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1 Introduction

In this paper we evaluate the extent to which changing demographics alone can account for

the large changes in the return to labor market experience over time. We reach a surprising

conclusion that most of the observed changes in return to experience are accounted for by

changes in the relative supply of experience. We find this conclusion surprising because, while

it is implied by the basic forces of supply and demand, it has been overlooked by an extensive

existing literature. This may be partly due to the fact that it is not the absolute supply of

experience that determines its reward but its supply relative to other productive inputs. We

provide a theory that enables the measurement of this relationship.

The motivation for our analysis comes from a strong negative correlation between the return

to experience and the experience per worker in the data. Consider a year t cross-sectional

regression of log wages of individual i on years of labor market experience

log(wit) = βtExperienceit + γtCit + εit, (1)

where Cit includes a constant, education and sex controls. We estimate this equation on the

U.S. PSID data for 1968-1996, Swedish SAF data for 1975-1995 that cover approximately 60%

of private-sector employment in Sweden, and Danish data that cover 100% of the population

over the 1980-2003 period. The data are described in the Appendices A1.1, A1.3, and A1.4. In

each year, and in each country the sample is restricted to 20- to 65-year-old individuals with

available observations on wages. In Figure 1, we plot the estimated rate of return to experience

βt against time for each country. On the same figure for each country, we plot the series of years

of labor market experience per worker. The relationship between these two series is striking.

The correlation coefficient between the rate of return to experience and the experience per

worker is −0.75 in the U.S., −0.97 in Sweden, and −0.8 in Denmark. This correlation becomes

substantially stronger once we consistently measure the efficiency units of experience using the

model we develop below.1

1We are very grateful to Eva Meyersson Milgrom and Jeremy Fox for computing these statistics from the
Swedish data and to Fane Naja Groes for computing them from the Danish data. Since we do not have personal
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Figure 1: Experience per Worker vs. Return to Experience
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Note - Source data and sample restrictions are described in Appendices A1.1, A1.3,
and A1.4. Average experience is measured as experience per worker. Return to
experience in each year represents the estimated coefficient β̂t from regression 1.
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For the U.S., the changes in the rate of return to experience over time are well documented.

The evidence summarized in Topel (1997) and Katz and Autor (1999) implies that the cross-

section age-earnings profiles steepened within education groups throughout the 1970s and 1980s

and flattened in the 1990s. We find that these changes in the return to experience are nearly

perfectly aligned with changes in the aggregate experience per worker. Throughout the 1970s

there was a large entry of inexperienced workers born during the baby boom into the labor

force and a sizable increase in female labor force participation. This reduced the experience

per worker and coincided with the large increase in the return to experience. As these workers

accumulated labor market experience over time, experience per worker increased substantially,

and the return to experience has declined.

We propose a theory that enables the measurement and quantitatively accounts for this

relationship. We think of workers as providing two distinct productive services - physical

effort, which we refer to as “labor,” and services of the skill accumulated with labor market

experience, which we refer to as “experience.” Depending on their labor market histories,

workers accumulate different amounts of experience. Competitive firms can bundle workers to

maintain the desired labor to experience ratio as in Heckman and Scheinkman (1987). This

implies that prices of the two services provided by workers are competitively determined in the

market. We consider an aggregate technology that allows for complementarity between labor

and experience. The aggregate production function approach (with the competitive pricing of

the bundled inputs) has been recently used in the literature to study earnings dynamics, e.g.,

Heckman, Lochner, and Taber (1998) and Guvenen and Kuruscu (2007a,b).

Allowing for complementarity between labor and experience provides a possible link be-

tween demographic composition and the return to experience. If labor and experience are

complementary, any demographic change that affects their ratio will also affect the return to

experience and hence relative wages. This effect is absent if labor and experience are perfect

substitutes in aggregate production. The model enables us to estimate the magnitude of the

access to the microdata from Denmark and Sweden, we conduct our analysis in the rest of the paper based on
U.S. data only.
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experience-labor complementarity. Given this estimate we can quantitatively evaluate the effect

of demographic change on the evolution of the rate of return to experience.

In our benchmark estimation, we use the U.S. PSID data to measure the aggregate stocks

of labor and experience in each year between 1968 and 1996. We identify the parameters

of aggregate technology using disaggregated earnings data, by estimating individual earnings

equations that consistently aggregate. Assuming competitive factor markets, we are able to

identify the technology parameters from the time-series variation in the ratio of the stock of

labor to the stock of experience. We find a strong experience-labor complementarity with the

elasticity of substitution between experience and labor at 0.3. Having estimated the technology

parameters, we quantitatively evaluate to what extent the observed changes in the experience to

labor ratio can account for the changing return to experience. We conclude that these changes

account for the evolution of the return to experience nearly perfectly.

To confirm the existence and the magnitude of complementarity between labor and experi-

ence, we also estimate the model using the U.S. decennial census data, where the identification

comes from the cross-sectional variation of the return to experience and the ratio of experience

to labor across U.S. states. Despite the different source of identification, we obtain a similar

estimate of the elasticity of substitution between experience and labor.

Our paper contributes to the large body of literature devoted to measuring and under-

standing the substantial change in the return to skill in the U.S. labor market. Skill is typically

defined according to its two observable dimensions: education and labor market experience.

Katz and Autor (1999) note that this definition of skill follows naturally from the classic models

that link higher earnings for more educated workers and upward sloping age-earnings profiles to

acquisition of human capital through education and on-the-job training (Becker (1962, 1993),

Ben-Porath (1967), Mincer (1974)). In the influential Ben-Porath (1967) formulation, skills

acquired through education and on-the-job training are perfectly substitutable. Thus, the lit-

erature has focused on accounting for the returns to education implicitly assuming that since

work experience provides the same fundamental skill, the same explanation would also apply
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to the return to experience.2 Our findings in this paper suggest that skills acquired through

schooling and labor market experience may represent distinct forms of human capital priced

separately. This follows because the rising returns to education due to, say, skill-biased techni-

cal change or capital skill complementarity did not affect the relationship between the relative

supply of experience and its return.

Another branch of the literature has explored the relationship between the size of a cohort

and relative earnings of its members. Motivated by the baby boom generation experience,

Freeman (1979), Welch (1979) and Berger (1985) provided early empirical evidence that larger

cohorts suffer depressed earnings upon entry into the labor market. More recent evidence

is summarized in Wasmer (2001) and Triest, Sapozhnikov, and Sass (2006). Kim and Topel

(1995) found that a sharp decline in the share of young workers in South Korea was associated

with an increase in their relative earnings. Despite this suggestive evidence, Topel (1997)

summarizes this literature by saying: “The effects of cohort size on earnings tend to be a sideline

in the inequality literature.” Our theory and quantitative results show that demographic change

arising from changes in cohort size may be key to understanding the dynamics of the returns

to experience and the associated wage inequality across cohorts.3

The paper offers several additional contributions. First, the existing literature proxies

actual work experience by the age-based potential experience (equal to age minus years of ed-

ucation minus six). In contrast, we directly measure actual work experience, which enables us

to separately identify the effects of age and work experience on wages. We find that the hump

shape in the return to experience over the life-cycle is not driven by the decreasing returns

in accumulating experience. Instead, it is driven by a less efficient utilization of accumulated

experience with age. Second, on a methodological level, we show that it is possible to identify

parameters of the aggregate production function from individual data by maintaining a consis-

2Heckman, Lochner, and Taber (1998) relax this assumption in their analysis.
3There is also a literature that investigates the effects of cohort size on human capital aquisition through

schooling (e.g., Flinn (1993a) and refernces therein) and on-the-job training (Flinn (1993b)). At the more general
level, demographic change was recently found to be relevant for understanding other economic phenomena.
Jaimovich and Siu (2007) explore the effects of the demographic change on business cycle volatility. Fisher and
Gervais (2007) study the effects of demographic change on the reduction in volatility of residential investment
since the mid-1980s.
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tency between individual earnings equations and the aggregate production function. Moreover,

we show that estimation of the technology parameters using the microdata can identify the size

and direction of the residual technical change.

The remainder of the paper is organized as follows. In Section 2 we describe the model

that rationalizes the relationship between the return to experience and the aggregate experience-

labor ratio. In Section 3 we describe our estimation procedure. In Section 4 we present esti-

mation results and conduct sensitivity analysis on model specification. Section 5 concludes.

2 Model

We construct an aggregate production function, the parameters of which will be estimated, and

characterize an individual earnings equation to evaluate whether the changes in the relative

abundance of the aggregate factor inputs, and hence their marginal products, can account for

the observed dynamics of the return to experience in the individual earnings equation. We show

that the individual earnings consistently aggregate to the aggregate earnings as is implied by our

aggregate production function, when aggregate stocks of labor and experience are consistently

measured in terms of effective units. Household decisions determine the aggregate stocks of

labor and experience, but we take the household decisions as given in estimating the aggregate

technology parameters because the marginal products depend only on the aggregate stocks of

those inputs. Such an approach is similar to that of Krusell, Ohanian, Ŕıos-Rull, and Violante

(2000). Thus, we can simplify the analysis considerably by abstracting from modeling household

decisions.

