
The Evolution of Education:

A Macroeconomic Analysis

Diego Restuccia
University of Toronto ∗

Guillaume Vandenbroucke
University of Southern California ∗∗

PRELIMINARY VERSION
March 2008

Abstract

Between 1940 and 2000 there has been a substantial increase of educational at-
tainment in the United States. What caused this trend? We develop a model of
schooling decisions in order to assess the quantitative contribution of technolog-
ical progress in explaining the evolution of education. We use earnings across
educational groups and growth in gross domestic product (GDP) per worker
to restrict technological progress. These restrictions imply substantial skill-bias
technical change. We find that skill-bias technical change can explain the bulk
of the increase in educational attainment. In particular, a version of the model
calibrated to data in 2000 and that includes on-the-job human capital accumu-
lation is able to generate 2/3 of the increase in educational attainment observed
in the data. We also find that the substantial increase in life expectancy ob-
served during the period accounts for almost none of the change in educational
attainment.
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1 Introduction

One remarkable feature of the twentieth century in the United States is the
substantial increase in educational attainment of the population. Figure 1 illus-
trates this point. In 1940, about seven percent of the the white males, aged 25
to 29, had completed a college education, 31 percent of them had a high school
degree but did not finish college. Finally, 60 percent did not even complete high
school.1 The picture is remarkably different in 2000 when 28 percent completed
college, 58 percent completed high school but not college, and less than 15 per-
cent did not complete high school. Although our focus is on white males, Figure
2 shows that the trends of Figure 1 are shared across gender and races. The
question we address in this paper is: What caused this substantial and system-
atic rise in educational attainment in the United States? Understanding the
evolution of educational attainment is relevant given the importance of human
capital on the growth experience of the United States as well as nearly all other
developed countries.

Our approach is to build a model of educational attainment which empha-
sizes the importance of skill-biased technical change to generate trends in educa-
tional attainment. This focus is motivated by data. Using the IPUMS samples
for the 1940 to 2000 U.S. Census, we compute weekly earnings across three ed-
ucational groups for white males of a given age cohort: less than high school,
high school, and college.2 Relative earnings among educational groups exhibit
noticeable changes since 1940 (see Figure 3). For instance, earnings of college
relative to high school increased from 1.5 in 1940 to 2 in 2000, while the relative
earnings of high school to less than high school increased from 1.5 in 1940 to
1.8 in 2000.3 This focus will necessitate a framework with heterogeneous agents
in order to capture the differential returns for schooling investment across edu-
cational categories.

Our model builds on the human capital literature, most notably Becker
(1975), Ben-Porath (1967), Mincer (1974), and Heckman (1975). For the pur-
pose of our specific question, the model has several key features. First, the
schooling choice is discrete. This is relevant because the distribution of people
across years of schooling in the data is concentrated around completion years.
Also, the discrete choice allows the model to match distribution statistics such
as those presented in Figure 1, as opposed to just averages for a representative

1In what follows we refer to the detailed educational categories simply as less than high
school, high school, and college. See the appendix for details of data sources and definitions.

2Weekly earnings refers to pre-tax wage and salary income divided by the number of weeks
worked. See the appendix for a detailed description of data sources and definitions. We refer
to weakly earnings, earnings, and income interchangeably.

3Figure 3 illustrates patterns that have been emphasized in the wage-structure literature.
Both the returns to college and high school exhibit increasing trends. The return to college
decreased during the 1940s and the 1970s, and rose sharply during the 1980s and 1990s.
Acemoglu (2002), for example, reports a similar pattern for the returns to college. The
compression observed in the 1940s was documented and discussed by Goldin and Margo
(1992).
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agent. Second, there are two inputs in the production of human capital: time
and goods. The first input, time, is measured in years of schooling. Again, this
is a discrete choice so that a high school diploma requires the same years of
schooling in 2000 as in 1940. The introduction of goods in the human capital
technology, however, allows an agent to get more human capital from a given
number of years of schooling. Thus, the efficiency units of labor of a high school
person in 1940 may differ from the efficiency units of labor of a high school per-
son in 2000. This quality effect can be found for instance in Ben-Porath (1967)
and more recently in Manuelli and Seshadri (2006) and Erosa, Koreshkova and
Restuccia (2007). Third, agents are heterogeneous in the marginal utility from
schooling time. This assumption allows an equilibrium distribution of people
across schooling categories. This sort of utility cost/benefit from schooling is
common in both the macro literature (e.g. Bils and Klenow (2000)) as well
as the empirical labor literature (e.g., Heckman, Lochner and Taber (1998)).
Moreover, given the discreteness of schooling levels the model with heterogene-
ity implies that changes in exogenous factors have smooth effects on aggregate
variables such as educational attainment and income. An additional source of
heterogeneity may be through “learning ability.” Navarro (2007) finds, how-
ever, that individual heterogeneity affects college attendance mostly through
the preference channel. Fourth, the model is deterministic so that agents can
perfectly forecast the returns to various schooling choices. This assumption is
justified by our focus on aggregate trends. In addition, Cunha, Heckman and
Navarro (2004) find that a sizeable share of the variability in returns to schooling
is forecastable. Finally, at the aggregate level, a production function requires
human capital from the three schooling groups, and the productivity of each
group is driven by an exogenous, group-specific, technical parameter. The (po-
tentially) uneven growth of these skill-biased technical variables is what drives
the evolution of educational attainment in the model.

In the context of these key assumptions, our model is closest to Heckman,
Lochner and Taber (1998). However, their emphasis is different from ours. Heck-
man, Lochner and Taber (1998) focus on explaining the increase in U.S. wage
inequality in the recent past. Our focus is on the role of technological progress in
explaining the historical rise in educational attainment. Our paper is closest in
spirit to a recent literature in macroeconomics assessing the role of technological
progress on a variety of trends in the U.S. and other developed countries such
as women’s labor supply (e.g., Greenwood, Seshadri, and Yorokoglu (2005)),
fertility and the baby boom (e.g., Greenwood, Seshadri, and Vandenbroucke
(2005)), the structural transformation across countries and regions (e.g., Gollin,
Parente and Rogerson (2002) and Caselli and Coleman (2001)), the transition
from stagnation to modern economic growth (e.g., Hansen and Prescott (2002)),
among others.4 In emphasizing the connection between technology and educa-
tion our paper is also related to a labor literature, see for instance Goldin and
Katz (2007) and the references therein.5

4See Greenwood and Seshadri (2005) for an excellent survey of this broad literature.
5Technological progress may not be the only force behind the increase in educational at-
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In terms of the quantitative exercise we conduct, we discipline our measure
of skill-biased technical change by using data on relative earnings among workers
of different schooling groups. In other words, our exercise amounts to generate
earnings dispersion across schooling levels through skill-biased technical change
and, then, to assess how much of a change in educational attainment this mecha-
nism generates. More specifically, the nature of the computational experiment is
as follows. The parameters of the model are chosen to match a set of key statis-
tics, including earnings differentials across schooling levels from 1940 to 2000,
enrollment rates in 2000 and the overall growth rate of the economy between
1940 and 2000. The changes in educational attainment are left unconstrained
in this procedure, that is: they are not used to calibrate the model. Instead,
the model’s performance can be assessed by comparing the predicted to actual
trends in educational attainment.

