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Abstract. We analyze the optimal monetary policy in a pure endowment model with en-

dogenously segmented asset markets. To obtain variations in asset prices similar to the

ones that dominates US data, we study a model with stochastic risk aversion. The optimal

monetary policy turns out to depend on these shocks in a simple way. When risk aversion is

higher than average, so that price dividend ratios are lower that average, the optimal mon-

etary policy is to inject less money than average. In this sense, optimal monetary policy is

procyclical.
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We study optimal monetary policy in a pure exchange model with endogenously seg-

mented markets. We study how optimal monetary policy changes as risk aversion changes.

The shocks to risk aversion produce changes in the market price of risk. We concentrate

in these shocks because changes in the market price of risk arguably account for the larger

part of the changes in prices of aggregate portfolios. We show that in this context optimal

monetary policy is procyclical, i.e. when the market price of risk is high, so that asset prices

are low, the optimal monetary injections should be large.

The model is very similar to the one in Alvarez, Atkeson and Kehoe (2001), where, in

the spirit of the work by Baumol (1952) and Tobin (1956), agents must incur a …xed cost to

transfer money between the asset market and the goods market. This …xed cost leads agents

to trade assets and money only infrequently. In any given period only a fraction of agents

are currently actively trading. Thus the asset market is segmented in the sense that, when

the government injects money through an open market operation, only the currently active

agents are on the other side of the transaction and only their marginal utilities determine

asset prices rates.

When discussing asset pricing we focus on the interplay between monetary policy and

asset market segmentation. We analyze how optimal monetary policy changes in the pres-

ence of preference shocks. The preference shocks we analyze are changes in risk aversion.

We select this type of shocks based in the empirical literature such as Campbell and Shiller

(1988), Campbell (1991), Cambpell and Ammer (1993), Cochrane (1991), Cocrhane (2001),

that decomposes the sources of variability in the value of aggregate portfolios of equities.

This literature decomposes the variability of asset prices in changes in expected discounted

dividends, changes in interest rates and changes in the market price of risk. The …ndings

in this literature is that the largest share of the variance of price dividend ratios and unex-

pected stock returns is explained by changes in expected required returns, and in particular,

in the market price of risk.

The model is a standard cash-in-advance model except that agents must incur a …xed

cost to transfer money between the goods market and the asset market. The household

enters the beginning of each period with some cash in the goods market and then splits into

a worker and a shopper. The worker sells the current endowment for cash and the shopper

decides to either to buy goods with just the current real balances or incur the …xed cost

to transfer cash either to or from the asset market and then buy goods. The household’s

endowment and thus the household’s cash holdings are random and idiosyncratic.

The shopper follows a cuto¤ rule that de…ne zones of activity and inactivity for trading

cash and interest-bearing assets. Shoppers with high real balances incur the …xed cost and

transfer cash to the asset market, while shoppers with low real balances incur the …xed cost

and obtain cash from the asset market. Shoppers with intermediate real balances do not

incur the …xed cost and simply spend their current real balances. Over time each household

stochastically cycles through the zones of activity and inactivity as their idiosyncratic shocks
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vary. If the …xed cost is zero all agents are active and the model reduces to the standard

one in Lucas (1984).

Optimal monetary policy in this model depends on risk aversion. In this model agents

trade, in a costly way, to insure indiosyncratic income shocks. In‡ation, reduces the real

income of all agents, so in the margin it compresses the income distribution and hence it

reduces the need to use costly insurance. Of course if in‡ation is too large, all agents will

have to trade: they will insure all the idiosyncratic risks, but will incur in lots of transaction

costs. The optimal in‡ation rate balances these two forces. In this model in‡ation does

not reduces total consumption, it just redistributes income across agents. Risk aversion

has two opposite e¤ects on the e¤ect of in‡ation on welfare. On the one hand, the more

risk averse agents are, the more agents trade, and hence the less they need of the reduction

in cross sectional income dispersion that a small in‡ation produces. On the other hand,

the more risk averse agents are, the more they value insurance. It turns out that, because

the large impact that …xed cost have, the …rst e¤ect dominates and hence the more risk

averse agents are, the smaller the money injections are. Since high risk aversion leads to low

prices of risky assets and leads to smaller money injections, the optimal monetary policy is

procyclical.

In terms of the literature our paper is clearly related to the early work by Baumol

(1952) and Tobin (1956). Jovanovic (1982), Romer (1986), and Chatterjee and Corbae

(1992) developed general equilibrium versions of these models and used them to study how

di¤erent constant in‡ation rates a¤ect the steady state. There is also an extensive literature

that dates back at least to Merton (1987) that considers asset market segmentation in

models without money. See, for example, Hirshleifer (1988), Aiyagari and Gertler (1991),

Cuny (1993), Allen and Gale (1994), Balasko, Cass and Shell (1995), Saito (1996) and

Basak and Cuoco (1998) and the references cited therein. In contrast to all of these studies,

however, this one examines optimal monetary policy with an emphasis on its relationship

with asset prices.

1. The economy

The model is almost identical to the one use in Alvarez, Atkeson and Kehoe (2001).1

We begin with a one country cash-in-advance economy with an in…nite number of periods

t = 0; 1; 2; : : : ; a government, and a continuum of households of measure 1. Trade in this

economy occurs in two separate locations: an asset market and a goods market. In the

asset market, households trade cash and bonds which promise delivery of cash in the asset

market in the next period, and the government introduces cash in the asset market via

1There are two di¤erences in the model in this paper: there are aggregate shocks and that the …xed cost
of trading is speci…ed in terms of utility, as opposed to goods. The …rst di¤erence is to be able to analyze
changes in asset prices. The second is to be able to produce analytical approximations to better understand
optimal monetary policy.
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open market operations. In the goods market, households use cash to buy goods subject

to a cash-in-advance constraint and households sell their endowments for cash. Households

incur a …xed cost of ° in utility for each transfer of cash between the asset market and the

goods market: Except for this …xed cost the model is a standard cash-in-advance model as

in Lucas (1984).

This economy has two four sources of uncertainty: idiosyncratic shocks to households’

endowments, and three aggregate shocks: money growth, endowments and risk aversion. To

simplify the exposition we abstract until the last section of the shocks in aggregate output

and risk aversion since the strategy to solve for equilibrium allocations does not depend

in on these shocks. The timing within each period t ¸ 1 is illustrated in Figure 1. We

emphasize the physical separation between markets by placing the asset market in the top

half of the picture and the goods market in the bottom half. Households enter the period

with the cash P¡1y¡1 they obtained from selling their endowments at t ¡ 1; where P¡1 is

the price level and y¡1 is their idiosyncratic random endowment at t¡ 1. The government

conducts an open market operation in the asset market which determines the realization of

money growth ¹ and the current price level P:

Each household then splits into a worker and a shopper. The worker sells the household

endowment y for cash Py and rejoins the shopper at the end of the period. The shopper

takes the household’s cash P¡1y¡1 with real value m = P¡1y¡1=P and shops for goods. The

shopper can choose to pay the …xed cost ° to transfer cash Px with real value x to or from

the asset market. This …xed cost ° is in terms of utility. If the shopper pays the …xed cost

then the cash in advance constraint is c = m+ x; otherwise this constraint is c = m:

Each household also enters the period with bonds that are claims to cash in the asset

markets with payo¤s contingent on both its idiosyncratic endowment y¡1 and the rate of

money growth ¹ in the current period. This cash can either be reinvested in the asset

market or, if the …xed cost is paid, can be transfered to the goods market. In addition,

if the …xed cost is paid, then cash from the goods market can be transfered to the asset

market and used to buy new bonds. In Figure 1, letting B denote the current realization

of the state-contingent bonds and
R
qB0 the household’s purchases of new bonds, the asset

market constraint is B =
R
qB0 + Px if the …xed cost is paid and B =

R
qB0 otherwise. At

the beginning of period t+1; this household starts with cash Py in the goods markets and

contingent bonds B0 in the asset market.