2.1 Individual Earnings

Time is discrete, measured in years, and indexed by t. We assume that each worker is endowed

with one unit of labor each year throughout his or her life. Each year in which an individual

works more than a critical level of hours of work h, the worker accumulates one unit of experience

(or learning-by-doing) skill. Thus, the total stock of experience e, of a j-year-old worker is given
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by

e =

j∑
k=0

I(hk > h) , (2)

where I is equal to one if (hk > h) and zero otherwise. Thus, we allow for possible differences

between actual work experience and potential work experience, the years since completion of

schooling (the typical age-based measure of experience).

One might expect the transformation of years of work experience e into the efficiency units

of experience supplied by the worker to the market to depend on age. For example, a worker

who accumulated, say, 5 years of experience by the age of 30 may be supplying a different

amount of efficiency units of experience than a worker who accumulated 5 years of experience

by the age of 60. This relationship may also depend on the schooling level s of the worker.

We partition the workforce into a low-education group with final years of schooling less than

or equal to 12 (s = 0) and a high-education group with final years of schooling beyond 12

(s = 1). Similar to work experience, we allow the effective units of labor to depend on age and

schooling level. This is meant to summarize the evolution of physical aptitude and, possibly,

the evolution of utilization of physical abilities over the life-cycle.

Let λE(j, s) and λL(j, s) be such effective-unit transforming factors for experience and labor

respectively, where we do not limit their range except the normalization λE(0, s) = λL(0, s) = 1.

We will refer to these transforming factors as “life-cycle efficiency” schedules. Thus, a j-year-old

worker in schooling group s who acquired e years of work experience provides λE(j, s)e units

of effective experience and λL(j, s) units of effective labor to the labor market. Modeling these

life-cycle efficiency schedules enables us to separately identify the return to age and the return

to experience (conditional on schooling level).4 As we will discuss in Section 4.2 modeling

life-cycle efficiency schedules allows us to better measure the aggregate stocks of labor and

experience but it does not drive our finding of a strong complementarity between labor and

experience in the aggregate production function. We also allow for differences in individual

4We have assumed that the technology that maps years of work experience e into units of experience skill
is linear. In Section 4.2.1 we will relax this assumption and allow general polynomial specifications to capture
the possible curvature of this mapping, e.g., diminishing returns in experience accumulation. We find that the
linear mapping is indeed supported as the best specification by the data.
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productivity per hours of work z that are determined by a set of exogenous characteristics.

Let RLt and REt denote the market prices of labor and experience, respectively. The total

earnings yit of worker i at date t with age jit, work experience eit and schooling level sit, who

works hit hours and whose individual productivity equals zit, is given by

yit = [RLtλL(jit, sit) + REtλE(jit, sit)eit] hitzit (3)

= RLtλL(jit, sit)

[
1 +

REt

RLt

λE(jit, sit)

λL(jit, sit)
eit

]
hitzit.

We label the ratio of the price of experience to the price of labor as the “experience premium”

and denote it by

ΠEt ≡
REt

RLt

.

Note that we distinguish the “experience premium” from the “rate of return to experience,”

which we will define below in Equation (22) as an appropriately evaluated derivative of the log

wage with respect to experience. This distinction is useful because the experience premium de-

pends only on aggregate state variables in the market, not on individual worker characteristics,

while the return to experience may depend on individual characteristics.

It will also be convenient to define the relative life-cycle efficiency schedule of experience

as the ratio of the life-cycle efficiency schedule of experience to that of labor

λE/L(jit, sit) ≡ λE(jit, sit)

λL(jit, sit)
.

2.2 Aggregate Technology

Consider an aggregate production function that maps the aggregate stock of labor Lt and the

aggregate stock of experience Et into aggregate earnings Yt such that

Yt = AtG (Lt, Et) , (4)

where G is a constant-returns-to-scale function and At represents the aggregate productivity of

labor and experience.

The Euler theorem implies

Yt = At (GLtLt + GEtEt) ,
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where GLt = ∂G
∂Lt

and GEt = ∂G
∂Et

will be referred to as marginal products of labor and experi-

ence, respectively. The assumption of perfect competition determines the prices of labor and

experience such that

RLt = AtGLt , (5)

REt = AtGEt . (6)

2.3 Consistent Aggregation

Summing the individual earnings equation in (3) over individuals i at a given date t, we have

∑
i

yit = RLt

∑
i

λL(jit, sit)zithit + REt

∑
i

λE(jit, sit)zithiteit

= AtGLtLt + AtGEtEt

= Yt

where the aggregate inputs Lt, Et are measured as

Lt =
∑

i

λL(jit, sit)zithit, (7)

Et =
∑

i

λE(jit, sit)eitzithit, (8)

and prices RLt , REt are determined by Equations (5) and (6), respectively.

Thus, the individual earnings equations in (3) consistently aggregate to the aggregate

earnings as is implied by the aggregate production function in (4). Note that this consistent

aggregation holds for any homogeneous of degree one function G as long as the aggregate inputs

Lt and Et are consistently measured as in equations (7) and (8).

2.4 Labor-Experience Complementarity

To conduct our quantitative analysis we must choose a specific functional form for G. We restrict

our attention to the commonly used class of constant elasticity of substitution (CES) production

technologies. This type of production function is tractable, parsimonious, and provides a simple

specification that allows us to evaluate the role of the change in the demographic composition

10



of the workforce in driving the change in the experience premium. Specifically,

Yt = At (Lμ
t + δEμ

t )
1
µ , (9)

where the elasticity of substitution between Lt and Et is measured by 1
1−μ

(where μ ≤ 1), and

the parameter δ > 0 adjusts the relative scale between Lt and Et.

The degree of substitutability between labor and experience is governed by the value μ.

If μ = 1, labor and experience are perfect substitutes. In this case, the demographic change

affecting the ratio of labor to experience does not affect the experience premium. However, if

labor and experience are not perfect substitutes, changes in the demographic composition of the

workforce will affect the experience premium. This opens up the possibility of understanding the

relative wage dynamics through demographic changes and bears a directly testable implication.

The lower the value of μ, the stronger the complementarity between these two inputs (or the

less substitutable they are).5

3 Estimation

3.1 Log Wage Equation

Using the aggregate production function in (9) and individual earnings equation in (3), the log

wage equation (for hourly earnings wit = yit

hit
) is

ln wit = ln At + ln GLt + ln λL(jit, sit) + ln
[
1 + ΠEtλE/L(jit, sit)eit

]
+ ln zit, (10)

where

GLt =

(
1 + δ

(
Et

Lt

)μ) 1
µ
−1

, (11)

ΠEt = δ

(
Et

Lt

)μ−1

. (12)

Having no a priori knowledge on the functional form for the labor and experience life-

cycle efficiency schedules λL(j, s) and λE(j, s), we approximate each of them by an exponential

5A special case of μ = 0 implies unit elasticity of substitution, i.e., the Cobb-Douglas specification. Values
of μ < 0 indicate lower substitutability than in the Cobb-Douglas case.
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function of a second-degree polynomial for each schooling group s6

λL(j, s) = exp(λL,1 (s) j + λL,2 (s) j2), (13)

λE(j, s) = exp(λE,1 (s) j + λE,2 (s) j2). (14)

This implies that the relative life-cycle efficiency schedule of experience is given by

λE/L(j, s) = exp(λE/L,1 (s) j + λE/L,2 (s) j2),

where

λE/L,1 (s) = λE,1 (s) − λL,1 (s) ,

λE/L,2 (s) = λE,2 (s) − λL,2 (s) .

The individual productivity variable ln zit is decomposed such that

ln zit = αtχit, (15)

where χit is a vector of the observable characteristics, including years of schooling, sex, race

and geographic region.

Substituting these expressions into equation (10), we obtain the log wage equation to be

estimated

ln wit = ln At + ln GLt + (λL,1 (sit) jit + λL,2 (sit) j2
it) (16)

+ ln

[
1 + δ

(
Et

Lt

)μ−1

exp(λE/L,1 (sit) jit + λE/L,2 (sit) j2
it) eit

]
+ αtχit + εit,

where εit represents the classical measurement error.7 In contrast to a typical Mincerian specifi-

cation, our earnings equation involves an explicit aggregate state variable, the experience-labor

ratio Et

Lt
, which is the driving force of the experience premium dynamics. If Et and Lt are

perfect substitutes, i.e., μ = 1, the log wage equation turns into a Mincerian earnings equation

with a time-invariant experience premium.