The main findings are as follows. First, the baseline results show that skill-
bias technical change – as measured by the changes in relative earnings across
schooling groups – generate a substantial increase in educational attainment,
an increase that is actually larger than the observed in U.S. data (a 48 percent
increase in average years of schooling between 1940 to 2000 in the model vs. 27
percent in the data). The bulk of the increase in educational attainment in the
model is due to high-school skill bias and less to the college skill bias. Overall
growth in TFP plays almost no role in the increase in educational attainment
although it explains more than 2/3 of the increase in labor productivity. The
effect of skill-bias technical change on educational attainment is sensitive to the
changes in relative earnings that we feed in from the data. Under conservative
scenarios on the change in relative earnings across schooling groups the model
replicates the change in educational attainment in the time-series data. Second,
although changes in life expectancy have been substantial during the period of
analysis, we find that these changes explain almost none of the increase in ed-
ucational attainment. Returns to human capital are higher in the early part of
the life cycle relative to the later part so changes in life expectancy accrue low
returns for schooling investment. Third, when the model is extended to include
on-the-job human capital accumulation, substantial returns to experience miti-
gate the quantitative increase in educational attainment. Even in this version of
the model, skill-bias technical change still accounts for about 2/3 of the increase
in average years of schooling observed in the time-series data. Moreover, there
is evidence that the returns to experience have been falling for recent cohorts
in the United States – see for instance Manovskii and Kambourov (2005). We
conclude that skill-bias technical change is a quantitative important source in
explaining the evolution of education in the United States.

We note that our theory abstracts from labor supply margins. The reason
for abstracting from labor supply is twofold. First, as matter of facts, there has
been little or no trends in labor supply during the period 1940-2000. McGrattan
and Rogerson (2004, Table 2) show that weekly hours of work for male workers

tainment. For instance, Glomm and Ravikumar (2001) emphasize the importance of the rise
in public-sector provision of education.
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declined between 1950 and 1970 and, then, increased from 1970 to 2000. Overall,
male hours per worker are less than 2 percent lower in 2000 than in 1940. Along
the same lines, Hazan (2007, Figure 18) shows that, despite a significant increase
in life expectancy, the expected lifetime labor supply of a cohort born in 1970
is about five percent below that of a cohort born in 1920. Second, as a matter
of theory, the effect of an additional hour of work at the end of the life cycle on
lifetime labor income is likely to be small due to discounting.

The paper proceeds as follows. In the next section we describe the model.
In Section 3 we conduct the main quantitative experiments. In Section 4 we
discuss our results by performing a series of sensitivity analysis and by placing
the results in the context of the related literature. We conclude in section 5.

2 Model

In this section we develop a model of schooling decisions in order to assess the
quantitative contribution of technological progress on the rise of educational
attainment in the United States.

2.1 Environment

The economy is populated by overlapping-generations of constant size normal-
ized to one. Time is discrete and indexed by t = 0, 1, . . . ,∞. Agents are alive
for T periods and are ex-ante heterogeneous. Specifically, they are indexed by
a ∈ R, which represents the intensity of their (dis)taste for schooling time, and
is distributed according to the time-invariant cumulative distribution function
A. We assume that the utility cost is observed before any schooling and con-
sumption decisions are made. We also assume that there is no uncertainty in
the model.

An individual’s human capital is denoted by h(s, e) where s represents the
number of periods spent at school and e represents expenses affecting the quality
of schooling. Both s and e are choice variables. There are three levels of
schooling labeled 1, 2 and 3. To complete level i an agent must spend s ∈
{s1, s2, s3} periods in school and, therefore, is not able to work before he reaches
age si + 1. The restriction 0 < s1 < s2 < s3 < T is imposed so that level 1 is
the model’s counterpart to the less-than-high-school level discussed previously.
Similarly, level 2 corresponds to high-school and level 3 to college. Aggregate
human capital results from the proper aggregation of individual human capital
across generations and educational attainment. It is the only input into the
production of the consumption good. The wage rate per unit of human capital
is denoted by w(s) for an agent with s years of schooling. Credit markets are
perfect and r denotes the gross rate of interest.
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2.2 Households

Preferences are defined over consumption sequences and time spent in school.
They are represented by the following utility function, for an agent born at date
t:

t+T−1∑
τ=t

βτ−t ln
(
cτ−t+1
τ

)
− as,

where β ∈ (0, 1) is the subjective discount factor, cτ−t+1
τ is the consumption of

date τ , when the agent is τ − t+1 periods old and, finally, s ∈ {s1, s2, s3} repre-
sents the number of years of schooling. Note that a can be positive or negative,
so that schooling provides either a utility benefit or a cost. The distribution of
a is normal with mean µ and standard deviation σ :

A(a) = Φ
(

a− µ

σ

)
,

where Φ is the cumulative distribution function of the standard normal distri-
bution. The production function for human capital is

h(s, e) = sηe1−η, η ∈ (0, 1).

The optimization problem of a just born individual at t, conditional on going
to school for s periods, is

Ṽt(a, s) = max

{
t+T−1∑

τ=t

βτ−t ln
(
cτ−t+1
τ

)
− as

}
,

subject to

t+T−1∑
τ=t

(
1
r

)τ−t

cτ = h(s, et)Wt(s, T )− et,

Wt(s, T ) =
t+T−1∑
τ=t+s

wτ (s)
(

1
r

)τ−t

,

where the maximization is with respect to sequences of consumption and the
quality of education et. The budget constraint equates the date-t value of con-
sumption to the date-t value of labor earnings, h(s, et)Wt(s, T ), net of invest-
ment in quality, et. The function Wt(s, T ) indicates the date-t value of labor
earnings per unit of human capital. Observe that the time cost of schooling
is summarized in Wt(s, T ). Hence, the model features a time cost of schooling
(foregone wages), a resource cost e, and a utility cost a. During period t, the
agent chooses s once and for all to solve

max
s∈{s1,s2,s3}

Ṽt(a, s). (1)
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This problem can be solved in three steps. First, given s, it simplifies to a utility
maximization problem which can, in itself, be divided into two parts. Specifi-
cally, the optimal investment in the quality of education, that is et, maximizes
lifetime net earnings. Then, given lifetime net earnings, the agent optimally al-
locates consumption through time using the credit markets. Hence, conditional
on the choice of s, the optimal investment in quality, for an age-1 agent at time
t, is

et(s) = arg max
e
{h(s, e)Wt(s, T )− e},

which yields
et(s) = s[Wt(s, T )(1− η)]1/η.

The optimal amount of human capital is

h(s, et(s)) = s[Wt(s, T )(1− η)](1−η)/η. (2)

Then, the net lifetime income of the agent is It(s) = h(s, et(s))Wt(s, T )− et(s)
or

It(s) = κsWt(s, T )1/η, (3)

where κ = (1 − η)(1−η)/η − (1 − η)1/η. The optimal allocation of consumption
through time, given It(s), is dictated by the Euler equation, cτ−t+2

τ+1 = βrcτ−t+1
τ ,

and the lifetime budget constraint. At this stage, it is convenient to define
Vt(s) ≡ Ṽt(a, s) + as. In words, the function Vt(s) is the lifetime utility derived
from consumption only, for an agent of cohort t with s periods of schooling.
Note that Vt(s) is not a function of a. The optimal schooling choice described
in (1) can then be written as

max
s∈{s1,s2,s3}

{Vt(s)− as}. (4)

2.3 Aggregates

The stock of aggregate human capital is

Ht = z1tH1t + z2tH2t + z3tH3t. (5)

In this formulation Hit is the total stock of human capital supplied by agents
with si periods of schooling, and zit is a skill-specific productivity parameter.
The youngest worker of type i at date t is of age si +1 and, therefore, was born
at t− si. The oldest worker is T -periods old and was born at t− T + 1. Thus,
we have

Hit =
t−si∑

τ=t−T+1

piτh(si, eτ (si)),

where piτ is the fraction of population of τ cohort with i level of education. The
production function is linear in the aggregate human capital input with total
factor productivity zt,

Yt = ztHt.
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Since our focus is on long-run trends, we assume constant growth rates for all
driving variables:

zt+1 = gzt ∀t
zi,t+1 = gizit, for i = 1, 2, 3, ∀t.