In equilibrium some households choose to pay the …xed cost to transfer cash between the

goods and asset markets while others do not. We refer to households that pay the …xed cost

as active and refer to households who do not as inactive. Households with either su¢ciently

low real balances or su¢ciently high real balances are active. The households with low real

balances transfer cash from the asset market to the goods market while those with high

real balances transfer cash in the opposite direction. Households with intermediate levels

of real balances are in a zone of inactivity and simply consume their current real balances.
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In Figure 1 and the body of the paper we assume that the shopper’s cash-in-advance

constraint binds and that in the asset markets households hold their assets in interest-

bearing securities rather than cash. In Appendix A we provide su¢cient conditions for this

assumption to hold. In the rest of the section we ‡esh out this outline of the economy.

Each household’s endowment y is independent and identically distributed across house-

holds and across time with distribution F which has density f: Let Y =
R
yf(y)dy be the

constant aggregate endowment. Let yt = (y0; : : : ; yt) denote a typical history of individual

shocks up through period t and f(yt) = f(y0)f(y1) : : : f(yt) the probability density over such

histories. Let Mt denote the aggregate stock of money in period t; and let ¹t = Mt=Mt¡1

denote the growth rate of that money supply. Let ¹t = (¹1; : : : ; ¹t) denote the history of

money growth shocks up through period t; and let g(¹t) denote the probability density over

such histories:

To make all households identical in period 0 we need to choose the initial conditions

carefully. In period 0; households have ¹B units of government debt, which is a claim on
¹B dollars in the asset market in period 0. In this period there is no trade in goods and

households simply trade bonds. In period 1 households also have y0=¹1 real balances in the

goods market where y0 also has distribution F and ¹1 is the money growth shock at the

beginning of period 1:

The government issues one-period bonds with payo¤s contingent on the aggregate state

¹t. In period t, given state ¹t; the government pays o¤ outstanding bonds B (¹t) in cash and

issues claims to cash in the next asset market of the form B(¹t; ¹t+1) at prices q(¹t; ¹t+1).

The government budget constraint in period t ¸ 1; given state ¹t is

B(¹t) =M
³
¹t

´
¡M(¹t¡1) +

Z

¹t+1

q(¹t; ¹t+1)B
³
¹t; ¹t+1

´
d¹t+1:(1.1)

In period 0; this constraint is ¹B =
R
¹1
q(¹1)B (¹1) d¹1:

In the asset market in each period and state, households trade a complete set of one-

period bonds that have payo¤s next period which are contingent both on the aggregate

event ¹t+1 and their endowment realization yt. An household in t with aggregate state ¹t

and individual shock history yt¡1 purchases B
³
¹t; ¹t+1; y

t¡1; yt
´

claims to cash that pay o¤

in the next period contingent on the aggregate shock ¹t+1 and the household’s endowment

shock yt: We let q(¹t; ¹t+1; yt) be the price of such a bond that pays one dollar in the asset

market in period t+1 contingent on the relevant events. Because individual endowments are

independent and identically distributed, we assume that these bond prices do not depend

on the individual shock history yt¡1.

Instead of letting each household trade in all possible claims contingent on other house-

holds endowments, we suppose that each household trades only in claims contingent on the

household’s own endowment with the …nancial intermediary. This intermediary buys gov-

ernment bonds and trades in the household-speci…c contingent claims. This latter approach

is much less cumbersome than the former and yields the same outcomes. Speci…cally, the
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intermediary buys government bonds B(¹t+1) and sells household-speci…c claims of the form

B (¹t+1; yt) to all the households to maximize pro…ts for each aggregate state ¹t+1

Z

yt
q(¹t+1; yt)B

³
¹t+1; yt¡1; yt

´
f(yt) dyt ¡ q(¹t+1)B

³
¹t; ¹t+1

´

subject to the constraint B(¹t+1) =
R
yt B (¹

t+1; yt) f(yt) dyt: From arbitrage it follows that

q(¹t+1; yt) = q(¹
t+1)f(yt)

Consider now the problem of an individual household. Let P (¹t) denote the price level

in the goods market in period t: In the goods market, in each period t ¸ 1; households

start with real balances m(¹t; yt¡1). They then choose transfers of real balances between

the goods market and the asset market x(¹t; yt¡1); an indicator variable z(¹t; yt¡1) equal to

zero if these transfers are zero and one if they are not and consumption c(¹t; yt¡1) subject

to the cash-in-advance constraint

c(¹t; yt¡1) = m(¹t; yt¡1) + x(¹t; yt¡1)z(¹t; yt¡1);(1.2)

where in (1.2) at t = 1; the term m(¹t; yt¡1) is given by y0=¹1: New money balances in

period t+ 1 are given by m (¹t+1; yt) = P (¹t)yt=P (¹t+1):

In the asset market, each period households start with contingent claims B (¹t; yt¡1) to

cash delivered in the asset market. They purchase new bonds and make cash transfers to

or from the goods market subject to the sequence of budget constraints for t ¸ 1

B
³
¹t; yt¡1

´
=

Z

¹t+1

Z

yt
q(¹t; ¹t+1)B

³
¹t; ¹t+1; y

t¡1; yt
´
f(yt) d¹t+1dyt+(1.3)

+P (¹t)x(¹t; yt¡1)z(¹t; yt¡1):

In period t = 0; this asset market constraint is ¹B =
R
¹1

R
y0
q(¹1)B (¹1; y0) f(y0)dy0d¹1:

Assume that both consumption and real bond holdings B(¹t; yt¡1)=P (¹t) are uniformly

bounded by some large constants.

The problem of consumers is to maximize utility

1X

t=0

¯t
Z Z h

U
³
c(¹t; yt¡1)

´
¡ °z(¹t; yt¡1)

i
g(¹t)f(yt¡1) d¹tdyt¡1(1.4)

subject to the constraints (1.2) – (1.3).

The resource constraint is given by
Z
c(¹t; yt¡1)f(yt¡1) dyt¡1 = Y(1.5)

for all t; ¹t, and the money market clearing condition is given by

M(¹t)=P (¹t) =
Z ³
m(¹t; yt¡1) + x(¹t; yt¡1)z(¹t; yt¡1)

´
f(yt¡1) dyt¡1(1.6)

for all t; ¹t: An equilibrium is de…ned in the obvious fashion.
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2. Characterizing equilibrium

Here we solve for the consumption and real balances of active and inactive households.

We then characterize the link between the consumption of active households and asset

prices.

Throughout we suppose that the cash-in-advance constraint always bind and the house-

holds hold only interest-bearing securities in the asset market. Under this supposition, a

household’s decision to pay the …xed cost to trade at date t a¤ects only its current con-

sumption and bond-holdings and does not directly a¤ect the real balances it holds in the

goods market at later dates.

Inactive households simply consume the real balances they currently hold in the goods

market. More interesting is the consumption of active households. Since there is a complete

set of state contingent bonds, once a household pays the …xed cost it equates its intertem-

poral marginal rate of substitution to that of other active households. Hence, since all

households are identical ex-ante, all active households have a common consumption level

cA(¹
t) that only depends on the aggregate money shock ¹t and not on their idiosyncratic

endowments.

We …rst construct the zones of activity and inactivity for an arbitrary consumption level

cA and then use the resource constraint to determine the equilibrium level. De…ne the

function

h(m; cA) = U(cA)¡ U (m)¡ U 0(cA) [cA ¡m]¡ °:(2.1)

Intuitively, this function measures the net gain to a household from switching from being an

inactive household with consumption m to an active household with consumption cA: The

…rst two terms measure the direct utility gain within the current period from the switch

while the third term measures the cost in utility terms of the required transfer of real

balances from the asset market. Fixing cA; it is optimal for a household with real balances

m to trade and consume cA if h is positive and not to trade and consume m if h is negative.

Note that h is strictly convex in the argument m; it attains its minimum at m = cA; and is

negative at this minimum if ° > 0: Thus, h typically crosses zero twice.