6We experimented using higher order polynomials but found the coefficients on higher order terms to be
insignificant.

7There exists an alternative interpretation of εit as the i.i.d. normal idiosyncratic productivity shock, in which
case the appropriate specification is ln zit = αtχit + εit. Under such interpretation idiosyncratic productivity
realizations will enter the calculation of the aggregate stocks of L and E. While theoretically the consistency
of estimated technology parameters cannot be established with such formulation, in practice we estimated the
model with this specification and found that the estimates are virtually unaffected by this choice of specification.
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3.2 Identification

The log wage equation in (16) includes all parameters of the model. In particular, given the

measurement of aggregate inputs Et and Lt, the variation of experience premium ΠEt in relation

to the variation of the experience-labor ratio Et

Lt
is the source of identification of the technology

parameters μ and δ. The correlation between the relative price ΠEt and the relative factor

endowment Et

Lt
over time t identifies μ (which is scale free).The average magnitude of the ΠEt

relative to the magnitude of the Et

Lt
identifies the scale parameter δ.

Note that the magnitudes of ΠEt and Et

Lt
depend on the normalization of the life-cycle

efficiency schedules, i.e., λE(0, s) = λL(0, s) = 1. Thus, the identification of δ is subject

to this normalization. More precisely, it is the normalization of the relative efficiency of ex-

perience of the youngest workers that affects the identification of δ. That is, renormalizing

λE(0, s) = λL(0, s) = l for any arbitrary constant l such that λE/L(0, s) = 1 leaves the

estimate of δ unchanged. However, if we normalize the life-cycle efficiency schedules asym-

metrically between experience and labor such that λL(0, s) = a and λE(0, s) = b, hence

λE/L(0, s) = c = b/a �= 1, the coefficient function in front of experience in the log wage

becomes δ
(
cEt

Lt

)μ−1

cλE/L(j, s) = δ̃
(

Et

Lt

)μ−1

λE/L(j, s), where δ̃ = δcμ. Thus, the estimated

value of δ may change. The normalization of the life-cycle efficiency schedule of labor affects

the scale of the aggregate productivity term. Specifically, with λL (0, s) = a, the aggregate

productivity term turns to ln aAt. Note, however, that estimates of μ as well as the life-cycle

efficiency schedules, our key parameters, are not affected by this normalization.

Consistent aggregation requires that the aggregate inputs Lt and Et be measured as in

equations (7) and (8); hence, they depend on the parameters of life-cycle efficiency schedules

λL(j, s) and λE(j, s) for s ∈ {0, 1}, and the coefficient vector αt of the observable individ-

ual productivity attributes χit. That is, for a consistent estimation of the entire model, the

aggregate inputs Lt and Et need to be expressed in terms of these life-cycle efficiency and pro-

ductivity parameters and to be estimated at the same time. This creates another complicated

nonlinearity inside the arguments of the already nonlinear log wage equation. Thus, we employ
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the following two-step estimation procedure, which allows us to have statistical consistency in

estimating the technology parameters, and also consistent aggregation of the data in precisely

the same way our model implies.

In the first stage, we obtain the estimates of eight parameters of the life-cycle efficiency

schedules λ̂L(j, s) and λ̂E/L(j, s) and the estimates of the time-varying coefficients (α̂t, D̂t and

experience premium Π̂Et) applying a nonlinear least-squares method to the following log wage

equation

ln wit = Dt +
(
λL,1 (sit) jit + λL,2 (sit) j2

it

)
(17)

+ ln
[
1 + ΠEt exp(λE/L,1 (sit) jit + λE/L,2 (sit) j2

it) eit

]
+ αtχit + εit,

where ln At + ln GLt in log wage equation (16) is replaced by Dt, and δ
(

Et

Lt

)μ−1

by ΠEt . Thus,

in the first stage, we treat the marginal product of labor and the experience premium as time-

varying constants. Furthermore, the estimates of the λ̂L(j, s), λ̂E/L(j, s) parameters imply the

estimate of λ̂E(j, s) parameters such that

λ̂E(j, s) = λ̂E/L(j, s)λ̂L(j, s).

These estimates allow us to construct the estimated aggregate inputs L̂t and Êt at each date t

as in equations (7) and (8) such that

L̂t =
∑

i

λ̂L(jit, sit)ẑithit, (18)

Êt =
∑

i

λ̂E(jit, sit)ẑithiteit, (19)

where

ẑit = exp (α̂tχit) . (20)

In the second stage, we obtain the estimates of the technology parameters μ and δ by

again applying the nonlinear least-squares to the log wage equation in (16), but using the first-

stage estimates of the life-cycle efficiency schedules parameters, α̂t and D̂t, and the implied
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experience-labor ratio Êt

L̂t
constructed in equations (18) and (19)

ln wit = D̂t + (λ̂L,1 (sit) jit + λ̂L,2 (sit) j2
it) (21)

+ ln

⎡⎣1 + δ

(
Êt

L̂t

)μ−1

exp(λ̂E/L,1 (sit) jit + λ̂E/L,2 (sit) j2
it)eit

⎤⎦+ α̂tχit + εit.

Separation of the second-stage estimation from the first-stage estimation helps us better isolate

the relation between the experience-labor ratio and the experience premium as well as its effect

on technology parameters μ and δ.

4 Results

We first use the Panel Study of Income Dynamics (PSID) data over the 1968-1996 period.

In each year, we measure the experience premium and the experience-labor ratio. The co-

movement of these variables over time identifies the parameters of the production function.

We then use the estimated parameter values to evaluate how accurately our model predicts

the dynamics of the experience premium. We find that our two-parameter production function

quantitatively matches the time series of the experience premium very well.

The identifying source of the technology parameters is the correlated variation between

the experience premium and the experience-labor ratio. The source of the variation in these

two variables can come from either across time or across space. In the second experiment, we

use cross-sectional data from the U.S. census and estimate the production parameters from the

variation of experience premium and experience-labor ratio across U.S. states. Remarkably, the

cross-sectional estimate of the elasticity of substitution between labor and experience is similar

to the time-series estimate from the PSID. Thus, in both experiments, we find strong evidence

of complementarity between labor and experience. This implies that demographic composition

can play an important role in determining the experience premium and hence relative wages.
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4.1 PSID Time Series

4.1.1 Estimation

In our benchmark estimation, we use the PSID data. See Appendix A1.1 for the details of

our sample selection and the construction of the variables. An important contribution of our

analysis is to construct measures of actual work experience, utilizing the panel structure of the

PSID (the procedure is described in Appendix A1.1). It is typical in the literature to proxy

actual experience with potential experience, defined as age minus years of schooling minus six.

By construction, once years of schooling are controlled for, that experience measure can capture

only the effects of age on the return to experience. Using actual experience, however, we are

able to separate the effects of age and experience on earnings.

In the first stage, we obtain estimates of the parameters of life-cycle efficiency sched-

ules for labor and experience
(
λ̂L,k (s) , λ̂E,k (s)

)
k=1,2;s=0,1

and the time-varying parameters(
α̂t, D̂t, Π̂Et

)1996

t=1968
, applying a nonlinear least-squares method to the log-wage equation (17).

The estimates of these coefficients and their standard errors are reported in Appendix Tables

A-2 and A-3. All the parameters are estimated precisely. This is particularly important in the

case of the experience premium,
(
Π̂Et

)1996

t=1968
, because we will evaluate the performance of the

model by its ability to replicate this estimated series.

Figure 2 plots the estimated life-cycle efficiency schedules of labor and experience for each

schooling group. The values of the life-cycle efficiency schedules for labor exceed one for all

ages for both schooling groups; hence, the effective units of labor increase over the life cycle.

The increase is much larger for the high-education group (workers with more than 12 years of

schooling) than the low-education group (workers with up to 12 years of schooling). However,

they are hump-shaped for both schooling groups, peaking at age 46 for the low-education group

and at 49 for the high-education group.

In contrast, the estimated life-cycle efficiency schedule for experience is monotonically de-

creasing and below unity over the entire age range as shown in Figure 2. Thus, there is a

substantial benefit from accumulating experience early in life, and this benefit is larger for the
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Figure 2: Life-Cycle Efficiency Schedules for Labor and Experience by Schooling
Group
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high-education workers, since their stock of experience depreciates at a faster rate than that of

the low-education workers.

These life-cycle efficiency schedules together with the estimated hourly productivity term

ẑit = exp (α̂tχit) are reflected in calculating the aggregate stocks of labor and experience as

in equations (18) and (19). Thus, changes in the composition of age groups as well as the

composition of the productivity characteristics χit in the workforce affect these aggregate stocks

directly via life-cycle efficiency schedules and ẑit, and indirectly via the correlation between age

and the characteristics χit.