Equation (5) implies that the following normalization is innocuous: z1t = 1 at
all t – thus g1 = 1. Regarding the level of zt, we set it to one at an arbitrary
date. As it will transpire shortly, this normalization is innocuous too. The
determination of the levels of z2t and z3t is discussed in Section 3.

2.4 Equilibrium

An equilibrium is a sequence of prices {wt(si)} and an allocation of households
across schooling levels such that, at all t, wt(si) = ztzit and households solve
problem (1) given prices.

At an equilibrium, a cohort is partitioned between the three levels of school-
ing: Agents with low enough utility costs choose level three, while agents with
high enough costs choose level one. The rest of the cohort chooses level two.
To better understand the determination of this partition consider the function
Vt(s)− as. Note that it is linear decreasing in a with a slope given by s and an
intercept increasing in It(s). The ranking of It(s) with respect to s depends on
opposing effects, as equation (3) suggests. First, higher values of s correspond
to higher human capital and, therefore, higher lifetime income. Second, higher
values of s tend reduce the work life of the agent and, therefore, lifetime income.
This forgone earnings effect transpires through Wt(s, T ). Finally, Wt(s, T ) also
depends on s through the sequence of future wages. When It(s) is finite, how-
ever, the assumption that s3 > s2 > s1 implies that, at all t, there always exists
an agent with a low enough value of a, let’s denote it by at, such that

Vt(s3)− ats3 > Vt(s2)− ats2 > Vt(s1)− ats1.

Thus, for a ≥ at, there exists a single intersection between each pair of value
functions. This implies that they can be represented as in Figure 4. There are
two cases. First, consider panel A of Figure 4. Here, an agent chooses s3 when
a < a23,t where a23,t is the marginal agent characterized by

Vt(s3)− a23,ts3 = Vt(s2)− a23,ts2.

Similarly, an agent chooses s1 when a > a12,t where

Vt(s2)− a12,ts2 = Vt(s1)− a12,ts1.

Thus,

a12,t =
Vt(s2)− Vt(s1)

s2 − s1
and a23,t =

Vt(s3)− Vt(s2)
s3 − s2

, (6)
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and the enrollment rates of cohort t in level i, denoted by pit, are

p1t = 1−A(a12,t),
p2t = A(a12,t)−A(a23,t),
p3t = A(a23,t).

In the case of panel B of Figure 4, there exists only one critical agent:

a13,t =
Vt(s1)− Vt(s3)

s1 − s3
, (7)

and the enrollment rates are p1t = 1 − A(a13,t), p2t = 0 and p3t = A(a13,t).
Figure 5 represents, graphically, the determination of enrollment rates in each
case.

It is possible to characterize a critical agent as a function of the fundamentals
of the model. First, we can show that

aij,t =
1− βT

1− β
× 1

si − sj
× ln

(
It(si)
It(sj)

)
.

Thus, the critical level is proportional to the semi-elasticity of lifetime income
with respect to years of schooling. This observation is helpful to understand the
difference between the two cases represented in Figure 4. Observe that in the
case described in panel A, a13,t is not critical, i.e., Vt(s2) − a13,ts2 > Vt(s1) −
a13,ts1 or a23,t < a13,t < a12,t. This means that, for an agent contemplating
choosing a different level of schooling than s1, the largest reward comes from
choosing s2, not s3. The case depicted in panel B is one where Vt(s2)−a13,ts2 <
Vt(s1)− a13,ts1, or a12,t < a13,t < a23,t. In such case, the largest reward for an
agent considering choosing a different level than s1 comes from choosing s3.
The smallest elasticity is that of a move from s1 to s2. This is the reason why
enrollment in s2 is zero in this case.

The assumption that zt, z1t, z2t and z3t grow at constant rates imply

Wt(si, T ) =
t+T−1∑
τ=t+si

wτ (si)
(

1
r

)τ−t

= ztzit
(ggi/r)si − (ggi/r)T

1− ggi/r
,

so that
It(si)
It(sj)

=
si

sj

(
zit

zjt

(ggi/r)si − (ggi/r)T

(ggj/r)sj − (ggj/r)T

)1/η

. (8)

At this stage, there are a few points worth mentioning. The first is the absence
of the level of total factor productivity, zt, in the determination of the critical
agents. The reason for this result is that our model abstracts from any potential
asymmetry between the changes in benefits and costs of schooling. A change
in zt affects the lifetime income of agents in the same proportion, regardless of
their education. The opportunity cost of education (forgone wages) also changes
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proportionally to zt. Note that the growth rate of total factor productivity, g,
appears in Equation (8). However, it does not affect the evolution of educational
attainment. The second point is that skill-biased technology affects enrollment
rates. Remember that, in our model, skill-biased technology takes place only
when the zit’s are growing at uneven rates, implying that zit/zjt is a function of
time. Not surprisingly, holding everything else constant, an increase in zit/zjt

raises enrollment at level i and reduces it at level j. Observe that life expectancy,
T , affects the critical agent too. The lifetime returns on human capital, as
measured by Wt(s, T ), increases with T , inducing agents to accumulate more
human capital. This can be accomplished by attaining higher levels of schooling,
or by an increase in the quality of schooling. An increase in T also has an
income effect. An agent can maintain educational investment constant and
consume more. Hence, theoretically, the effect of T on educational investment
is ambiguous and needs to be sorted out quantitatively. One can conjecture,
however, that regardless of its direction, the effect of changes in T on educational
attainment is quantitatively small due to discounting.

The period τ labor income of an agent of generation t with education si is

Li,t,τ = h (si, et(si))wτ (si), τ ≥ t + si. (9)

Note that age matters in the determination of labor income. The reason for this
is that an agent’s age indicates the year in which schooling decisions are made
and, as a result, the year in which human capital is determined.

3 Quantitative Analysis

This section proceeds as follows. In Section 3.1 we discuss the calibration which
consists of two stages. First, some parameters are assigned numerical values
using a-priori information. Second, the remaining parameters are calibrated to
match key statistics of the U.S. economy for the year 2000, as well as over-
all growth in gross domestic product per worker, and relative earnings across
schooling groups during the period 1940 to 2000. Unlike the business cycle
literature, where the evolution of productivity is calibrated independently to
Solow residuals, we do not have independent measurement of our main driving
forces. Our measures are, in fact, derived in the second stage of the calibration.
It is important to emphasize that the actual evolution of educational attain-
ment between 1940 and 2000 is not used for calibration. Thus, the quantitative
importance of the mechanisms built into the model can be assessed by their
ability to generate trends in educational attainment as displayed in Figure 1. In
Section 3.2, we use our measures of technical change to assess their quantitative
contribution in explaining the rise in educational attainment in the U.S. econ-
omy. In Section 3.3 we propose a series of experiments to decompose the role of
each components of technical change. Finally, in Section 3.4 we also extend the
model to allow for changes in life expectancy and to allow for on-the-job human
capital accumulation.
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3.1 Calibration

The first stage of our calibration strategy is to assign values to some parameters
using a-priori information. We let a period represent one year, and consider that
agents are born at age 6. The length of model life is set to T = 60, the gross
interest rate to r = 1.05 and the subjective discount factor to β = 1/r. The
length of schooling, s1, s2 and s3, are set to the average time spent in school at
each educational category, for the 25-29 year-old, white males in the 2000 U.S.
Census. This restriction dictates s1 = 9, s2 = 13 and s3 = 18 – see appendix.