De…ne the cuto¤s yL (cA; ¹) ; yH (cA; ¹) as the solutions to

h(
y

¹
; cA) = 0;(2.2)

when both of these solutions exist. If (2.1) is negative for all m < cA; set yL (cA; ¹) = 0

while if it is negative for all m > cA; set yH (cA; ¹) = 1: This cuto¤ rule is illustrated

in Figure 2 (ignore, for now, the curve labelled quadratic approximation to h): Note that

as the …xed cost ° goes to zero, yL (cA; ¹) =¹ and yH (cA; ¹) =¹ converge to cA; so that all

households become active.

The next Proposition develops an convenient analytical approximation for threshold

functions yi (¹; cA) solving h (y=¹; cA) = 0 given cA:
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Proposition 1. . Let yi (¹; cA) for i = H;L be a solution of h (y=¹; cA) = 0; then we can

write

yi (¹; cA) =¹ = cA §¢+ o (°) ; where ¢ ´
s

2 °

¡U 00 (cA)

and where the approximation error o (°) is of order smaller than °1=2; i.e. lim°!0 o (°) =°1=2 =

0: If U 000 ¸ 0 everywhere, then

yL (¹; cA) =¹ ¸ cA +¢ and yH (¹; cA) =¹ · cA +¢;

and if U 000 · 0 everywhere, the inequalities are reversed. Thus if U is quadratic the approx-

imation is exact, i.e. o = 0.

This proposition has an important corollary that shows that the range of inactivity

widens a lot for small changes in the …xed cost when ° is small.

Corollary 2. Consider yL (¹; cA) and yH (¹; cA) as functions of °: Recall that they are

equal for ° = 0: Then we have

dyH (¹; cA) =¹

d°
j°=0 = +1 and

dyL (¹; cA) =¹

d°
j°=0 = ¡1:

This corollary is similar to the results obtained by Abel and Eberly (1996 and 1998) in

investment models with irreversibilities and …xed cost. Notice that we can also write the

approximation as fraction of cA; i:e: as

y (¹; cA) =¹ = cA

0
@1§

s
2 ~°

¾

1
A(2.3)

where ~° ´ °=U 0 (cA)

cA
and ¾ ´ ¡cAU 00 (cA)

U 0 (cA)

The terms on this approximation are easily interpreted. The term °=U 0 (cA) is the …xed

cost, converted into consumption units (recall ° is in utility units). Hence ~° is the …xed

cost, relative to consumption of active agents. The term ¾ is the coe¢cient of relative

risk aversion of active agents. The result are as expected: the width of the inaction region

increases with the …xed cost and decreases with the relative risk aversion. Figure 2 illustrates

how good this approximation is plotting h for a utility function U with a constant relative

risk aversion coe¢cient ¾ and its quadratic approximation. The …gure uses ~° = 0:005; i.e.

half of one percent, and ¾ = 6: Notice that the roots of h and its approximation are almost

indistinguishable.

Given this form for the zones of activity and inactivity, we use the resource constraint

to determine the equilibrium values of active households’ consumption and corresponding

cuto¤s as follows. The cash-in-advance constraints together with constraints (1.5) and
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(1.6) imply that the price level is P (¹t) = M(¹t)=Y; the in‡ation rate is ¼t = ¹t; real

money holdings are m(¹t; yt¡1) = yt¡1=¹t and the consumption of inactive households is

c(¹t; yt¡1) = yt¡1=¹t: Substituting the inactive household’s consumption into the resource

constraint (1.5) and using the cuto¤ rules de…ned in (2.2) gives

cA[F (yL) + 1¡ F (yH)] +
1

¹t

Z yH

yL
yf(y)dy = Y(2.4)

where we have suppressed explicit dependence of cA; yH ; and yL on ¹t: Clearly, these

cuto¤ points and consumption levels of active households depend only on ¹t; while the

consumption level of inactive households depends only on (¹t; yt¡1):

Fixing ¹t ¸ 1 and using (2.2) to solve for yL and yH as functions of cA; it is clear that

the left hand side of (2.4) is continuous and strictly monotonic in cA. Thus any solution to

these equations for the equilibrium values of active households’ consumption and cuto¤s is

unique: These arguments give the following. (For details, see Appendix A.)

Proposition 3. The equilibrium consumption for households is given by

c(¹t; yt¡1) =

8
<
:
yt¡1=¹t if yt¡1 2 (yL (¹t) ; yH (¹t))
cA (¹t) otherwise

where the functions yL (¹) ; yH (¹) ; cA (¹) are the solutions to (2.2) and (2.4).

In our analysis of asset prices, is useful to use the sequence of budget constraints (1.3)

to substitute out for household’s bond holdings and replace these constraints with a single

date 0 constraint on households transfers of cash between the goods and asset markets.

As we show in Appendix A, date zero dollar asset prices are determined by the …rst order

condition for active households

¯tU 0(cA(¹t))g(¹
t) = ¸Q(¹t)P (¹t);(2.5)

where ¸ is the multiplier on households’ date zero budget constraint and Q(¹t) is the price

in dollars in the asset market at date 0 for a dollar delivered in the asset market at date t

in state ¹t. Since all households are identical in period 0; the multipliers in the Lagrangian

are the same for all of them.

2.1. Active agent’s consumption and money injections

In this section we study how money injections a¤ect the consumption of active house-

holds. We begin with a example with a discrete distribution of y and then move to the

analysis of continuous distributions.

Consider …rst a simple example in which y takes on three values y0 < y1 < y2; with

probabilities f0; f1; f2; respectively. We conjecture an equilibrium in which, when money

growth is ¹¹; households with the central value of the endowment y1 choose not to trade
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and those with low and high endowments y0 and y2 choose to trade. Under this conjecture,

for money growth shocks ¹ close to ¹¹; from the resource constraint, active households each

consume an equal share of the active households’ aggregate endowment plus the in‡ation

tax levied on inactive households minus the …xed cost, or

cA(¹) =
y0f0 + y2f2
f0 + f2

+ (1¡ 1

¹
)
y1f1
f0 + f2

:(2.6)

The corresponding cuto¤s yL (cA (¹) ; ¹) ; yH (cA (¹) ; ¹) are found from (2.2). This con-

jecture is valid as long as y0 < yL (cA (¹¹) ; ¹¹) < y1 < yH (cA (¹¹) ; ¹¹) < y2:

Clearly, an increase in the money growth rate ¹ raises the in‡ation tax levied on each

inactive household’s real balances. In equilibrium, these in‡ation tax revenues must go to

active households. In this example, the number of active households does not vary with the

money injection, so the consumption of each active household increases. Speci…cally,

dcA
d¹

=
1

¹2
y1f1

(f0 + f2)
;(2.7)

which is the ratio of the total consumption of inactive households to that of active house-

holds.

Consider next the case in which y has a continuous density. Di¤erentiating (2.2)–(2.4)

gives

dcA
d¹

f[F (yL) + 1¡ F (yH)](2.8)

¹f(yL)

Ã
cA ¡ yL

¹

!
´L ¡ ¹f(yH)

Ã
cA ¡ yH

¹

!
´H

)

=
1

¹

Z yH

yL

y

¹
f(y) dy +

Ã
yL
¹

¡ cA
!
f(yL)

yL
¹
+

Ã
cA ¡ yH

¹

!
f(yH)

yH
¹

where ´i = U
00(cA)(cA ¡ yi=¹)=[U 0(cA)¡ U 0(yi=¹)]: From (2.2) it follows that yL=¹ < cA <

yH=¹: Thus, ´H and ´L are positive and so is the term in braces on the left side of (2.8).

On the right side of (2.8), the …rst term is positive and the last two are negative, so without

further restrictions, the sign of the right side of (2.8) is ambiguous. The …rst term measures

the e¤ect of the in‡ation tax on the consumption of inactive households, holding …xed the

zone of inactivity. The last two terms measure the change in the consumption of inactive

households that results from the change in the zone of inactivity. The fraction f(yL) of

households at the lower edge of the zone with real balances yL=¹ become active and the

fraction f(yH) of households at the upper edge of the zone with real balances yH=¹ become

inactive households. As long the number of households at these edges is not too large the

consumption of active households increase.