Given the series of the experience premium Π̂Et and the implied experience-labor ratio Êt

L̂t

from the first-stage estimation above, we obtain the estimates of technology parameters μ and

δ from the second-stage estimation, which are reported in Table 1. The correlation coefficient

between the experience premium and the experience-labor ratio is remarkably high at −0.96.

This correlation identifies the curvature parameter μ̂ = −2.35. The scale parameter is estimated
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at δ̂ = 6.93, adjusting the relative magnitudes between the average experience premium of 18%

and the average experience-labor ratio of 3. Both parameters are fairly precisely estimated with

low standard errors of 0.060 and 0.447, respectively, for μ and δ. In addition, given the two-

stage estimation, we computed bootstrap standard errors for μ and δ, which are equal to 0.295

and 3.26, respectively. According to the two most commonly used goodness-of-fit measures,

adjusted R2 at 0.926 and the root mean-squared error (RMSE) at 0.596, the fit seems very

good.8

Table 1: PSID estimates of technology parameters.

Parameter Estimate Second Stage Bootstrap
standard error standard error

μ -2.35 0.060 0.295
δ 6.93 0.447 2.260

R2 0.926
RMSE 0.596

Note - The entries represent the results of the second-stage estimation of technology parame-
ters of the benchmark specification from the PSID. Complete first-stage estimation results are
provided in Appendix Tables A-2 and A-3. For sample restrictions and variable construction
procedures, see Appendix A1.1. See Section 3 for details of the estimation procedure.

4.1.2 Experience-Labor Complementarity

The estimate of μ implies an elasticity of substitution between labor and experience of 0.3.

Thus, we find substantial complementarity between labor and experience. To our knowledge,

this is the first estimate for the elasticity of substitution between labor and experience for the

U.S. The only alternative estimate of the experience-labor complementarity is reported in Jeong

and Kim (2006). They find it to be equal to 0.4 in Thai data, very similar to our estimate for

the U.S.

For comparison, the typical estimates of elasticity of substitution between college and high

school workers are between 1.4 and 2.5 (e.g., Heckman, Lochner, and Taber (1998), Card and

8The goodness-of-fit measures of a nonlinear model are to be interpreted with caution. The R2 of the
nonlinear model does not tell us the precise share of the actual variation of the data that is predicted because
of the curvature. The closer to zero the RMSE is, the better the fit, although it has no upper bound.
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Lemieux (2001), Gallipoli, Meghir, and Violante (2007)). The point estimate of this elasticity

is 1.41 in Katz and Murphy (1992), although they suggest that a range of estimates with

the elasticity as low as 0.5 are also consistent with the data. Krusell, Ohanian, Ŕıos-Rull,

and Violante (2000) estimate the elasticity of substitution between the high school workers

and a composite input of college workers and capital equipment at 1.7. Their estimate of the

complementarity between the two inputs inside the composite input, i.e., college workers and

capital equipment, labeled “capital-skill complementarity,” is 0.67. The elasticity of substitution

between capital and labor in the neoclassical Cobb-Douglas production function is equal to 1.

Thus, the magnitude of the experience-labor complementarity is stronger but in line with the

other types of complementarity measured in the literature.

4.1.3 Experience Premium

Figure 3 displays the estimated experience premium Π̂Et over the 1968-1996 period. There is a

substantial movement of the premium, which increases with an average growth rate of 2.93%

per year over the sample period.9 Figure 3 also shows the estimated experience-labor ratio over

the same period, showing a clear negative co-movement with the experience premium. Thus,

by measuring the relative supply of experience by the ratio of aggregate experience relative

to aggregate labor (each weighted by its life-cycle efficiency factors and hourly productivity),

we uncover a remarkably tight relationship between the relative price of experience (i.e., the

experience premium) and the relative supply of experience.

Figure 3 also displays the experience premium predicted by our model at the above esti-

mates of the aggregate production function and the aggregate experience-labor ratio. Despite

the parsimonious specification (two parameters μ and δ, and a single state variable E
L
), the

model tracks the actual time-path of the experience premium very closely. The correlation

coefficient between the actual experience premium Π̂Et (implied by the first-stage estimates)

and the predicted experience premium (implied by the second-stage estimates) is 0.97.

9Recall that the level of Π̂Et depends on the normalization of λE/L. Its growth rate is independent of this
normalization.
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Figure 3: Actual and Predicted Experience Premium and Experience to Labor Ratio
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4.1.4 Rate of Return to Experience

The experience premium in our model measures a relative price of experience. It is common

to all workers, independent of their individual characteristics. Over the life-cycle, however,

the rate of return to experience of individual workers may vary depending on their age and

schooling level (because of the life-cycle efficiency schedules) as well as their experience level

(because of the nonlinearity of the log wage equation). Define the rate of return to experience

as the marginal wage increment to the addition of one more year of experience such that

d lnwit

deit

=
ΠEtλE/L(jit, sit)

1 + ΠEtλE/L(jit, sit)eit

. (22)

Thus, the individual rate of return to experience is rising in the aggregate experience premium

ΠEt , and falling in the individual level of experience eit. It is falling in worker’s age jit when

the relative ratio of life-cycle efficiency schedules λE/L(jit, sit) is falling in age, and it is rising

in age when this ratio is rising in age. Note that both the level and the growth rate of the rate

of return to experience are independent of the normalization of λE/L.

To summarize the evolution of the returns to experience in a single time-series, we must

decide on where to evaluate the function in (22). Consider a “representative worker” whose
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Figure 4: Actual and Predicted Return to Experience for the Representative Worker
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rate of return to experience is given by
ΠEtΛt

1+ΠEtΞt
with Λt and Ξt measured as follows:

Λt ≡
∑

i λE(jit, sit)zithit∑
i λL(jit, sit)zithit

, (23)

Ξt ≡
∑

i λE(jit, sit)eitzithit∑
i λL(jit, sit)zithit

. (24)

Hence, this worker supplies the aggregate effective labor and aggregate effective experience.10

Figure 4 plots the rate of return to experience for the representative worker using estimates

of Π̂Et and
(
λ̂L,k (s) , λ̂E,k (s)

)
k=1,2;s=0,1

from the first-stage estimation. The rate of return is

sizable and changes substantially over time from 2.1% in 1968 to 3.8% in 1988, and then to 2.8%

in 1996. Figure 4 also compares this path with the predicted path of the return to experience

implied by the technology estimates μ̂, δ̂ from the second-stage estimation, which indicates that

the fit is very good.

Equation 22 implies that there are two potential sources of change in the return to ex-

perience: first, changes in the experience premium Π̂Et , and second, changes in the age and

schooling composition of workers affecting the measured λE/L. The first effect is driven by the

10By construction, the effective units of experience to labor for this representative worker coincide with the
aggregate experience to labor ratio Ξt = Et

Lt
. We weight the life-cycle efficiency schedules of experience and

labor by zithit to obtain the effective units of experience and labor at the aggregate level.
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Figure 5: Actual Return to Experience for the Representative Worker and Counter-
factual with Constant Experience Premium
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complementarity between experience and labor, and the second is a composition effect that can

arise without such complementarity. Our model provides a way to isolate the contribution of

the composition effect. To do so, we hold the experience premium Π̂E68 fixed at its level in 1968

and generate a counterfactual series of the rate of return to experience.11 This is compared

with the actual series (implied by the first-stage estimates) in Figure 5. The figure shows that

the composition effect alone does not account for the observed changes in the aggregate rate of

return to experience. Instead, it is the complementarity effect that drives the changes in the

aggregate rate of return to experience.

We obtain similar results when considering the average rate of return to experience across

workers instead of the return to experience of a “representative worker.” The model predicts

the average rate of return to experience well, and its movement over time is again driven by

the complementarity effect, as shown in Appendix Figures A-1 and A-2.

11The choice of when to fix the experience premium is inconsequential.
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Figure 6: D̂t, Aggregate Labor Productivity and Marginal Product of Labor
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4.1.5 Aggregate Productivity

Given the estimates of μ̂ and δ̂, we can uncover the marginal product of labor GLt using equation

(11) such that

ĜLt =

⎛⎝1 + δ̂

(
Êt

L̂t

)μ̂
⎞⎠

1
µ̂
−1

. (25)

Combining ĜLt and the estimates of the time-varying constant terms D̂t, the log of the aggregate

productivity term At can be identified by

ln Ât = D̂t − ln ĜLt . (26)

Thus, we can decompose the changes in Dt into a component due to changes in the experience-

labor ratio Et

Lt
and a component due to changes in aggregate productivity level At.

As shown in Figure 6, D̂t displays no trend until 1974 and then decreases until 1994 before

rising again. The figure also presents the decomposition of this term into log of marginal

product of labor ln ĜLt and log of aggregate productivity ln Ât, according to (26). To facilitate

comparisons of the movements among these three variables, we normalize values in 1968 to zero

(by subtracting a constant). The log of marginal product of labor ln ĜLt has decreased over the
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sample period accounting for most of the slowdown in the growth of Dt and its eventual decline.