At this stage, the list of remaining parameters is

θ = (µ, σ, η, g, g2, g3, z2,2000, z3,2000)

which consists of the distribution parameters for the utility cost of schooling,
the human capital technology, and growth rates and levels for productivity
variables. We build a measure of the distance between the model and the U.S.
data for: (i) the time path of relative earnings from 1940 to 2000; (ii) the growth
rate of gross domestic product per worker from 1940 to 2000; (iii) the share of
time in the total cost of education in 2000; and (iv) the educational attainment
of the 25-29 years old in the 2000 census. We then choose each element of θ
simultaneously to minimize this function.

Our objective function is motivated by the model. More specifically, the
fact that the relative zi’s drive the evolution of relative earnings motivates their
presence.6 Note that each element of θ, except µ and σ, matters for the deter-
mination of the levels of relative earnings at date t. However, only g2 and g3

matter in the determination of their evolution through time. We use the growth
rate of the gross domestic product per worker to help pinning down g. The rea-
son is that, as mentioned earlier, g does not affect the evolution of educational
attainment or relative earnings. However, it determines, among other things,
the growth rate of output per worker. Observe now that µ and σ matter in
the determination of the evolution of educational attainment.7 This, however,
is the object of our study. Thus, we restrict ourselves to use only one year of
data, namely 2000, to help pinning down these variables. Since this choice is
arbitrary we discuss our results in light of an alternative calibration year, such
as 1940, and show that the fundamental quantitative forces in the model are not
affected. Finally, the elasticity η determines, among other things, the relative
importance of time and goods in the production of human capital. This is the
reason for the presence of the share of time in the total cost of education in our
objective function.

6This fact can be seen from Equation (9), which implies

Li,t,τ

Lj,t,τ
=

si

sj

(
zit

zjt

(ggi/r)si − (ggi/r)T

(ggj/r)sj − (ggj/r)T

)(1−η)/η
ziτ

zjτ
.

7More precisely, different values of µ and σ imply different paths for pit, given paths for
aij,t.
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Formally, given a value for θ we compute an equilibrium and define the
following objects. First,

Êij,t(θ) =
Li,t−si,t

Lj,t−sj ,t

is the period-t labor earning of an agent of generation t−si and education level i,
relative to that of an agent of generation t− sj , with education level j. Observe
that at date t both agents are entering the labor force for the first time of their
lives. This calculation is justified by the importance of age in determining human
capital and, therefore, labor earnings. The empirical counterpart of Ê32,t(θ) is
the relative earnings between the College and High-school groups, described in
Figure 3, and denoted by E32,t. Similarly, Ê21,t(θ) is the model counterpart of
E21,t, the relative earnings of the High-school and Less-than-high-school groups.
Then, we define

M(θ) =


p1,1981 − 0.134
p2,1981 − 0.588
x2000 − 0.90

Y2000/Y1940 − 1.0260


where xt is the average share of time in the total cost of education.8 Finally, to
assign a value to θ we solve the following minimization problem

min
θ

∑
t∈T

(
Ê32,t(θ)− E32,t

)2

+
(
Ê21,t(θ)− E21,t

)2

+ M(θ)>M(θ)

where T ≡ {1940, 1950, . . . , 2000}. The first part of the objective function im-
plies that the model’s predicted relative earnings are set to match their empirical
counterpart, in a least-square sense. The second part includes four additional
restrictions on the parameters. The first two impose that the enrollment rates
for the generation born in 1981 match their empirical counterparts. The 1981
generation in the model is 20 years old in 2000, which corresponds to age 25
in the U.S. data. The data displayed in Figure 1 show that, in 2000, 13.4% of
the 25-29 year-old group did not finish high school, and 58.8% did or attended
some college. The third restriction imposes that the time cost of education, as
measured by xt in 2000, is 90%.9 Finally, the last restriction imposes that the
average annual growth rate of labor productivity between 1940 and 2000 is two
percent

The second column of Table 1 indicates the value of the calibrated param-
eters. The model is able to match the calibration targets very well (see Table
2 and Figure 6.) Notice in Figure 6 that the model implies a smooth path of
relative earnings. The reason for this is that our specification of skill bias has

8Formally, it is defined as

xt =

∑
i=1,2,3 pi,2000Li,t,tsi∑

i=1,2,3 pi,2000(Li,t,tsi + e2000(si))
.

9See for instance Bils and Klenow (2000).
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only two parameters per relative skill level, as a result, the best the calibration
can do is to fit a trend line through the data points. As we will discuss below,
skill bias produces a substantial effect in educational attainment so the param-
eterizations matters for the quantitative results. In section 3.3 we discuss the
results in light of different assumptions regarding skill-bias technology.

3.2 Baseline Experiment

Given the calibration of parameters to 2000 data, and the calibration of the
technology growth factors, we feed in technology levels and compute educational
attainment for individuals 25 to 29 years of age between 1940 and 2000 which
we then compare to data in Figure 1.

The main quantitative implications of the model are with respect to the
time path of educational attainment. In particular, the model implies time
paths for the distribution of educational attainment for the three categories
considered: less than high-school, high-school, and college. Figure 7 reports
these implications of the model. The model implies a much sharper increase
in educational attainment than what is observed in the data. In particular,
the fraction of 25 to 29 year-old with college degree or more increases in the
model by 28 percentage points from 1940 to 2000, while in the data the increase
is 20 percentage points. For high-school, the model implies an increase from
10 to 60 percent between 1940 and 2000 whereas, in the data, the increase is
from 30 to 60 percent. A summary statistic of these implications in educational
attainment is the average years of schooling of the 25 to 29 year-old population.
We compute the average years of schooling implied by the model as

∑
i sipi

at each year. We do the same for the data, i.e., we use the attainment data
together with s′is. By construction of our calibration strategy, the model implies
an average years of schooling of 13.9 as in the data for 2000. In 1940, the model
implies an average years of schooling of 9.4 whereas, in the data, this average
is 10.9 years. The model implies a roughly constant share of expenditures in
education over GDP around 4 percent which is in the ball park of estimates in
Haveman and Wolfe (1995).

We chose the year 2000 for our calibration targets. Given how different the
educational attainments are in 1940, the question arises whether the results
depend on this choice. We investigate this issue by calibrating the economy
to data for 1940 instead. The calibrated parameters are presented in the last
column of Table 1. Note that the parameters are reasonably close in each
calibration, except for µ and σ, which should not be a surprise.10 Given this
alternative calibration, the quantitative results are fairly similar, for instance,
the increase in average years of schooling from 1940 to 2000 is around 50 percent,
close to the 48 percent increase in the baseline model calibrated to data in 2000.