To understand the e¤ects of the growth rate of money ¹ on active agents consumption

cA; we use the analytical approximation for the thresholds yi (¹; cA) and solve the remaining
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part of the model, i.e. we replace the approximation for yi (¹; cA) of Proposition 1 to obtain

the following equation for active agent’s consumption cA (¹) :

¹y = cA (¹) [F ((cA (¹)¡¢)¹) + 1¡ F ((cA (¹) + ¢)¹)](2.9)

+
Z (cA(¹)+¢)¹

(cA(¹)¡¢)¹

y

¹
dF (y)

We …rst consider the case where y has symmetric distribution, with a p.d.f. that is increasing

at the left of its mean value, and decreasing at the left. Speci…cally we consider a distribution

of y with c.d.f. F with support [y1; y2] that satis…es:

F (¹y ¡ x) = 1¡ F (¹y + x)

for all ¹y ¡ x in the support. Notice that symmetry implies that F (¹y) = 1=2 and whenever

F is di¤erentiable, its p.d.f. f; satis…es f (¹y + x) = f (¹y ¡ x) : It should not be surprising

that with the symmetry in the distribution F and in the thresholds implied by a quadratic

utility, active agents consume the average income ¹y if there is no in‡ation.

Proposition 4. . If y is symmetric around ¹y then cA (¹) = ¹y at ¹ = 1:

The next proposition analyzes the e¤ect of monetary expansions on cA (¹) : In the sym-

metric case, at least for small in‡ation rates, cA is increasing in ¹: As explained above

there are two e¤ects ¹ on cA. One e¤ect is that as ¹ increases, the real income of the non-

active agents is reduced, and hence cA must increase. The other e¤ect is that an increase in

¹ increases the number of non-active agents. This e¤ect tends to decrease the consumption

of active agents. In the symmetric case, with a p.d.f. f with a maximum in ¹y the …rst

e¤ect dominates. This e¤ect dominates because, with the assumed shape of f; there are

relatively few agents close edges of the inaction region, relative to the agents at the center

of this region. That is, in terms of the discussion in the paragraph just below the expression

for dcA=d¹ (2.8) , f (yL) and f (yH) are su¢ciently “small”. In the next proposition we

assume that F is symmetric and convex for y below ¹y: This means that its p.d.f. f will be

increasing below ¹y and decreasing above ¹y:

Proposition 5. . Let U quadratic, y be symmetric.. Furthermore assume that F is

convex for y · ¹y; Assume that yH (¹) · y2: Then cA (¹) is weakly increasing in ¹ at ¹ = 1:

If F is strictly convex in (yL (1) ; ¹y) then dcA (¹) =d¹ > 0 at ¹ = 1:

The next example uses a uniform distribution, and hence it violates the assumption

from the previous proposition that F is convex below ¹y: In this case cA (¹) is constant, at

least for a range of values around ¹ = 1 so that the thresholds yH (¹) and yL (¹) are in

the support. In this example the density f is constant, so, in terms of the discussion above

(2.8), there are many agents shifting between active and non-active.
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Uniform Example. Take y to be uniform in [y1; y2] ; and denote its density f = 1= (y2 ¡ y1) : Then,

cA (¹) = ¹y as long as yH (¹) · y2:

We now introduce a generalization of the uniform example. In this generalization there

is a mass point at ¹y (1¡ ") : This example allows to set parameters so that y has a c.d.f.

F which is symmetric and strictly convex for y · ¹y. In this case Proposition 5 that ensures

that dcA=d¹ > 0: This example allows also to set parameters so that F is not symmetric, a

case that will be of interest to analyze optimal monetary policy and to compare with other

distributions that we solve numerically, such as log-normal, where mean and median doe

not coincide.

Main Example. Assume that y is distributed as

y =

8
<
:

¹y (1¡ ") with probability ¼

uniform [y1; y2] with probability 1¡ ¼(2.10)

where (y1 + y2) =2 = ¹y:

In this example, at least for ¹ close to 1 and " small, a fraction ¼ of agents are always

non-active since they will have a real income close to ¹y:

Proposition 6. . Assume utility is quadratic and that the endowment is as in (2.10). As

long as yL (¹) < ¹y (1¡ ") < yH (¹) ; consumption of active agents is increasing in ¹ and

given by:

cA (¹) =
¹y

1¡ ¼

Ã
1¡ ¼ (1¡ ")

¹

!
:

To get some intuition for this proposition set " = 1; so the distribution is symmetric

and F is convex for y below ¹y: In this case, as suggested by our previous propositions,

cA (¹) = ¹y and dcA=d¹ > 0 at ¹ = 1: For all ¹ in the range speci…ed in the proposition,

cA is increasing in ¹. In particular, dcA=d¹ = ¹y¼ (1¡ ") = (1¡ ¼)¹2 > 0; which is, itself,

increasing in ¼: The intuition for the last result is clear: as ¼ increases, a larger fraction of

income is controlled by non-active agents, hence the in‡ationary taxes levied on them and

redistributed to the active agents are higher.

3. Optimal Monetary Policy

In this section we analyze the optimal monetary policy. SUMMARIZE RESULTS.

To analyze the optimal monetary policy we continue with the assumption that the cash

in advance constraint binds. In this case equilibrium allocations, given ¹; are optimal.

To see this, de…ne L (¹) as the expected utility of agents starting the period with a cross

section distribution on nominal balances described by the c.d.f. F and in‡ation rate ¹: To

verify that the equilibrium is constraint optimal, assume that, for a given ¹; the planner

can choose cA (¹) ; yL (¹) and yH (¹) ; so that, implicitly, it has the same trading technology
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as the agents. We show that the resulting constraint optimal allocation is the same as the

equilibrium allocation. Let

L (¹) ´ max
cA;yL;yH

Z yH

yL
U (y=¹) f (y) dy + [F (yL) + 1¡ F (yH)] (U (cA)¡ °)(3.1)

subject to

¹y = [F (yL) + 1¡ F (yH)] cA +
Z yH

yL

y

¹
f (y) dy:

We have:

Proposition 7. . The planner’s choice of cA; yH and yL solving (3.1) satisfy

h (yi (¹) =¹; cA (¹)) = 0

for i = L;H; and hence they coincide with the market allocations.

This result should not be surprising, given that the planner has access to the same

technology as the agents. The proof proceeds by showing that the …rst order conditions

for yi for i = H;L and cA imply that h (yi=¹; cA) = 0: Given that market equilibrium

is characterized by a static problem and that, for each ¹; the allocations are constraint

e¢cient, we use the envelope theorem to derive the e¤ect ¹ on the expected utility L (¹).

The only e¤ect of monetary policy in this model is to change the pre-trade distribution of

real endowments. A straightforward application of the envelope theorem gives:

@L (¹) =@¹ =
1

¹2

ÃZ yH(¹)

yL(¹)
[U 0 (cA (¹))¡ U 0 (y=¹)] ydF (y)

!
(3.2)

This equation has the following interpretation. As ¹ increases, the pre-trade distribution of

real endowments decreases stochastically. This reduces the consumption of each non-active

agent in an amount proportional to his nominal income. On the other hand, this income

goes to active agents, who have a common consumption cA (¹) : Thus, for each level of the

nominal income y; the we compare U 0 (cA (¹)) with U 0 (y=¹) ; this di¤erence if multiplied

by y because the transfer is proportional to the nominal income. Finally we integrate these

di¤erences using the distribution of pre-trade income F for the non-active agents.