This translates into a substantial 26% fall in the level of the marginal product of labor between

1968 and 1996. It is encouraging that the model not only accounts for the dynamics of the

return to experience but also endogenously generates a substantial decline in the interceprt of

the wage equation. It is not a priori clear that these two features of the data might be related,

but the model provides a tight link between them. When the experience to labor ratio declines,

the marginal product of labor declines as well. This is exactly what the intercept of the wage

equation captures.

The share of aggregate earnings accruing to labor input implied by (9) is

dYt

dLt
Lt

Yt
=

1

1 + δ
(

Et

Lt

)μ =
1

1 + Πt
Et

Lt

.

Our estimate of μ < 0 implies that the labor input’s share of aggregate earnings is rising in Et

Lt
.

Given our estimates for Π̂Et and Êt

L̂t
from the first-stage estimation, we find that the share of

labor falls steadily from 72% in 1968 to 61% in 1996 (with an average of 66%). This implies that

the relative importance of experience skill over labor has increased during the sample period.

4.2 Alternative Specifications

In this subsection we first evaluate whether model specifications with nonlinear experience

production technology are supported by the data. Next, we progressively make the model

specification more and more coarse by first restricting the life-cycle efficiency schedules to be the

same across schooling groups, then dropping the life-cycle efficiency schedule of labor from the

model (while keeping the life-cycle efficiency schedule of experience common across schooling

groups), and finally dropping the life-cycle efficiency schedule of experience as well. Across

these specifications the model’s ability to fit the data in the first-stage estimation becomes

progressively weaker. The estimates of the complementarity between labor and experience,

however, remain robust. We perform the experiments in a particular order, but the findings

are robust to this ordering.
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4.2.1 Curvature in Production of the Experience Skill

In the benchmark model, the experience skill is a linear function of years of experience. We

now explore the effect of allowing for curvature in this relationship. Consider approximating it

by a fourth order polynomial such that the effective units of experience supplied by individual

i of age jit and years of experience eit is given by λE(jit, sit) (eit + η1e
2
it + η2e

3
it + η3e

4
it) and the

aggregate experience Et in Equation (8) is replaced by

Et =
∑

i

λE(jit, sit)
(
eit + η1e

2
it + η2e

3
it + η3e

4
it

)
zithit. (27)

The identification and estimation of the model remain essentially unchanged. The only differ-

ence is that three additional parameters are estimated in the first stage. However, this may

yield different values for the experience-labor ratios and the first-stage estimates of the experi-

ence premium, which in turn will affect the second-stage estimation in obtaining the technology

parameters.

The resulting estimates for the technology parameters and coefficients for higher order

experience terms are reported in Table 2. The estimates for η1, η2, and η3 are all insignificant

at the 5% level.12 The estimates of the aggregate technology parameters remain very similar

to those of our benchmark linear specification. This suggests the robustness of the linear

specification for experience skill.

Given the insignificance of higher order experience terms, the presence of complementarity

and the shape and slope of the life-cycle efficiency schedule is robust to the introduction of

higher order experience terms. As is indicated in Appendix Figure A-3, the fit of the model

remains virtually unchanged. The robustness of the life-cycle efficiency schedules confirms that

the effective units of experience monotonically decrease over the life-cycle. We also find that the

linear technology of experience production is supported by the data compared to specifications

with curvature. This implies that the hump shape in the return to experience over the life-cycle

is not driven by the decreasing returns in accumulating experience. Instead, it is driven by less

efficient utilization of accumulated experience with age.

12Higher order experience terms remain insignificant in the quadratic and cubic specification of experience
production technology.
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Table 2: PSID estimates, with curvature in the experience production technology.

parameter estimate standard error t-statistic

μ -2.32 0.060 -38.73
δ 5.83 0.35 16.52
η1 -0.0051 .0066 -0.78
η2 0.0004 .00027 1.35
η3 -5.33e-06 4.05e-06 -1.32

R2 0.926
RMSE 0.596

Note - Entries for μ, δ and the goodness-of-fit represent the results of the second-stage estima-
tion on PSID data of technology parameters of the specification that allows for curvature in
the experience production technology. See Section 4.2.1 for the specification. Parameters η1,
η2, and η3 are estimated in the first stage. See Section 3 for details of the estimation procedure.
For sample restrictions and variable construction procedures, see Appendix A1.1.

4.2.2 Common Life-Cycle Efficiency Schedules across Schooling Groups

In our benchmark specification, we allow the life-cycle efficiency schedules for labor and expe-

rience to differ between the two schooling groups. This flexible specification improves the fit of

the model, and we did find significant differences in the life-cycle efficiency schedules between

the two schooling groups. However, we find that existence of the strong complementarity and

the explanatory power of our model for experience premium are preserved even under a less

flexible specification where the life-cycle efficiency schedules are forced to be the same for both

schooling groups, i.e., λL(j, 0) = λL(j, 1) and λE(j, 0) = λE(j, 1). Estimates for this common-

life-cycle-efficiency-schedules specification are reported in Table 3. The estimated μ̂ = −4.49,

which implies stronger complementarity. Obviously, restricting the life-cycle efficiency sched-

ules may change the magnitudes of the estimated experience premium and the experience-labor

ratio. However, the estimated values of the experience premium (17% on average) and the

experience-labor ratio (3.6 on average) are similar to those of the benchmark case. Given this,

the stronger complementarity results in a substantially higher estimate for the scaling param-

eter at δ̂ = 195 than before. However, this does not imply that the properties of the aggregate

production function change substantially. One way to show this is to compare the labor shares
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Table 3: PSID estimates, common life-cycle efficiency schedules across schooling groups.

parameter estimate standard error t-statistic

μ -4.49 0.121 -37.08
δ 195.49 30.14 6.49
λL,1 0.026 0.0012 22.23
λL,2 -0.00044 0.00003 -15.62
λE/L,1 -0.86222 0.0332 -25.97
λE/L,2 0.00095 0.000074 12.83

R2 0.925
RMSE 0.598

Note - Entries for μ, δ and the goodness-of-fit represent the results of the second-stage esti-
mation on PSID data of technology parameters of the specification that restricts labor and
experience life-cycle efficiency schedules to be the same across schooling groups. See Section
4.2.2 for the specification. Parameters λL,1, λL,2, λE−L,1, and λE−L,2 are estimated in the first
stage. See Section 3 for details of the estimation procedure. For sample restrictions and variable
construction procedures, see Appendix A1.1.

of aggregate earnings between the two sets of estimates. The share of raw labor of aggregate

earnings is now varying from 72% in 1968 to 57% in 1996, which mirrors the changes implied

by the benchmark estimates. As shown in Appendix Figure A-4, the ability of the model to

predict the experience premium from the experience-labor ratio remains very good under this

restriction.

4.2.3 Constant Life-Cycle Efficiency of Labor

We now further restrict the specification by not only imposing the same life-cycle efficiency

schedules across schooling groups but also assuming that only the efficiency of the experi-

ence skill varies over the life-cycle, such that each worker supplies one unit of effective labor

throughout the life cycle. Thus, we estimate the following restricted log wage equation:

ln wit = ln At + ln GLt + ln

[
1 + δ

(
Et

Lt

)μ−1

exp(λE,1jit + λE,2j
2
it) eit

]
+ αtχit + εit.

We experiment on this specification to evaluate to what extent the estimate of complemen-

tarity and explanatory power of the model depends on the concavity of the life-cycle profile of

wages. In the first-stage estimation the model attempts to fit the life-cycle wage profile by the
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Table 4: PSID estimates, specification with constant life-cycle efficiency of labor.

parameter estimate standard error t-statistic

μ -1.64 0.084 -19.46
δ 21.11 3.53 5.98
λE,1 -0.0244 0.0018 -13.78
λE,2 -0.00012 0.000034 -3.82

R2 0.9245
RMSE 0.6

Note - Entries for μ, δ and the goodness-of-fit represent the results of the second-stage es-
timation on PSID data of technology parameters of the specification that imposes constant
life-cycle efficiency of labor and restricts life-cycle efficiency schedules for experience to be the
same across schooling groups. See Section 4.2.3 for the specification. Parameters λE,1 and λE,2

are estimated in the first stage. See Section 3 for details of the estimation procedure. For
sample restrictions and variable construction procedures, see Appendix A1.1.

appropriate choice of the experience production technology parameters as well as the shapes of

the life-cycle efficiency schedules for labor and experience. By dropping the life-cycle efficiency

schedule of labor, we put the burden of matching life-cycle profiles on the life-cycle efficiency

schedule of experience as well as the estimated experience premium.