10Table 1 reports the level of z2,1940 and z3,1940 which are the calibrated level parameters
in this exercise. The paths z2t and z3t are remarkably close, however, in the two exercises.
For example, the implied value of z2,2000 and z3,2000 in the 1940 calibration are 1.37 and 1.78,
respectively.
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One interesting aspect of the results of the calibration to 1940 data is that,
while the underlined quantitative force of technological progress on educational
attainment is the same, the results presented in this way emphasize one aspect
of the data that the model is not able to capture, namely the slow-down in
educational attainment starting in the mid 1970’s (see Figure 1 and Figure 8).

3.3 Decomposing the Forces: Skill-Bias vs. TFP

In our model, the increase in educational attainment is the result of skill-biased
technical change. Total factor productivity alone does not affect the evolution
of education. Other models such, as in Manuelli and Seshadri (2006) and Erosa,
Koreshkova and Restuccia (2007), have a nonzero elasticity of schooling to TFP
changes. As mentioned in the introduction, the motivation for our approach is
to exploit the observed earnings heterogeneity in a parsimonious environment
to isolate its contribution on the evolution of educational attainment.

In light of this feature of our model, we decompose the importance of skill-
bias technical change by running counterfactual experiments. Remember that
skill-bias technical change means that 1 6= g2 6= g3. For example, the fact that
g2 > 1 in the baseline experiment means that there is a technical bias toward the
high-school people, relative to the less-than-high-school group. How important
is this bias? To answer this question we set g2 = 1 in our first experiment.
We adjust g3 such that g3/g2 remains the same as in the baseline case and we
let the rest of the parameters at their baseline values, such as described in the
second column of Table 1. The first experiment, therefore, is designed to assess
the importance of the high-school technical bias. In a second experiment we
ask: how important is the college vs. high-school technical bias? To answer this
question, we shut this bias down by assuming g3 = g2 = 1.0045, where 1.0045
is the growth rate of g2 in the baseline calibration. Thus, in this experiment,
the college bias (relative to high-school) is shut down, while maintaining the
high-school bias (relative to primary schooling). In a third experiment, we shut
down skill bias completely by imposing g2 = g1 = 1. Table 3 displays some
model statistics for each experiment. Figure 9 shows the change in educational
attainment, for college and high-school, for each experiment relative to the
baseline.

Observe that in experiments one through three, the increase in educational
attainment, as measured by average years of schooling, is less than in the base-
line case. The source of this result is different in each experiment. In the first,
the relative earnings of the High-school and Less-than-high-school groups are
not changing through time because g2 = 1. As a result, the elasticity of lifetime
income with respect to an increase in s from s1 to s2 is constant and, therefore,
the Less-than-high school group remains a constant fraction of the population –
see Equation (6). Under this calibration, the model predicts an increase in the
proportion of College educated, at the expense of the size of the High-school
group. Figure 9 shows that the magnitude by which the proportion of College

14



educated increases is quite similar to the baseline case, while the number of
High-School educated falls. Less human capital is accumulated overall, thus the
growth rate of the economy falls noticeably relative to the baseline case.

Let us turn to the second experiment, where the technical bias of college
versus high school is shut down. The high-school and college groups retain a
technical advantage, relative to the less-than-high-school group, though. Table
3 suggests that the departures from the baseline case, under this experiment,
are less than in the previous experiment. The reason is that the College group
now is almost constant: college earnings, relative to high-school earnings do not
change. The high-school bias attracts agents into high-school hence, unlike the
previous case, the High-school group increases and the Less-than-high-school
group decreases – a movement similar, in direction, to what is observed in the
baseline experiment. Since the College group represents a “small” fraction of
the population, the movements of groups one and two are enough to make this
experiment closer to the baseline case than the first two experiments. In fact,
observe that the growth rate of the economy is less than in the baseline case,
because the College group does not increase, but that this difference is small,
suggesting that the change in the College group did not contribute much to
economic growth.

When we shut down skill bias at both levels, as in experiment three, the
model does not generate any change in educational attainment. Income growth
is 1.18% in this experiment which is only slightly above the assumed TFP growth
(around 1%). The additional growth comes from changes in educational quality.

Given these results, we conclude that, in terms of skill-bias technical change,
the high-school bias is the most important force behind the changes in educa-
tional attainment. More precisely, shutting down the high-school bias implies
the largest departure from the baseline at the aggregate level (average years of
schooling and the growth rate of the economy). At a more disaggregated level
(the distribution of schooling attainment) high-school and college bias play sim-
ilar, but different, roles and are of similar quantitative importance – see Figure
9.

We emphasize that the educational attainment implications of the model are
sensitive to the calibration of skill-bias technical change. The baseline calibra-
tion captures the overall trend in relative earnings over the 1940 to 2000 period.
Not only the information captured by these trends is contained in 7 Census
years (conducted every 10 years), but also there is substantial decade-to-decade
variation in relative earnings. We illustrate the importance of these relative
earnings trends by conducting a fourth experiment were we reduce by half the
growth rate of relative earnings between 1940 and 2000. We accomplish this by
adjusting the growth rates g2 and g3 so that the growth in relative technical
progress of the two groups is reduced by half relative to the baseline calibration.
We leave all other parameters the same. In this experiment, average years of
schooling between 1940 to 2000 increase by 24 percent (27 percent in the data),
while average growth in GDP per worker is 1.84 percent (2 percent in the data).
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(See Table 3.)

Table 3 contains a fifth experiment where TFP growth is shut down, leaving
all other parameters the same as in the baseline calibration. As discussed earlier,
TFP growth does not affect educational attainment much (notice that without
TFP growth the model generates almost the same educational attainment as in
the baseline experiment).11 Notice however that the model would imply much
lower aggregate income growth, 0.6% compared to 2% in the baseline. So while
in the model the effect of TFP growth on educational attainment is limited, it
plays a crucial role in income growth over time.

3.4 Other Potential Forces

We evaluate the potential implications of other features in explaining the rise
in educational attainment. First, we study a simulation of the model that
allows for life-expectancy to change according to data. Second, we consider an
extension of the model that allows for on-the-job human capital accumulation.
We calibrate this additional form of human capital to match the observed returns
to experience in the data.

3.4.1 Life Expectancy

There has been a substantial increase in life-expectancy in the United States.
For males, life expectancy at age 5 increased from around 50 years in 1850 to
around 70 years in 2000. Because the return to schooling investment accrues
with the working life, this increase can generate an incentive for higher amounts
of schooling investment. However, human capital theory also indicates that the
returns to human capital investment are higher early in the life cycle rather
than later (see for instance Ben-Porath (1967)) and as a result, increases in
life expectancy may command a low return given that they extend the latest
part of the life cycle of individuals. Whereas the increase in life expectancy is
substantial, this life cycle aspect of the increase in life expectancy may dampen
the overall contribution of this factor. It is also possible, as mentioned earlier,
that the increase in life expectancy reduces the incentive to go to school: an
income effect. Since our baseline model predicts an increase in educational
attainment larger than observed, we ask whether increasing life expectancy may,
through its income effect, dampen the skill-biased technology effect. Hence, we
simulate the implications of the model by changing life expectancy as it does in
the data.12 We recalibrate the economy in 2000 to the same targets but taking
into account the changes in life expectancy. The main changes in the calibration

11The reason why the numbers do not line up exactly with the baseline is that g is different.
Although total factor productivity does not matter for the evolution of education, the level of
g determines the level of variables in the model – see Equation (8).