We let ¹¤ denote the optimal in‡ation rate, i.e. the value of ¹ that makes dL (¹) =d¹ =

0: We want to characterize ¹¤ as a function of the givens of the model, i.e. the utility

function U; the …xed cost ° and the distribution of the endowments F: It should be clear

from our previous analysis of cA (¹) that the distribution of endowments y; conditional

on agents being non-active, is crucial to understand ¹¤: We make this point using a simple

example with a stable distribution F and a quadratic utility U: For this example we assume

that ¹ is a range so that the inaction region is contained in [y1; y2] ; the support or y, i.e.e,.

y1 < yL (¹) < yH (¹) < y2: In both cases, straightforward algebra gives that (3.2) becomes

@L (¹) =@¹ =
¡U 00 (cA)
¹2

Z (cA+¢)¹

(cA¡¢)¹
[y=¹¡ cA (¹)] yf (y) dy
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Example: e¤ect of F in optimal ¹¤. Assume that F (y) = ± (y1¡® ¡ 1) = (1¡ ®) ¡
· with support in [y1; y2] for some constants ± > 0; · and ® > 0; so that f (y) = ±y¡®: Then

for ¹ such that y1 < yL (¹) < yH (¹) < y2 :

dL (¹)

d¹
=

8
>><
>>:

> 0 if ® 2 (0; 1]
= 0 if ® = 1

< 0 if ® 2 (1; 2]

(see the appendix for the details).

We now interpret and explain this example. If dL=d¹ > 0 for all ¹ in this range, then

it must be that the optimal in‡ation ¹¤ is even higher than the in‡ation rate that makes

the inaction region to stretch up to the upper bond of the domain of y; i.e., yH (¹) =

y2: Conversely, if dL=d¹ < 0 in this range then it must be that the optimal in‡ation

¹¤ negative, even lower than the in‡ation rate that makes yL (¹) = y1: The intuition

for these results is relatively simple. Recall that in‡ation reduces every non-active agents

consumption by an amount proportional to his nominal income, and increases the common

level of all active agents consumption. The impact in the expected utility depends on the net

e¤ect. Setting ® to di¤erent values, changes the relative fractions (densities) of non-active

agents with di¤erent nominal incomes. As ® increases, the fraction of non-active agents

with lower nominal incomes -and hence high marginal utility- increases. Since non-active

agents with high nominal income have low marginal utility, as ® increases in‡ation increases

welfare by less; as ® < 1; in‡ation decreases welfare.

The distributions used in the previous example, except for the case of ® = 1 which gives

the uniform distribution, are not symmetric. If we consider symmetric distributions, with

a c.d.f. F convex for y · ¹y; the optimal in‡ation rate is positive, i.e. ¹¤ > 1: We have,

Proposition 8. . Assume that U is quadratic and y has support [y1; y2] and c.d.f. F that

is symmetric, di¤erentiable, convex for all y · ¹y; where ¹y is its mean. Then the optimal

in‡ation ¹¤ is positive, i.e. ¹¤ > 1: Furthermore assume that the range of inaction for ¹ = 1

is in the interior of the support, so that y2 > ¹y+¢: Then the optimal in‡ation is bounded,

i.e. ¹¤ < ¹¹ ´ y2= (¹y ¡¢).

First we give the intuition for the lower bound of ¹¤ > 1: Around the no in‡ation case, i.e.

¹ = 1; a small increase in ¹ makes the distribution of pre-trade real endowments, y=¹ more

concentrated. Then, relative to the ¹ = 1 case, this more concentrated distribution allows

to save in transaction costs. The intuition of why the ¹¤ is bounded is very simple. Suppose

that ¹ = ¹¹; a value large enough so that all agents are traders, hence the pre-trade real

distribution of endowments is so low that y2=¹¹ = ¹y ¡ ¢; i.e. the agent with the highest

endowment is indi¤erent between trading or not. Hence, with this high ¹ it is optimal for

all agents to be active and consume cA = ¹y. This allocation is dominated for the one with

¹ = 1; that has the same consumption of active agents, but where non-active agents are
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better o¤. To see this, consider the case of agents that, with ¹ = 1; have endowments close

to ¹y: Then it must the case that ¹¤ < ¹¹:

The next proposition analyzes (¹=U 0 (cA)) (dL=d¹) which measures the e¤ect on ex-ante

utility of a one percent increase in in‡ation, in units of consumption goods. Using the

approximation (2.3), we obtain

¹

U 0 (cA)

d2L

d¹d¾
j¹=1 = ¾

Z ¹y+¹y
p
2~°=¾

¹y¡¹y
p
2~°=¾

[y ¡ ¹y]
y

¹y
dF (y)

This expression is obtained from the quadratic and symmetric case, by replacing ¢ and

using that cA (1) = ¹y: For positive ° we have shown that the optimal in‡ation is positive,

i.e. ¹¤ > 1; so we know that (¹=U 0 (cA)) (dL=d¹) ¸ 0 at ¹ = 1: We are interested in

analyzing the e¤ect of risk aversion of the welfare e¤ects of in‡ation. Inspection of this

expression shows that risk aversion, ¾; has two di¤erent e¤ects. On the one hand, the more

risk averse agents are, the more important is in welfare terms the decrease in dispersion in

the pre-trader real income achieved by in‡ation. On the other hand, the more risk averse

agents are, there is more trade in equilibrium, i.e. higher risk aversion implies that the

inaction region is smaller, and hence there is less bene…ts of in‡ation. We show that, for

small ° the second e¤ects dominates, and hence (¹=U 0 (cA)) (d2L=d¹d¾) < 0; i.e. for higher

risk aversion, in‡ation increases welfare by less. That the second e¤ect dominates the impact

on dL=d¹ should not be surprising in view that we have shown that a small …xed cost can

have large e¤ects on the width of the inaction region.

Proposition 9. . Consider the case where F is symmetric, convex for y · ¹y and di¤eren-

tiable at its mean value ¹y: Then

¹

U 0 (cA)

d2L

d¹d¾
j¹=1 = ¡f (¹y)

q
4=¾2 + o (°)

where g (°) = o (°) means that lim°!0 g (°) =° = 0:

In the next proposition we return to the example described in (2.10) where utility is

quadratic, and the distribution F is described by the parameters ¼; "; and ¹f:

Proposition 10. . Let denote ¹¤
³
¢; ¹y; ¹f; ¼; "

´
the optimal monetary policy, i.e the value

of ¹ that solves

0 =
dL

d¹
=
¼

¹2
(U 0 (cA (¹))¡ U 0 (¹y=¹)) ¹y +(3.3)

1¡ ¼
¹2

Z (cA(¹)+¢)¹

(cA(¹)¡¢)¹
[U 0 (cA (¹))¡ U 0 (y=¹)] y ¹fdy

Then for ¼ large enough there is an interior solution. The optimal in‡ation ¹¤
³
¢; ¹y; ¹f; ¼; "

´

is increasing in ¢; increasing in ¹f; decreasing in ¼ and decreasing in ¹y: If " = 0; ¹¤ >

1: Moreover, if " > 0 and ¼ and ¢ ¹f are large enough, ¹¤ < 1:
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To understand this proposition let’s …rst consider the case where " = 0; so that the

distribution is symmetric. This case di¤ers from the uniform, in that there is a mass point

at the mean value ¹y: Expression (3.3) displays the two forces that lead to the optimal

in‡ation ¹¤: As shown in Proposition 8 the optimal in‡ation rate is positive in this case

since dL=d¹ > 0 for ¹ = 1: Indeed for ¹ = 1; as argue above cA (¹) = ¹y and hence (3.3) has

only the second term,

0 =
dL

d¹
= (1¡ ¼)