Estimates for this specification are reported in Table 5. In this case, the estimated

μ̂ = −1.64. Taken together with the estimate of the scaling parameter δ̂ = 21.11, these

estimates again imply properties of the production function similar to those in our bench-

mark specification. Interestingly, the life-cycle efficiency schedule for experience still implies

a monotonic decline in the efficiency units of experience over the life-cycle. Appendix Figure

A-5 confirms that the co-movement between the experience premium and the experience-labor

ratio remains strong and the model continues to predict the experience premium dynamics well.

This is remarkable because estimates of both the experience premium and the experience-labor

ratio are affected by the restriction imposed on the model.

4.2.4 Constant Life-Cycle Efficiency of Labor and Experience

Finally, we restrict the specification further by assuming that the efficiency of neither labor

nor experience changes over the life-cycle. Thus, we estimate the following restricted log wage
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equation:

ln wit = ln At + ln GLt + ln

[
1 + δ

(
Et

Lt

)μ−1

eit

]
+ αtχit + εit.

Table 5: PSID estimates, specification with constant life-cycle efficiency of labor and experience.

parameter estimate standard error t-statistic

μ -1.77 0.111 -15.88
δ 59.65 18.00 3.31

R2 0.922
RMSE 0.61

Note - Entries for μ, δ and the goodness-of-fit represent the results of the second-stage estima-
tion on PSID data of technology parameters of the specification that does not include life-cycle
efficiency schedules of labor and experience. See Section 4.2.4 for the specification. See Section
3 for details of the estimation procedure. For sample restrictions and variable construction
procedures, see Appendix A1.1.

In this specification the model’s ability to match the life-cycle earnings profiled is severely

restricted. This implies a decline of the goodness-of-fit in the first-stage estimation (first-

stage RMSE increases to 0.61 from 0.596 in the benchmark). It also affects the first-stage

estimates of the experience premium and the experience-labor ratio. Remarkably, the second-

stage estimate of complementarity between labor and experience remains robust. Estimates for

this specification are reported in Table 5. The estimated μ̂ = −1.77 and the scaling parameter

δ̂ = 59.65 once again imply properties of the production function fairly similar to those in our

benchmark specification. Appendix Figure A-6 confirms the clear co-movement between the

experience premium and the experience-labor ratio and the ability of the restricted model to

predict the experience premium dynamics quite well.

4.3 Census Cross-section

We now re-estimate the model using cross-sectional variation of the experience premium and

experience-labor ratio across the U.S. states. Thus, time-specific variables in equation (16) for

the previous estimation now take on an interpretation of state-specific variables (resulting in

changes in the subscript from time index t to state index v). Our two-step estimation procedure
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is applied to the following equation:

lnwiv = ln Av + ln GLv + (λL,1 (siv) jiv + λL,2 (siv) j2
iv) (28)

+ ln

[
1 + δ

(
Ev

Lv

)μ−1

exp(λE/L,1 (siv) jiv + λE/L,2 (siv) j2
iv) eiv

]
+ αvχiv + εiv.

We use the U.S. decennial census data rather than the PSID to have sufficient within-state

samples, which helps us to better measure the cross-state variation of the experience premium

and the experience-labor ratio. We use data from the 1980 census, which falls within the mid-

range of our PSID sample period, and from where we can measure hourly wages and all the

control variables in a way compatible with the PSID. The only exception is work experience.

Unfortunately, census data do not contain data on actual work experience. To maximize the

compatibility of the results between the time-series and cross-sectional estimation, we use the

fact that we do observe the actual experience in PSID for the same census year 1980 and hence

can predict actual experience from the observable variables both in the PSID and in the 1980

census. Thus, we impute actual experience for the 1980 census from the observable variables

according to the prediction formula obtained from the PSID and use it in our cross-sectional

estimation.13

The first-stage estimates for Π̂Ev and Êv

L̂v
imply an average raw labor share of aggregate

earnings of 60% across states, which compares well to the labor share implied by the time-series

estimates. The estimates for the technology parameters using the census data are reported in

Table 6. The cross-sectional estimate of the curvature parameter μ̂ = −1.58 is similar to

our time-series estimate from the PSID. We show in Appendix A2 that these estimates can

indeed be compared to each other despite one being for the aggregate production function

and the other for the state-level production function. Thus, the presence of complementarity

between labor and experience is confirmed both in the time-series and cross-sectional data for

the U.S. Moreover, the time-series and cross-sectional elasticities of substitution between labor

and experience are similar, despite the differences in the identifying source of variation.

13We find a correlation coefficient between actual experience and predicted actual experience in the PSID of
0.91. The details of this estimation can be found in Appendix A1.2.

30



Table 6: Census cross-section estimates of technology parameters.

parameter estimate standard error t-statistic

μ -1.58 0.031 -51.64
δ 5.75 0.234 24.54

R2 0.936
RMSE 0.55

Note - The entries represent the results of the second-stage estimation of technology parameters
of the benchmark specification from the 1980 decennial census data. For sample restrictions
and variable construction procedures, see Appendix A1.2. See Section 4.3 for the specification
and Section 3 for details of the estimation procedure.

5 Conclusion

We investigate the importance of demographic change in driving the evolution of the return

to experience. While the idea of an inverse relation between the relative supply of experience

and the economic return it commands has a strong intuitive appeal, there has been no explicit

quantitative evaluation of this relationship. This paper contributes by providing a theory that

can rationalize this relationship and measure its importance.

The insight of the model is to note that it is not the stock of the experience that matters

but its stock relative to the other productive inputs and to propose what these other inputs are.

It appears natural to consider workers as supplying two productive services, i.e., “labor” and

“experience skill” accumulated with work experience. These inputs constitute the arguments

in the aggregate production function and are competitively priced in the market. If they are

complementary, a change in the aggregate ratio of experience to labor would affect the marginal

products of the two inputs. Demographic change, such as a sizable entry of inexperienced work-

ers into the market, will increase the marginal product of experience. We identify parameters

of the aggregate technology using disaggregate earnings data, by estimating individual earnings

equations that consistently aggregate. Our estimates imply that labor and experience are in-

deed complementary, with an elasticity of substitution of 0.3. Moreover, the model with a very

parsimonious specification of the aggregate production function and a single state variable, the
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experience-labor ratio, quantitatively accounts very well for the large changes in the experience

premium over time. For example, we find a correlation coefficient between actual and predicted

experience premia of 0.97 over the sample period 1968-1996. This is our main contribution.

By separately identifying the effects of age from the effects of experience on wages, we

find that the hump shape in the return to experience over the life-cycle is not driven by the

decreasing returns in accumulating experience. Instead, it is driven by a less efficient utilization

of accumulated experience with age. This insight is not only important for model building but

has a clear relevance for the design of labor market policies. Moreover, we find that the effective

units of labor are also hump shaped over the life-cycle. Taken together, these findings imply

that the concavity of the age-wage profile or the experience-wage profile (where experience

is measured by age-based potential experience) in typical Mincerian regressions is due to age

effects rather than decreasing returns in experience skill production.

On a methodological level, we show that it is possible to identify parameters of the aggregate

production function from individual data by maintaining a consistency between individual

earnings equations and the aggregate production function. Moreover, we show that estimation

of the technology parameters using the microdata can identify the size and direction of the

residual technical change.

Finally, our findings contribute to the literature that attempts to isolate age, time, and

cohort effects in the earnings equation (e.g., Heathcote, Storesletten, and Violante (2005)). By

construction, only two of these effects can be simultaneously identified, when the time effect

is identified with the calendar date. We model the time and age effects, where the changes in

demographic composition, summarized by the experience-labor ratio, determines a time effect

via the experience premium and the age effect is captured by the life-cycle efficiency profiles.

As entering cohort vary in size, distribution of age as well as the experience-labor ratio in the

labor market and hence relative wages will change. Thus, we indirectly capture cohort size

effects through the structure of the model.
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APPENDICES

A1 Data Appendix

A1.1 PSID Data

Sample. We use the Panel Study of Income Dynamics (PSID) data from the U.S. for the

period 1968-1997. The PSID consists of two main subsamples: the SEO (Survey of Economic

Opportunity) sample and the SRC (Survey Research Center) sample. We use both samples

and restrict ourselves to the core members with positive sampling weights (not the newly

added family members through marriage) to maintain the consistent representativeness of the

sample over time.14 The sample is restricted to individuals between 18 and 65 years of age.