12Specifically, the life expectancy of the period-t generation is Tt = gT Tt−1 given an initial
condition T1850. The pair (T1850, gT ) is chosen as to minimize the distance between the U.S.
data and [Tt], in a least square sense. (The notation [·] denotes the nearest integer function.)
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relative to the baseline involve parameters pertaining to the distribution of
utility cost of schooling and the growth rates of technology.

We find that the increase in life-expectancy does not change the implications
of the model substantially, in fact, life-expectancy has only modest effects in
educational attainment during this period. This can be assessed by comparing
the implications for educational attainment of the baseline simulation to the
one where life expectancy changes (see Figure 10). Overall, the life expectancy
experiment generates an increase of 50 percent in the average years of schooling
while the baseline experiment generates a 48 percent increase. We conclude
that while changes in life expectancy increase educational attainment the effect
is not quantitatively substantial.

3.4.2 On-the-job Human Capital Accumulation

Human capital can be accumulated on the job. Whereas in our baseline model
earnings increase only moderately during the life-cycle of an individual (due to
TFP and skill-bias technical change), the data shows a high return to experience.
A substantial return to experience may in fact affect educational decisions. First,
if returns to experience increase with education, as we will show it is the case
in the data, then this provides an additional return to schooling, reinforcing the
effects of skill-bias technical change. Second, substantial returns to experience
implies that, other things equal, individuals would have an incentive to enter
the labor market sooner. Because of these opposing effects, it is a quantitative
question to assess the role of on-the-job human capital accumulation on the
evolution of educational attainment over time.

We extend the model to incorporate on-the-job human capital accumulation.
In particular we consider the following human capital accumulation equation:

h(s, e) = sηe1−ηxγ(s),

where x is years of experience and γ(s) ∈ (0, 1) is the human capital elasticity
of experience for a worker who has completed s years of schooling. Note that
we allow this elasticity to differ across schooling groups. Again, this feature
is motivated by data. Using IPUMS Census data we find that the return to
experience is systematically higher for higher education groups. Specifically, we
construct the age profile of earnings in 2000 as follows. For each educational
level, the data point at age a is the average weekly earnings of the (a − 5) −
(a + 5) age group. The resulting age profile is displayed in Figure 11. We then
run the following regression: log yi = ai0 + ai1x + ai2x

2 where yi represents
weekly earnings for someone with education level i and x = age − si measures
experience. Note that ai1 measure the return to 5 years of experience. We find
a11 = 0.05, a21 = 0.07 and a31 = 0.08.

We calibrate this economy by, in addition to our baseline targets, targeting
the age profile of earnings from 25 to 55 years of age in 2000. The calibration
procedure is detailed in Appendix B. The calibrated parameters g, g2 and g3
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are 1.012, 1.005 and 1.010, respectively. They are comparable to the baseline
values displayed in Table 1. The values for γ(si) are

γ(si) =

 0.38 for i = 1,
0.47 for i = 2,
0.25 for i = 3.

Although we have mentioned that the returns to experience are higher for higher
education groups, the values of γ(si) are not monotonic in i. This is due to the
fact that the returns to experience are measured, in the spirit of Mincer (1974),
by d log E/dx whereas γ(s) measures d log E/d log x, which is also x×d log E/dx.
Thus, high Mincerian returns for the College group are mitigated, in γ(s3), by
a relatively low level of experience. Given this calibration, the model matches
the age-earnings profiles well – see Figure 11.

Figure 12 shows the educational attainment implied by the model with on-
the-job human capital accumulation, vis à vis the U.S. data. It shows that on-
the-job human capital accumulation reduces the incentives to remain in school
created by skill-bias technical progress. The average number of years of school-
ing increase from 11.9 in 1940 to 13.9 in 2000 – a factor of 1.17, which compares
with the 1.27 factor in the U.S. data and 1.48 in the baseline. The calibrated
returns to experience in this extension of the model dampen the incentives for
schooling investment. However, there is strong evidence that the returns to ex-
perience have been falling for recent cohorts in the U.S. data – see Manovskii
and Kambourov (2005). Hence, even with substantial returns to experience in
the model, skill-bias technical change generate about 2/3 of the increase in ed-
ucational attainment in the data. We conclude that skill-bias technical change
is a quantitative importance source of changes in educational attainment in the
United States.

4 Discussion

4.1 Substitution across Schooling Groups

We emphasize that the technology for aggregate human capital allows perfect
substitutions between skill groups. We view this assumption less problematic as
it may first appear. The reason is that our results do not emphasize a particular
quantitative elasticity of skill-bias technical change to educational attainment
nor it emphasizes a tight measurement of skill-bias technical parameters. Clearly
those applications would necessitate tight measurements for the elasticities in
the technology for aggregate human capital as well as other sources of labor
productivity growth. Instead our emphasis is on the role of skill-bias technical
change – as measured by the change in relative earnings – on educational attain-
ment without explicit decomposition of the quantitative source. For instance,
an alternative elasticity in aggregate human capital would require a different
quantitative source of skill-bias technology to match the same relative earnings
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paths. The discipline imposed on the quantitative results of the paper hinge on
relative earnings paths. In fact, as we illustrated in experiment 4, section 3.3,
the quantitative results are sensitive to the calibration of skill bias from relative
earnings in the data.

The following exercise illustrates our point. Consider, a general constant-
elasticity-of-substitution technology for aggregate human capital:

Ht = [(z1tH1t)
ρ + (z2tH2t)

ρ + (z3tH3t)
ρ]1/ρ

,

where ρ < 1. Output is Yt = ztHt. This specification implies an elasticity of
substitution of 1/(1−ρ) between skill groups. For values of ρ strictly below one
different skill groups are more complementary than in our main specification,
and an increase in any given zit affects the wage rate of all skill groups.

For simplicity, let us consider a steady-state situation in levels, that is a
situation where zt and the zit’s are constant through time.13 An equilibrium, is
a set of prices: {w(si)} and an allocation of households across schooling levels
such that:

w(si) = z [(z1H1)
ρ + (z2H2)

ρ + (z3H3)
ρ]1/ρ−1 (ziHi)

ρ−1
zi,

and
Hi = (T − si)hi, i ∈ {1, 2, 3}

and households solve problem (1) given prices. The first condition above equates
the marginal product of human capital for skill group i to its wage rate. The sec-
ond equation aggregates individual human capital across generations for group
i.

The nature of the exercise is similar to that of Section 3.1. We set s1, s2,
s3, T , r and β to their values in Table 1, and we fix z1 to one. Then we
proceed in two steps. First, we calibrate the steady state of the model to match
the U.S. economy in 2000. Specifically, we have two targets for enrollment
rates, two for relative earnings and one for the share of time in the total cost of
education. We impose z = 1 and we pick five parameters to match these targets:
(µ, σ, η, z2, z3). In a second step, we re-calibrate z, z2 and z3. We choose them
to match three targets: the relative earnings in 1940 and the ratio of GDP per
capita between 1940 and 2000. Hence, as in the baseline calibration of Section
3.1, our exercise uses the evolution of relative earning to measure skill-specific
technological change. We then ask by how much educational attainment is
changing. We repeat this exercise for different values of ρ.