Z ¹y+¢

¹y¡¢
[U 0 (¹y)¡ U 0 (y)] y ¹fdy > 0

This expression is positive since it gives higher weights, i.e. higher y ¹f , to the higher

di¤erences of the marginal utilities U 0 (¹y)¡ U 0 (y) : The larger weights re‡ect, as explained

above, that redistributions induced by in‡ation are proportional to nominal income. Since

these weights are larger for large y; this expression is positive. This expression is increasing

in ¢ since, for larger inaction region, the di¤erence for the weights in the boundaries of

the inaction region are larger. Now we use expression (3.3) to explain the two forces that

determine ¹¤: As shown in Proposition 6, cA increases with ¹: This leads to a decrease in

dL=d¹; since the redistribution in favor of the active agents has a smaller marginal bene…t,

i.e. U 0 (cA (¹)) is smaller. The second force is that increases in ¹; reduce the consumption

of the inactive agents with nominal income ¹y; of which there is a mass point ¼, to ¹y=¹: This

increases their marginal utility, and hence decreases the bene…ts of distributing resources

away from them. We now argue that ¹¤ is increasing in ¢: Recall that at ¹ = 1 we argue

that dL=d¹ > 0; and furthermore that it is increasing in ¢: We also explain why dL=d¹ is

decreasing in ¹: The forces that make dL=d¹ increasing in ¢ also apply for ¹ > 1: Hence

for larger ¢; the optimal in‡ation ¹¤ is larger. Recall that, using the approximation (2.3)

that ¢ is increasing in the normalized …xed cost ~° and decreasing in risk aversion ¾: Hence

the optimal in‡ation rate ¹¤ is decreasing in ¾: Finally, for " > 0; then cA (¹) is smaller than

¹y even for ¹ = 1: This reduces the optimal in‡ation rate ¹¤; and even allows the possibility

of the in‡ation rate to be negative, i.e. ¹¤ < 1:

We end this section with a numerical example, where we verify that the optimal in‡ation

rate ¹¤ is increasing in the relative risk aversion coe¢cient ¾ and decreasing in the …xed cost

~°: The example has lognormal y, with ¾y denoting the standard deviation of log (y) ; and

with the mean of log normalized so that Ey = ¹y = 1: Appendix C gives the details of

the computations. The …xed cost ~° is expressed as in (2.3), in goods, by dividing it by

the marginal utility of the average endowment, and relative to the average endowment

¹y = 1: Preferences are given by a utility function U with constant relative risk aversion

¾: We use this example to illustrate that our approximations work very well, even though

the distribution of y is not symmetric - the median of y is smaller than its mean - and that

U is not quadratic – the utility function has U 000 > 0 everywhere. We set ~° = 0:005; ¾y =

0:075 and produce two sets of …gures, one for ¾ = 1 and one for ¾ = 6: The plot containing



Fernando Alvarez University of Chicago 18

cA (¹) ; yL (¹) =¹ and yH (¹) =¹ for each ¾ shows that these three functions are parallel

to each other, and that the di¤erence between cA (¹) and yL (¹) =¹ and the di¤erence

between yH (¹) =¹ and cA (¹) are approximately the same for each ¹; as the approximation

in Proposition 1 states. The magnitude of cA (¹) ¡ yL (¹) =¹ is essentially equal to the

approximation ¢ = ¹y (2 ~° = ¾)1=2of Proposition 1. Consider the case of ¾ = 1; then the

approximation gives ¢ = (1=100)1=2 = 0:1; and for ¾ = 2; we have ¢ = (1=600)1=2 »=
0:04; which are just the magnitudes of the di¤erences in the …gures. The plots labelled

utility display expected utility L (¹) for di¤erent values of ¹: From these two plots we can

see that the optimal in‡ation rate ¹¤ is negative and decreasing in ¾: For instance for

¾ = 1; is approximately ¡0:75 % a year and for ¾ = 6 it is approximately ¡1:25 % a

year. The plot labelled fraction of traders, displays F (yL (¹)) + 1¡ F (yH (¹)) for di¤erent

values of ¹: As expected, comparing these plots with the ones plotting expected utility, the

value that maximizes utility roughly coincides with the one that minimized the fraction of

traders, and hence the transaction costs. The fact that ¹¤ < 1 is because the distribution

of y is not symmetric, as analyzed in our previous examples.

4. Accounting for the variation in aggregate stocks prices and returns

We brie‡y review the literature that decomposes the variations on aggregate stock re-

turns. This serves as motivation for our choice of shocks.

Campbell (1991) shows that variation in unexpected excess returns of a stock can be

decomposed into variation in three components: unexpected future dividends, unexpected

future excess returns, and unexpected future interest rates. He estimates that the variations

in unexpected excess returns of broad stock indexes is accounted for variation in future

dividends and future expected returns, in approximately the same magnitude. He …nds that

variation in unexpected future interest rates is not important in accounting for unexpected

stock excess returns.

Campbell and Shiller (1988) and Cochrane (1991) shows that variation in dividend

price ratio of a stock can be decomposed into two components: the forecast of dividend

price ratios to future returns and the forecast of dividend price ratios to future returns. He

estimates that almost all the variation in price dividend ratios of aggregate stock portfo-

lios is accounted for the forecast of dividend price ratios on future returns. Furthermore,

Cochrane (2001) reviews the estimates in the literature, and conclude that dividend price

ratios forecast future excess returns, not just returns.

Both Campbell’s and Cochrane’s decompositions are obtained using the log-linear ap-

proximation for the identity de…ning returns introduced by Campbell and Shiller (1988).

This approximation writes the log return as the growth rate of dividends plus the current

dividend yield minus the discounted future dividend yield. Denoting stock prices by St; and

dividends by Dt; and returns by Rt+1 we have that Rt+1 = (St+1 +Dt+1) =St: A log-linear
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approximation to this equation gives

rt+1 = (dt+1 ¡ dt) + (dt ¡ st) + k ¡ ½ (dt+1 ¡ st+1)

where lowercase letters denotes logs of the corresponding uppercase letters, ½ is a constant

given by (S=D) = (1 + (S=D)) and k is constant of no interest.

We now obtain Campbell decomposition for innovations in excess returns. De…ning

the excess returns as et+1 ´ rt+1 ¡ it+1; where it+1 is the real interest rate, multiplying

et+j = rt+j ¡ it+1 by ½j; using the Campbell Shiller approximation, adding up the terms of

di¤erent t+ j, and taking limits

et+1 =
k

1¡ ½ +
1X

j=0

½j (dt+1+j ¡ dt+j)¡
1X

j=1

½jet+1+j ¡
1X

j=0

½jit+1+j :

Taking time t conditional expectationEt in both sides, and substracting from et+1, we obtain

Campbell’s decomposition. He estimates a monthly VAR for excess returns, interest rates,

and other variables useful to predict returns such as detrended interest rates and dividend

price ratios. Using the estimated VAR, Campbell computes the innovations and decomposes

the variance of unexpected returns on aggregate portfolios var (et+1 ¡Etet+1) by computing

the variance and covariance of each of the three in…nite sums of the left hand side. Campbell

(1991) Table 4, …nds that the variance of the innovations on future discounted sum of

dividends growth rates and the variance of the innovations on the future discounted sum of

excess returns are about 1/3 of the variance of innovations on excess returns, and negatively

correlated. He also …nds that the variance of the innovations in the discounted sum of future

interest rates is very small. Campbell and Ammer (1993) …nds that for the post war period

most of the variance of unexpected stock returns in accounted by changes in the sum of

discounted future excess returns.