Actual Labor Market Experience. The procedure we use to construct measures of actual

work experience since age 18 is as follows. Questions regarding overall labor market experience

(“How many years have you worked for money since you were 18?” and “How many of these

years did you work full time for most or all of the year?”) were asked of every household’s

head and wife in 1974, 1975, 1976 and 1985.15 These questions are also asked for every person

in the year when that person first becomes a household head or wife.16 Since there are some

inconsistencies between the answers, we first adjust 1974 overall experience to be consistent

with 1975 and 1976 values where possible. Next, we use 1974 as the base year; i.e., we assume

that whatever is recorded in 1974 for the existing heads is true. For the entrants into the

sample we assume that the experience they report in their first year in the sample is true. If

reported experience implies that an individual started working before the age of 18, we redefine

it to be the number of years since age 18 for that individual. If the reported experience in

1974 is smaller than that implied by the reports of hours between the individual entry into the

sample (or 1968) and 1974, we replace the 1974 report with that implied by the accumulated

reports of hours. We repeat this procedure for 1985 and the reports of the new heads and

wives. Finally, using the values of experience in 1974, 1985, and the reports of the new heads

and wives, we increment experience variables forward and backward as follows: increment the

full-time experience measure by one if individual works at least 1500 hours in a given year.17 If

14We use only the nonimmigrant sample. In 1990 the PSID added a new sample of 2000 Latino households,
consisting of families originally from Mexico, Puerto Rico, and Cuba. Because this sample missed immigrants
from other countries, Asians in particular, and because of a lack of funding, this Latino sample was dropped
after 1995. Another sample of 441 immigrant families was added in 1997. Because of the inconsistencies in
these samples, we restrict ourselves to the core SEO and SRC samples throughout the 1968-1996 period.

15By default, the head of household is the (male) husband if he is present or a female if she is single. In very
few cases the head is a female, even when the male husband is present (but is, say, severely disabled).

16The PSID mistakingly did not ask some people in 1985 and fixed this mistake by asking them in 1987.
17We experimented with using cutoff values other than 1500 hours of work or using directly the sum of
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we observe an individual in the sample since age 18, we ignore his or her reports of experience

and instead directly use his or her reports of hours in each year using the cutoff above. If we

do not observe an individual in the sample since age 18, we attempt to construct tenure based

on the earliest report of his or her overall experience.

Other Variables. Our hourly wage measure is equal to the total earnings last year divided by

total hours worked last year. To get real wage, we adjust the nominal wage using last year’s CPI

(equal to 100 in 1984).18 We define the economically active population as the group of people

who worked at least 700 hours last year.19 Education is measured by years of final educational

attainment.20 Other control variables that we will use are gender (male dummy), race (black

dummy), and region (Northeast, North Central (i.e., Midwest) and West dummies). The broad

region variable is created using the state variable in the PSID.21 South is the (poorest) base

category region.

A1.2 U.S. Census Data

Sample. We use U.S. census data from the 1980 U.S. Census 5% Public Use Micro-samples

(see Ruggles, Sobek, Alexander, Fitch, Goeken, Kelly Hall, King, and Ronnander (2004)). The

sample represents a 1-in-20 national random sample of the population, with approximately

11,337,000 person records. Sample restrictions and variable definitions are imposed to ensure

maximum comparability with the PSID. The sample is restricted to individuals between 18

and 65 years of age with nonimputed values of all the variables used in the analysis. The

economically active population is defined as those who worked at least 700 hours last year.

accumulated hours of work to create other measures of experience and found that our chosen measure shows
the smoothest pattern of movements. The results are not sensitive to this choice.

18There is an alternative hourly wage measure in the PSID which reports the current hourly wage at the time
of the interview. Unfortunately, this measure is only available for the household heads throughout the period.
For wives it is available only in 1976 and after 1979 and it is not available at all for the other family members.

19As in the case of earnings, there is also an employment status variable at the time of the interview. We do
not use tis variable because (1) the reference period (current year) is different from that of earnings measure
(last year), and (2) this variable is available for the heads for all years but not for the wives before 1979 except
in 1976 and is not available for the dependents.

20Education is reported in the PSID in 1968, 1975, and 1985 for existing heads of households, and every year
for the people becoming household heads or wifes. It is kept constant between the years in which it is updated.
As a result, there would be a bias toward a lower educational level. For example, if education is 10 years in
1975 and 16 in 1985, it would be reported 10 between 1975 and 1985. If the individual, however, had 16 years
of education already in 1980, then for five years he would be counted as less educated than he actually is. To
minimize this bias, the education variable used in the estimation is fixed to be equal to its mode value among
all the reports available. To make the education variable comparable across time we top code it at 16 years.

21We found that the broad region variable provided by the PSID appears to be error-ridden. For example,
for some but not all Texas residents region is defined as West. Thus, we reconstructed the broad region variable
directly from the state of residence.
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Actual Labor Market Experience. Unfortunately, census data do not contain information

on actual worker experience. We exploit the relationship between measures of actual experience

in the PSID and worker characteristics to impute actual experience to workers in the census

data. In particular, using the 1980 PSID data, we regress actual experience on a polynomial

function of age for each subgroup and household demographic variables, such that

ei =
K∑

k=1

(
αk0 + αk1ji + αk2j

2
i + αk3tj

3
i + αk4tj

4
i

)
dk,i + βχi + ζi (A1)

to obtain the predicted experience êi such that

êi =

K∑
k=1

(
α̂k0t + α̂k1ji + α̂k2j

2
i + α̂k3j

3
i + α̂k4j

4
i

)
dk,i + β̂χi (A2)

where ji denotes age, dk,i the dummy variable for subgroup k, χi the household demographic

variables, and ζi the i.i.d. idiosyncratic shock to work experience. The characteristics partition-

ing the subgroups are college education, household headship, four regions (Northeast, North

Central, South and West), race, marital status and gender. We include the number of chil-

dren in the household and its squared value for χit. The estimated coefficients are reported in

Appendix Table A-1. In the PSID, the correlation between actual and predicted experience is

equal to 0.91. Applying (A2), we construct predicted levels of actual experience êi using the

individual observable characteristics from the 1980 census.

Table A-1: Coefficient estimates for predicted experience.

Variable dummy age age-squared age-cubic age-quartic

age .5083873 .0483154 -.0015294 7.19e-06
college .6203082 -.6386097 .059012 -.0019724 .0000214
head -.4141898 .2635762 -.0382591 .0015935 -.0000127
northeast .2163412 -.1804537 .0238301 -.001135 .000016
north central .2091296 -.1472149 .0195273 -.0009212 .0000128
west -.1581706 .1143491 -.0155347 .0004851 -3.77e-06
black -.4370619 .0386038 -.0033227 .0001884 -2.33e-06
unmarried male -.0216989 -.0237478 -.0288911 .0018001 -.0000271
unmarried female .4193616 -.3648575 .0162269 -.0009843 .0000137
married female -.3881132 .2097724 -.0583758 .0013988 -1.64e-06
children -.5025105
children squared .0431225
constant .5184911

Other Variables. Education is measured as the number of years of school completed, topcoded

at 16. Earnings are measured as total pre-tax wage and salary income for the preceding calendar
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year. The codes represent the midpoints of ten-dollar intervals. Earnings are topcoded at

$75,000. To obtain hourly earnings we divide the total earnings last year by the product of

weeks worked last year and usual hours worked per week last year. Other control variables that

we use are gender (male dummy), race (black dummy), and region categorized consistently with

the PSID based on the state of residence.

A1.3 SAF Data

The data were collected and compiled by the Swedish Employers’ Confederation (SAF) from

its database on wage statistics assembled from establishment-level personnel records. The data

contain information on roughly 60% of the Swedish private-sector workforce. Included in the

data are blue- and white-collar workers in every industry (except insurance and banking) in

the private sector from 1970 to 1990. The blue- and white-collar worker samples are separate

and cannot be combined to produce a representative combined sample. We report the results

based on the white-collar sample only. The results based on the blue-collar sample are similar

and are available upon request. Labor market experience is measured as potential experience.

These data are used in the yearly wage negotiations and are monitored not only by the SAF

but also by the labor unions. Data quality is considered to be exceptionally high. See Kwon

and Meyersson-Milgrom (2004) and Fox (2008) for a more detailed description of the data and

Swedish labor market conditions.

A1.4 Danish Data

The data from Denmark are based on administrative files covering 100% of the Danish pop-

ulation for the years 1981 to 2003. It is administrative register data from the Integrated

Database for Labor Market Research (IDA) and the Income Registers, which are both longitu-

dinal databases with annual observations for individuals. Wages are extracted from the Income

Registers and include all wage earners working in every industry (both public and private).

Socioeconomic variables and experience come from the Integrated Database for Labor Market

Research (IDA). Information on actual work experience after 1964 is available for everyone in

the data set. For those who entered the labor market before 1964 their experience in that year

is measured as potential experience (age minus education minus 6). After that it is incremented

using observed actual experience. The quality and the validity of the IDA data are regarded as

high (see Abowd and Kramarz (1999)).
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A1.5 First-Stage Estimation Results from the PSID

Table A-2: PSID first-stage estimates, time-invariant parameters.