Table 4 reports the results. First, we note that there are differences between
the steady-state version of the model with ρ = 1 and the baseline experiment.
The steady-state version of the model implies a lower increase in educational
attainment because of the absence of exogenous growth in earnings throughout
the lifetime of individuals. Second, by comparing across steady-state economies

13Our model does not have a balanced growth path.
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with different values for ρ, Table 4 shows that the elasticity of substitution does
not affect our main conclusions. Namely, once the skill-bias technical param-
eters are calibrated to match the evolution of relative earnings, the changes
in educational attainment across different calibrations for ρ are almost iden-
tical. In addition, it is interesting to note that the calibrated parameters for
the human capital technology and the distribution of utility cost of schooling
are hardly changing across these calibrations. Thus, the main effect of ρ is to
impose different values for the skill-bias technical parameters in levels and rates
of change.

We recognize that these results only apply to a steady-state version of the
model. However, we expect that the same quantitative effects will carry through
in the dynamic version of the model with different elasticities of substitution
across skill groups. Data limitations prevent us from carrying through these
experiments. When ρ < 1, the dynamic version of the model requires much
more data than presently available. The reason for this is that in the model with
ρ < 1, the wage rate at a point in time depends on the educational attainment
of all cohorts working. Thus, this will require data on relative earnings going as
far back as 1900 or before. And wages are necessary to solve for human capital
and earnings in 1940. When ρ = 1, wages are only a function of technical
parameters at each date.

Assuming perfect substitution across skill groups in the human capital tech-
nology not only allows us to assess the role of technical change in educational
attainment in a simple and tractable framework, but also gives us a reasonable
characterization since the quantitative implications of the model turn out to be
insensitive to alternative substitution elasticities after the model is calibrated
to match the same relative earnings targets.

4.2 Further Implications

Our theory emphasizes skill-bias technical change as an important source of
movements in educational attainment over time. In Figure 2 we emphasized
that the evolution of educational attainment was similar for men and women.
For our model to be consistent with these trends, skill-bias technical change
would have to be about the same magnitude for men and women. Using data
from the U.S. Census we decompose relative earnings across schooling groups
for men and women. We find that the trend behavior of relative earnings across
schooling groups are remarkably similar between men and women – see Figure
13. This process would imply a similar evolution of educational attainment
across genders in the model, which is consistent with the data. Whereas the
data for relative earnings indicates similar skill-bias technical change for men
and women – with comparable evolution of education across genders – there
is also a substantial and declining gender wage gap during this period. Hence,
it appears that the gender wage gap has not played a major role for schooling
investments across genders.
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5 Conclusion

We developed a model of schooling decisions to address the role of technological
progress in the rise of educational attainment in the United States. The model
features discrete schooling choices and individual heterogeneity so that people
sort themselves into the different schooling groups. Technological progress takes
two forms: neutral and skill-biased. Skill bias technical change increases the
returns of schooling thereby creating an incentive for more people to attain
higher levels of schooling. We find that this source of technological progress can
account for all of the increase in educational attainment in the United States
between 1940 and 2000. More specifically, what we labeled the high-school bias
(that is the bias which favors high-school graduate over those who did not finish
high-school) is quantitatively more important in accounting for the trends than
the the college bias (with respect to high-school graduates.) The substantial
changes in life expectancy turns out to account for almost none of the change
in educational attainment.

We have focused on the long-run trend of educational attainment in the
United States. Two issues would be worth exploring further. First, while the
model with skill-bias technical change can account for the overall trend in educa-
tional attainment, the model fails to capture the sharp slowdown in educational
attainment since the late 70’s. This slowdown in educational attainment is even
more puzzling given the observed decline in the returns to experience for recent
cohorts in the United States. Second, in assessing the role of skill-bias technical
change in other contexts, it would be relevant to investigate the changes in rela-
tive earnings in other countries. For instance, institutions that compress wages
may reduce the incentives for schooling investment and it would be interesting to
see (holding other institutional aspects constant) whether this wage compression
can explain the lower educational attainment in European and other countries
compared to the United States. These explorations would require important
departures of the model so we leave these for future research.
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A Data

Educational Attainment The source of data for Figures 1 and 2 is the
Current Population Survey. The “Less-than-high-school” category corresponds
to the percentage of the 25-29 year-old population who has completed less than
four years of high school. The “High-school-and-some-college” category is the
percentage of the 25-29 year-old population who has completed four years of
high school or more, but less than four years of college. Finally, the “College”
category corresponds to those who have completed four years of college or more.

Weekly Earnings The source of data is the U.S. Census (1 percent samples
from IPUMS, 1940-2000). The income variable is incwage, which reports the
respondent’s total pre-tax wage and salary income. This variable is available
at each census date from 1940 to 2000, and is intended to capture all monetary
compensations received for work as an employee. Earnings are divided by the
number of weeks worked. This is computed from wkswork2, which reports the
number of weeks worked, by intervals. (We use the mid-point of the interval).
This variable is available at each Census from 1940 to 2000. A variable reporting
the exact number of weeks worked exists at some, but not all, Census dates.
The education variable is educrec which indicates the highest grade or year of
college completed. The categories for educrec are: 1 for N/A or No schooling;
2 for Grades 1 through 4; 3 for Grades 5 through 8; 4 for Grade 9; 5 for Grade 10;
6 for Grade 11; 7 for Grade 12; 8 for 1, 2, or 3 years of college; and 8 for 4 years
of college or more. There are no differences between the educational attainment
figures implied by these categories and the Current Population Survey numbers
displayed in Figure 1 and 2. For each educational level, we focus on a different
age group, in order to compare the earnings of agents with similar levels of
experience. Furthermore, since our model is about the returns to schooling and
not those to experience, we focus on the youngest age groups. More specifically,
the Less-than-high-school group is represented by 15-to-21-year-old reporting
educrec between 1 and 6, the High-school-or-more group is represented by
18-to-24-year-old reporting 7 or 8. Finally, the College group corresponds to
by 21-to-27-year-old reporting 9. We restrict our analysis to white (raced)
males (sex) working (empstat) for a wage or salary in the private or public
sector (classwkr). For each group, the bottom and top one percent of the
distribution is ignored.

Length of Schooling The source of data, to calibrate s1, s2 and s3 is the
U.S. Census (1 percent samples from IPUMS, 1940-2000). The first table below
shows the proportion of white males, 25-29, at each educational level available
in the data set. The second column indicates the number of years spent at each
level (on average). The last four lines of the table use the data to compute the
average years spent at school overall, and at each of the three levels relevant for
the model.
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1940 1950 1960 1970 1980 1990 2000
L
es

s
th

a
n

H
S None or preschool 0 years 0.7 0.8 0.6 0.8 0.5 0.6 0.7

Grade 1, 2, 3, or 4 4 years 3.3 2.9 2.0 0.7 0.6 0.3 0.3
Grade 5, 6, 7, or 8 8 years 34.3 18.5 14.9 7.4 3.7 2.1 2.7
Grade 9 9 years 7.4 6.1 6.2 4.3 2.6 2.0 2.0
Grade 10 10 years 9.4 8.7 7.1 5.7 3.1 3.1 2.4
Grade 11 11 years 5.7 6.9 6.2 4.7 3.6 3.2 2.7

H
S Grade 12 12 years 23.8 30.3 33.5 38.2 36.4 35.3 30.4

1 to 3 years of college 14 years 7.4 13.6 13.7 17.3 24.3 29.4 31.1

4+ years of college 18 years 7.8 12.1 15.7 20.8 25.1 24.0 27.6

Avg Years 10.4 11.5 12.0 12.9 13.6 13.7 13.9
Avg Years before HS 8.5 8.8 8.9 9.2 9.3 9.6 9.4
Avg Years HS 12.5 12.6 12.6 12.6 12.8 12.9 13.0
Avg Year Coll. 18.0 18.0 18.0 18.0 18.0 18.0 18.0

B On-the-job Human Capital Accumulation

This section describes how the model with on-the-job human capital accumu-
lation is calibrated. The list of parameters to calibrate is the same as for the
baseline model, with the addition of γ(si) for i = 1, 2, 3. Using the notations of
Section 3.1, we have

θ = (µ, σ, η, g, g2, g3, z2,2000, z3,2000, γ(s1), γ(s2), γ(s3)).