Cochrane’s decomposition is also obtained by using a log-linear approximation intro-

duced by Campbell and Shiller (1988). Using this approximation the log of dividend price

ratios can be written as the discounted sum of future dividend growth rates minus the dis-

counted sum of future returns. In particular Cochrane’s decomposition is taking by using

Campbell and Shiller approximation, solving for st = pt and interating it forward, so that

st ¡ dt =
½k

1¡ ½ +
1X

j=0

½j (dt+1+j ¡ dt+j)¡
1X

j=0

½jrt+1+j :(4.1)

Multiplying both sides by the demeaned log dividend price ratios [st ¡ dt ¡ E (st ¡ dt)] ; and

taking expectations,

var (st ¡ pt) = cov
0
@st ¡ dt;

1X

j=0

½j (dt+1+j ¡ dt+j)
1
A ¡ cov

0
@st ¡ dt;

1X

j=0

½jrt+1+j

1
A :

Cochrane (1991) estimates each covariance approximating the in…nite sum by …nite sums,

say of 15 terms for annual data. Cochrane estimates the …rst covariance to be around
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zero for real data. Cochrane (2001) Tables 20.1 and 20.2, reviews the literature on pre-

dictability of excess returns, where dividend price ratios are useful to predict future excess

returns, especially for multiperiod excess returns, but not useful to predict future dividend

growth rates -either one or multiperiod ones- Alternatively, buy adding and substracting
P1
j=0 ½it+1+j on the right hand side of st ¡ dt, using the de…nition of excess returns et; we

can write

var (st ¡ dt) = cov

0
@st ¡ dt;

1X

j=0

½j (dt+1+j ¡ dt+j)
1
A ¡ cov

0
@st ¡ dt;

1X

j=0

½jet+1+j

1
A

¡cov
0
@st ¡ dt;

1X

j=0

½jit+1+j

1
A :

Dividing both sides of this equation of var (st ¡ dt) we obtain that 1 equals the sum of OLS

coe¢cient of pride dividends on discounted sum of future growth rate of dividends, dividend

price ratios and interest rates. Regressions of long term excess returns, i.e.
PJ
j=0 et+1+j on

dividend price ratios dt ¡ st produces coe¢cient with values close to 1 for J = 5 or 7 (see

Tables 20.2 and 21.2 in Cochrane 2001, and Table 5 in Campbell and Cochrane 1998).

5. Asset prices and Optimal Monetary Policy

Now we introduce two aggregate shocks in the model: shocks to aggregate output ¹y and

shocks to risk aversion ¾. Using our previous results for the optimal in‡ation rate, we show

that monetary policy is procyclical, in the sense that money injection, and in‡ation, are

higher when equity prices are higher.

We let time t preferences be described by a utility function U (ct; ¾t) with constant

relative risk aversion ¾t which we assume to be random. We also let the aggregate income

¹yt be random, and in particular we assume that the growth rate of aggregate consumption

wt+1 ´ ¹yt+1=¹yt is iid. We introduce shocks to ¹yt to be able to talk about securities that

carry a risk premium. We introduce shocks to risk aversion ¾t so that the market price of

risk is random, and then price-dividend ratios of risky securities changes. We assume that

shocks to ¾t are persistent and that the growth rate of aggregate consumption is iid because

it will imply that expected future dividends growth is constant and that interest rates do

not move much. These choices are based to reproduce stylized facts of the data reviewed

in the previous section.

The equilibrium for the model with the aggregate shocks is of the same form as for the

case analyzed above: for each period we compute cA; yL and yL for each distribution with

average income ¹yt risk aversion ¾t and money growth ¹t: We let F denote the distribution

of y=¹yt i.e. of the idiosyncratic income, relative to the aggregate income. To avoid that

the …xed cost becomes negligible as outputs grows, we assume that the …xed cost °t is

varies with the aggregate output ¹yt, in particular we assume that the …xed cost °t, which

is measured in utility terms, is given by °t = ~° £ ¹y1¡¾tt for some constant ~° > 0: In this



Fernando Alvarez University of Chicago 21

case the …xed cost is constant in terms of goods, if we evaluate the utility at the aggregate

endowment.

Recall that the monetary model has a binding cash in advance, and so velocity is constant

and equal to one. It follows that the gross in‡ation rate between period t and period

t + 1; denoted by ¼t+1 is given by ¼t+1 ´ Pt+1=Pt = ¹t+1=wt+1: Given that we assume

that the utility function is a power of consumption, and that we normalize the …xed cost

accordingly, it is immediate to verify that active agents consumption and the thresholds are

homogenous of degree one in ¹yt; i.e.

cA (¼t; ¾t; ¹yt) = cA (¼t; 1; ¾t) ¹yt

yL (¼t; ¾t; yt) = yL (¼t; ¾t; 1) ¹yt

yL (¼t; ¾t; yt) = yL (¼t; ¾t; 1) ¹yt

for all ¾t; ¼t and ¹yt: Thus, normalizing ¹yt = 1; the equilibrium allocation are solutions to

h = 0; i.e.

U (cA (¼; ¾) ; ¾)¡ U (yi (¼; ¾) =¼; ¾)¡ U 0 (cA (¼; ¾) ; ¾) (cA ¡ yi (¼; ¾) =¼) = ~°(5.1)

for i = H;L and the resource constraint

cA (¼; ¾) [F (yL (¼; ¾)) + 1¡ F (yH (¼; ¾))] +
Z yL(¼;¾)

yL(¼;¾)

y

¼
dF (y) = 1(5.2)

where in‡ation is given by ¼ = ¹=w: Notice that the growth rate of output w does not enter

in (5.1) and (5.2). It only in‡uences in‡ation.

Now we turn to the prices of risky assets. Because of the assumptions that market are

complete and that agents are ex-ante identical, asset prices are computed using the marginal

utility of active agents, i.e.

U 0(cA;¾) =
·
¹ycA

µ
¹

w
; ¾

¶¸¡¾
:

For instance, if we denote by St the time t price of a claim to the aggregate output stream

f¹yt+sg ; then

U 0
µ
cA

µ
¹t
wt
; ¾t

¶
; ¾t

¶
¹yt St =

1X

s=1

¯sEt

(
U 0

Ã
cA

Ã
¹t+s
wt+s

; ¾t+s

!
; ¾t+s

!
¹yt+s

)

Then empirical evidence reviewed in the previous section …nds that shocks to expected

returns account for most of the variation of equity prices and are very persistent. To

accomplish that we assume that the shocks to risk aversion ¾t are stationary but very

persistent. To understand how these shocks deliver that behavior of asset prices, assume

that in‡ation and ¾ are constant, so that cA (¼; ¾) is constant. We argue that if ¾ increases

once and for all, price dividend ratios decreases. To see this, consider the case where ¾

is constant, cA (¼; ¾) is constant and log (w) is normally distributed with mean m and
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standard deviation ¾w: In this case it is well known that the expected (log) return of equity

over the (log) risk free rate is equal to ¾ ¾2w: It is clear that if all the future expected excess

return of equity increases, i.e. if there is a once and for all increase in risk aversion ¾; then

the current price dividend ratio must decrease. This case is interesting because the changes

in the excess expected return of equity for the case where risk aversion ¾ changes once and

for all approximates the changes in the excess expected returns of equity when the shocks

to ¾ are very persistent. Hence, price dividend ratios decrease if risk aversion ¾ increases

in a persistent way.

We now discuss how optimal monetary policy co-moves with asset prices. Denote the

optimal monetary injection by ¹̂ (w; ¾) : From our previous discussion it is clear that the

optimal time t in‡ation rate for an economy with aggregate output shocks and risk aversion

¾t is the same as the one for an economy with no aggregate output shocks and risk aversion

¾t: Thus, ¹̂ (w; ¾) = ¹¤ (¾) =w where ¹¤ (¾) denotes the optimal in‡ation rate, and money

growth rate, for an economy with constant aggregate output, as analyzed in the previous

sections. Hence, the optimal in‡ation rate in ¼ (¾) = ¹̂ (w; ¾) =w = ¹¤ (¾) ; is decreasing

in the risk aversion ¾; since in the previous sections we show that ¹¤ (¾) is decreasing in

risk aversion ¾: In the previous section we show that ¹¤ (¾) was decreasing in ¾; so if we

combine this feature with the fact discussed in the paragraph above that price dividend

ratios decrease with ¾; we conclude that the optimal monetary policy is procyclical.

6. Conclusion

We have developed a model in the spirit of Baumol (1952) and Tobin (1956) that captures

the idea that when a government injects money through an open market operation only a

fraction of the households in the economy are on the other side of the transaction and hence

money injections have distributional e¤ects in addition to their standard Fisherian e¤ects.

We have deliberately kept the model simple to allow an analytical solution. In this model

optimal monetary policy is a substitute for costly private insurance, and hence it depend

on the needs for insurance as well as the amount of insurance that private markets provide.

