hT=2, 7, p7 7)) andg?H (y, /).

10. Startiteration + 1 by usingg’ ™ (y, p), p’ 1 (y, v 1(d, y, z, hT=2)), andyi*i(d, y, x, hT=2)

as the new set of initial guesses. Repeat until they converge

11. With the distribution, the type score of an agehtz, h7) can be calculated according to

equation 8).
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7.4 Credit scoring function

We re-define the credit scoring functionzams order to account for the distribution of credit scores

in Figurel as follows:

p(&u w<£7 O,.T, hT)) [’%(Ea 07377 hT>ST + pb(£7 07377 hT)<1 - ST)]

. i (21)
P,(z,0,2, hT)sT + Py(z, 0,2, AT)(1 — sT)

pla,h") =

The denominator is the fraction of agents in tupleh”) who borrow, and the numerator is the

fraction of agents in the same tuple who borrow and pay bask tebt.
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