Others parameters, calibrated a priori, have the same values as in the baseline
case. The determination of θ requires to include into the objective function
described in Section 3.1 an additional set of conditions that will help in the
determination of the three additional parameters. Let

Âi,m,t(θ) = Li,t−m+1,t

denote the date t earnings of an age-m agent with education level i. Let Ai,m,t

denote its empirical counterpart, measured from IPUMS Census data. The
parameters are the solution to:

min
θ

∑
t∈T

(
Ê32,t(θ)− E32,t

)2

+
(
Ê21,t(θ)− E21,t

)2

+
∑

i=1,2,3

∑
m∈M

(
Âi,m,2000(θ)

Âi,m−5,2000(θ)
− Ai,m,2000

Ai,m−5,2000

)2

+ M(θ)>M(θ)

where T ≡ {1940, 1950, . . . , 2000}, M ≡ {30, 35, . . . , 55} and M(θ) is defined
in Section 3.1. Observe that the increases along the age profile of earnings are
used in the new component of the objective function. The relative levels of these
profiles are pinned down by the first set of restrictions on relative earnings.
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Table 1: Calibrated Parameters

Interpretation Parameters Parameters
2000 Calibration 1940 Calibration

length of schooling s1 = 9, s2 = 13, s3 = 18
length of life T = 60
Subjective discount factor β = 0.95
Interest rate r = 1/β = 1.05
Human capital technology η = 0.88 η = 0.89
Distribution of abilities µ = 2.16, σ = 0.62 µ = 1.45, σ = 0.69
Growth rates

Neutral technology g = 1.0104 g = 1.0070
HS biased technology g2 = 1.0045 g2 = 1.0046
College biased technology g3 = 1.0092 g3 = 1.0094

Level conditions
HS biased technology z2,2000 = 1.37 z2,1940 = 1.05
College biased technology z3,2000 = 1.78 z3,1940 = 1.02

Table 2: Matching Calibration Targets – Model and Data

Data Model

Enrollment rates 2000 (%)
Less than High School 13.4 13.4
High School but less than College 58.8 58.8
College or more 27.8 27.8

Share of time in total
cost of schooling 90% 90%

Growth rate of GDP per worker 2% 2%
Earnings ratios by schooling level See Figure 6
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Table 3: Decomposing the Role of Skill-Bias Technology and TFP - I

Baseline Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Years of Schooling
2000 13.85 13.16 13.14 12.55 13.16 12.97
1940 9.38 12.01 10.03 12.55 10.61 9.18
Ratio 1.48 1.10 1.31 1.00 1.24 1.41

Ratio of Relative
Earnings 2000/1940

College/HS (*) 1.38 1.38 1.00 1.00 1.17 1.38
HS/Less HS (**) 1.36 1.00 1.36 1.00 1.16 1.36

Average Growth (%)
GDP per Worker 2.00 1.26 1.96 1.18 1.84 0.64

Note – Exp. 1: No High-School bias i.e., g2 = 1.0 and g3 is adjusted such that g3/g2 remains

as in the baseline case. Exp. 2: No College bias i.e., g3 = g2 = 1.0045. Exp. 3: No technical

bias e.g., g2 = g3 = 1.0. Exp. 4: Half the High-School bias i.e., the growth rate of z2 is

divided by two and g3. Exp. 5: No TFP i.e., g = 1.0. (*) the ratio is Ê32,2000(θ)/Ê32,1940(θ);

(**) the ratio is Ê21,2000(θ)/Ê21,1940(θ).
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Table 4: Sensitivity Analysis – Elasticity of Substitution across Skill Groups (ρ)

Exercise p2,1940 p3,1940 z2(2000) z3(2000) z(2000) µ
z2(1940) z3(1940) z(1940) σ

g2 g3 g η

ρ = 1.0, Baseline 0.0863 0.0043 1.3707 1.7761 1.0000 2.1652

1.0473 1.0243 0.5384 0.6236

1.0045 1.0092 1.0104 0.8770

ρ = 1.0, Steady State 0.1459 0.0058 1.3620 1.7740 1.0000 1.6354

1.0663 1.0530 0.5011 0.6690

1.0041 1.0087 1.0116 0.8507

ρ = 0.8, Steady State 0.1459 0.0058 1.5869 2.3278 1.0000 1.6354

1.1562 1.1854 0.5504 0.6690

1.0053 1.0113 1.0100 0.8507

ρ = 0.6, Steady State 0.1459 0.0058 2.0474 3.6611 1.0000 1.6354

1.3232 1.4440 0.6437 0.6690

1.0073 1.0156 1.0074 0.8507

ρ = 0.4, Steady State 0.1459 0.0058 3.4080 9.0558 1.0000 1.6354

1.7330 2.1429 0.8805 0.6690

1.0113 1.0243 1.0021 0.8507
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Figure 1: The Evolution of Educational Attainment for White Males, 25-29
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Note – See the appendix for the source of data and definitions.

Figure 2: The Evolution of Educational Attainment
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Note – See the appendix for the source of data and definitions. Women are represented with

markers and men with solid lines.
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Figure 3: Ratio of Weekly Earnings for Educational Groups – White Males
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Note – See the appendix for the source of data and definitions.
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Figure 4: Individual Decision Problem
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Figure 5: The Distribution of Schooling Attainment
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Figure 6: Relative Weekly Earnings – Model vs. Data

Note – The model data are represented with markers. The U.S. data are represented by solid

lines.

Figure 7: Educational Attainment – Model vs. Data
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Note – The model data are represented with markers. The U.S. data are represented by solid

lines.
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Figure 8: Average Years of Schooling – Model Calibrated 1940 vs. Data
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Figure 9: Decomposing the Role of Skill-Bias Technology and TFP - II
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Note – Exp. 1: No High-School bias i.e., g2 = 1.0 and g3 is adjusted such that g3/g2 remains

as in the baseline case. Exp. 2: No College bias i.e., g3 = g2 = 1.0045. Exp. 3: No technical

bias e.g., g2 = g3 = 1.0. Exp. 4: Half the High-School bias i.e., the growth rate of z2 is

divided by two and g3 is adjusted. Exp. 5: No TFP i.e., g = 1.0.
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Figure 10: Educational Attainment – Baseline vs. Life Expectancy Change
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Note – The baseline calibration data are represented with markers. The calibration with

increasing life expectancy is represented by solid lines.

Figure 11: Age Profile of Earnings – Model vs. Data
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Note – The U.S. data are represented with markers. The model data are represented by solid

lines. For each education group the model is normalized to equal the age-25 data point. See

appendix B for details.
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Figure 12: Educational Attainment with On-the-job Human Capital – Model
vs. Data
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Note – The model data are represented with markers. The U.S. data are represented by solid

lines.

Figure 13: Ratio of Weekly Earnings for Educational Groups – White Women
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Note – The source of data is the U.S. Census. We use the exact same approach as the one

described in Appendix A to build the series of relative earnings.
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