Estimate Standard Error

northeast .18452 .00438
north central .05052 .00412
west .09726 .00469
λL,1 (0) .02008 .00128
λL,2 (0) -.00036 .00003
λL,1 (1) .04057 .00148
λL,2 (1) -.00065 .00004
λE−L,1 (0) -.07787 .00340
λE−L,2 (0) .00081 .00008
λE−L,1 (1) -.12513 .00478
λE−L,2 (1) .00154 .00013

R2 0.9258
RMSE 0.5955

Note - The entries represent the results of the first-stage estimation of time-
invariant parameters of the benchmark specification from the PSID. For sample
restrictions and variable construction procedures, see Appendix A1.1. See
Section 3 for details of the estimation procedure.
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Table A-3: PSID first-stage estimates, time-varying parameters.

Year Male Black Schooling Exp. premium Constant

1968 .32327 (.02787) -.18287 (.04361) .07320 (.00506) .10161 (.01345) .75483 (.05298)
1969 .32086 (.02488) -.16414 (.03946) .06775 (.00465) .10044 (.01186) .82818 (.04735)
1970 .31857 (.02418) -.13311 (.03766) .06679 (.00456) .10931 (.01192) .82679 (.04609)
1971 .28301 (.02385) -.10426 (.03757) .07323 (.00449) .11741 (.01219) .79148 (.04571)
1972 .27196 (.02308) -.12598 (.03634) .07586 (.00443) .12352 (.01210) .78455 (.04505)
1973 .31703 (.02257) -.08361 (.03574) .07323 (.00435) .11788 (.01156) .81554 (.04389)
1974 .30313 (.02036) -.10620 (.03217) .06471 (.00406) .11764 (.01051) .89162 (.04056)
1975 .28381 (.02038) -.08534 (.03177) .06764 (.00414) .12265 (.01096) .85795 (.04142)
1976 .23595 (.02046) -.04879 (.03194) .07093 (.00416) .13952 (.01168) .81198 (.04149)
1977 .26641 (.01998) -.03969 (.03110) .07592 (.00410) .13599 (.01132) .77157 (.04039)
1978 .24862 (.01979) -.05903 (.03110) .07664 (.00412) .17006 (.01293) .71333 (.04133)
1979 .26996 (.01854) -.08691 (.02804) .07386 (.00390) .16582 (.01197) .73624 (.03846)
1980 .26920 (.01839) -.05236 (.02770) .06585 (.00399) .14980 (.01126) .80149 (.03883)
1981 .24269 (.01856) -.08848 (.02828) .07885 (.00401) .17996 (.01295) .62780 (.03989)
1982 .22503 (.01862) -.08382 (.02842) .07433 (.00407) .17712 (.01315) .64944 (.04096)
1983 .16874 (.01854) -.06402 (.02883) .08543 (.00414) .22084 (.01532) .48736 (.04228)
1984 .16126 (.01738) -.07211 (.02660) .08580 (.00401) .21729 (.01419) .51520 (.04031)
1985 .22537 (.01713) -.07033 (.02615) .09376 (.00397) .22509 (.01436) .40447 (.03963)
1986 .20594 (.01696) -.10794 (.02614) .09276 (.00408) .21326 (.01415) .45178 (.04128)
1987 .18265 (.01687) -.13030 (.02610) .09901 (.00408) .22388 (.01452) .42192 (.04132)
1988 .13757 (.01682) -.12790 (.02578) .10712 (.00413) .24552 (.01547) .35109 (.04164)
1989 .16448 (.01577) -.12214 (.02339) .10726 (.00392) .22844 (.01395) .35821 (.03910)
1990 .13416 (.01587) -.09420 (.02338) .11278 (.00401) .23144 (.01445) .31307 (.04041)
1991 .12592 (.01584) -.06615 (.02401) .11998 (.00404) .21916 (.01403) .26205 (.04077)
1992 .12921 (.01574) -.14385 (.02381) .11758 (.00411) .23110 (.01456) .24268 (.04145)
1993 .10802 (.01552) -.08157 (.02396) .11625 (.00410) .25555 (.01545) .24155 (.04110)
1994 .17647 (.01646) -.15186 (.02419) .12557 (.00439) .21578 (.01577) .21333 (.04642)
1995 .16136 (.01618) -.12000 (.02364) .11307 (.00432) .24281 (.01737) .26023 (.04705)
1996 .17025 (.01626) -.13694 (.02391) .10611 (.00435) .22821 (.01705) .32920 (.04781)

Note - The entries represent the results of the first-stage estimation of time-varying parameters
of the benchmark specification from the PSID. Standard errors are in parenthesis. For sample
restrictions and variable construction procedures, see Appendix A1.1. See Section 3 for details
of the estimation procedure.
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A2 Aggregation of State-Level Production Functions

Consider a common state-level production function

Yv = AG(Lv, Ẽv) = A
(
Lμ

v + δẼμ
v

) 1
µ

. (A3)

We allow the effective workforce size Lv to vary across states to capture the difference in state

size. The effective state-level experience Ẽv also varies across states such that Ẽv = εvEv,

where Ev is the deterministic component and εv represents an ex-post i.i.d shock over states

with mean of unity. This formulation allows for a variation of experience-labor ratio across

states despite the common technology.

The aggregate production function F (L, E), defined on aggregate labor L and aggregate

experience E, can be characterized by the following planning problem to maximize the expected

sum of state outputs subject to the factor feasibility conditions:

E {F (L, E)} = E

{
max

z

N∑
v=1

zvYv

}
subject to

N∑
v=1

zvLv = L, (A4)

E

{
N∑

v=1

zvẼv

}
= E, (A5)

where the expectation operator E is for the ex-post shock εv, and z = (zv)
N
v=1 denotes the

production plan. Given the common technology and the ex-post and i.i.d. nature of the shock

εv, the optimal production plan adjusts only the difference in state size (measured by Lv) such

that z∗v = 1
N

1
pv

, where pv = Lv

L
, and the ex-ante experience-labor ratios Ev

Lv
are equalized across

states to the aggregate experience-labor ratio E
L
.22

22The feasibility conditions (A4) and (A5) for this production plan can be verified as follows:
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Thus, the aggregate production function implied by the state production function (A3) is

F (L, E) =
N∑

v=1

z∗vYv =
1

N

N∑
v=1

A
L

Lv

G(Lv, εvEv) =
1

N

N∑
v=1

AG

(
L

Lv

Lv, εv
Ev

Lv

L

)

=
1

N

N∑
v=1

AG

(
L, εv

E

L
L

)
=

1

N

N∑
v=1

AG (L, εvE) =
1

N

N∑
v=1

A (Lμ + δvE
μ)

1
µ ,

where

δv = δ (εv)
μ .

The marginal rate of technical substitution of the implied aggregate production function is

MRTSL,E ≡ FL

FE

=

(
E

L

)1−μ f
(

E
L

)
g
(

E
L

) , (A6)

where

f(
E

L
) =

N∑
v=1

[
1 + δv

(
E

L

)μ] 1
µ
−1

,

g(
E

L
) =

N∑
v=1

δv

[
1 + δv

(
E

L

)μ] 1
µ
−1

,

and the elasticity of substitution between experience and labor σ is

σ ≡ d(E/L)

dMRTSL,E

MRTSL,E

(E/L)
=

1[
1 − μ + η

(
E
L

)] , (A7)

where

η

(
E

L

)
=

[
f ′ (E

L

)
f
(

E
L

) − g′ (E
L

)
g
(

E
L

) ] E

L
.

The elasticity of substitution between experience and labor implied by the census cross-

sectional estimates of the parameters (δ = 5.75 and μ = −1.58) of the state production function

in (A3) is 0.3876. We can calculate the elasticity of substitution between experience and labor

of the aggregate production function according to the formula in equation (A7), using the

aggregate and the state-level experience-labor ratios data. At the cross-sectional estimates

above, we obtain an estimate of the aggregate elasticity of substitution between experience and

labor of 0.3878, which is virtually the same as the one implied by the estimate of the curvature

parameter of the state production function μ = −1.58.
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Figure A-1: Actual and Predicted Returns to Experience, Average across Workers
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Figure A-2: Actual Return to Experience and Counterfactual with Constant Expe-
rience Premium, Average across Workers
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Figure A-3: Actual and Predicted Experience Premium and Experience to Labor
Ratio, Quartic Specification for Experience Production Technology
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Figure A-4: Actual and Predicted Experience Premium and Experience to Labor
Ratio, Common Life-Cycle Efficiency Schedules across Schooling Groups
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Figure A-5: Actual and Predicted Experience Premium and Experience to Labor
Ratio, Common Life-Cycle Efficiency Schedules across Schooling Groups and Con-
stant Life-Cycle Efficiency Schedule of Labor
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Figure A-6: Actual and Predicted Experience Premium and Experience to Labor
Ratio, Constant Life-Cycle Efficiency of Labor and Experience
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