We show that, as agents become more risk averse, private markets provides much more

insurance, and hence monetary policy is less important in this regard. As a consequence,

times where agents are very risk averse are times where the price of risky securities is low

and where it is optimal to inject less money. In this sense, the optimal monetary policy is

procyclical.
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Appendix A

In this appendix we provide su¢cient conditions to ensure that households never hold

over cash in either the goods or asset market. This is almost exactly the same as in Alvarez,

Atkeson and Kehoe (2001). To allow for the possibility that the household may hold cash,

we modify the household’s constraints as follows. In the goods markets, we denote unspent

real balances that the shopper might carry over from goods shopping by a(¹t; yt¡1) and

rewrite the constraints (1.2) and (??)

a(¹t; yt¡1) = m(¹t; yt¡1) + x(¹t; yt¡1)z(¹t; yt¡1)¡ c(¹t; yt¡1);(7.1)

m
³
¹t+1; yt

´
=

P (¹t)

P (¹t+1)
[yt + a(¹

t; yt¡1)];(7.2)

and add the cash-in-advance constraint

a(¹t; yt¡1) ¸ 0:(7.3)

In the asset market, we replace the constraints (1.3) with the sequence of budget constraints

for t ¸ 1

B
³
¹t; yt¡1

´
=

Z

¹t+1

Z

yt
q(¹t; ¹t+1)B

³
¹t; ¹t+1; y

t¡1; yt
´
f(yt) d¹t+1dyt+(7.4)

N(¹t; yt¡1)¡N(¹t¡1; yt¡2) + P (¹t)x(¹t; yt¡1)z(¹t; yt¡1);

whereN(¹t¡1; yt¡2) is cash held over from the previous asset market, N(¹t; yt¡1) is cash help

over into the next asset market, and with N(¹t; yt¡1) ¸ 0 and N(¹t¡1; yt¡2) = N0 in period

t = 1: In period t = 0; this asset market constraint is ¹B =
R
¹1

R
y0
q(¹1)B (¹1; y0) f(y0)dy0d¹1+

N0: Otherwise, the household’s problem is unchanged.

We develop our su¢cient conditions in several steps. We …rst characterize the house-

hold’s optimal choice of c and x given prices and arbitrary rules for m; a; and z, and

summarize these results in Lemma 1. We then characterize the household’s trading rule

z given an arbitrary rule for m;a and the optimal rules for c and x and summarize these

results in Lemma 2. These lemmas complete the proof of proposition 1 in the text. In

Lemma 3, we provide su¢cient conditions on the money growth process and endowments

process to ensure that a and N are always zero.

First use the sequence of budget constraints (7.4) to substitute out for agent’s bond

holdings and replace these constraints with a single date 0 constraint on agents transfers of

cash between the goods and asset markets. Any bounded allocation and bondholdings that

satis…es (7.4) also satis…es a date 0 budget constraint

1X

t=0

Z
Q(¹t)

Z

yt¡1

n
P (¹t)x(¹t; yt¡1)z(¹t; yt¡1)+(7.5)
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N(¹t; yt¡1)¡N(¹t; yt¡2)
o
f(yt¡1)dyt¡1d¹t · ¹B:

Thus, the household’s problem can be restated as follows. Choose real money holdings m

and a; trading rule z; consumption and transfers c and x and cash in the asset market N;

subject to constraints (7.1)-(7.3) and (7.5).

Consider …rst a household’s optimal choice of consumption c(¹t; yt¡1) and transfers of

dollar real balances x(¹t; yt¡1) given prices Q(¹t); P (¹t); arbitrary feasible choices of real

money holdings m (¹t; yt¡1) and a(¹t; yt¡1) and a trading rule z(¹t; yt¡1): These choices

maximize the Lagrangian corresponding to the household’s problem. Let º(¹t; yt¡1) be the

multiplier on (7.1), and ¸ be the multiplier on (7.5). The …rst order condition corresponding

to c is ¯tU 0(c(¹t; yt¡1)g(¹t)f(yt¡1) = º(¹t; yt¡1): The …rst order condition corresponding

to x is ¸Q(¹t)P (¹t)z(¹t; yt¡1)f(yt¡1) = º(¹t; yt¡1)z(¹t; yt¡1): For those states such that

z(¹t; yt¡1) = 1; these two …rst order conditions imply

¯tU 0(c(¹t; yt¡1))g(¹t) = ¸Q(¹t)P (¹t):(7.6)

Since all households are identical at date 0; the multipliers in the Lagrangian are the same

for all households. We summarize this discussion as follows

Lemma 1. All households who choose to pay the …xed cost for a given aggregate state

¹t have identical consumption c(¹t; yt¡1) = cA(¹t); for some function cA: Households who

choose not to pay the …xed cost have consumption c(¹t; yt¡1) = m(¹t; yt¡1)¡ a(¹t; yt¡1):

Next consider a household’s optimal choice of whether to pay the …xed cost to trade given

pricesQ(¹t) , P (¹t) and arbitrary feasible choices of real money holdings in the goods market

m(¹t; yt¡1); a(¹t; yt¡1): From Lemma 1, we have the form of the optimal consumption and

transfer rules corresponding to the choices of z = 1 and z = 0: Substituting these rules into

(1.4) and (7.5) gives the problem of choosing cA(¹t) and z(¹t; yt¡1) to maximize
1X

t=1

¯t
Z Z h

U(cA(¹
t))¡ °

i
z(¹t; yt¡1)g(¹t)f(yt¡1)d¹tdyt¡1+(7.7)

1X

t=1

¯t
Z Z

U(m(¹t; yt¡1)¡ a(¹t; yt¡1))(1¡ z(¹t; yt¡1))g(¹t)f(yt¡1)d¹tdyt¡1

subject to the constraint

¹B ¸
1X

t=1

Z Z
Q(¹t)

h
N(¹t; yt¡1)¡N(¹t¡1; yt¡2)

i
f(yt¡1)d¹tdyt¡1+(7.8)

1X

t=1

Z Z
Q(¹t)P (¹t)

h
cA(¹

t)¡ (m(¹t; yt¡1)¡ a(¹t; yt¡1))
i
z(¹t; yt¡1)f(yt¡1)d¹tdyt¡1:

Let ´ denote the Lagrange multiplier on (7.8) and consider the following variational argu-

ment. Consider a state (¹t; yt¡1): The increment to the Lagrangian of setting z(¹t; yt¡1) = 1

in this state is

¯t
h
U

³
cA(¹

t)
´

¡ °
i
g(¹t)f(yt¡1)¡(7.9)
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´Q(¹t)P (¹t)
h
cA(¹

t)¡ (m(¹t; yt¡1)¡ a(¹t; yt¡1))
i
f(yt¡1)

which is simply the direct utility gain U (cA(¹t)) minus the cost of the required transfers.

The increment to the Lagrangian of setting z(¹t; yt¡1) = 0 in this state is

¯tU
³³
m(¹t; yt¡1)¡ a(¹t; yt¡1)

´´
g(¹t)f(yt¡1)(7.10)

which is simply the direct utility gain since there are no transfers. The …rst order condition

with respect to cA is

¯tU 0(cA(¹
t))g(¹t) = ´Q(¹t)P (¹t):

Subtracting (7.10) from (7.9) and using (7.6) gives the cuto¤ rules de…ned by (2.2). More

formally, we have

Lemma 2: Given active households’ consumption cA(¹t), a household chooses z(¹t; yt¡1) =

0 if m(¹t; yt¡1) ¡ a(¹t; yt¡1) 2
µ
yL(cA(¹t);¹t)

¹t
;
yH(cA(¹t);¹t)

¹t

¶
and they choose z(¹t; yt¡1) = 1

otherwise.

These lemmas complete the proof of proposition 1. To complete our asset pricing for-

mulas we need to compute the equilibrium value of the multiplier ¸: Given the equilibrium

values of consumption computed in proposition 1 we have that ¸ solves

1X

t=1

Z
¯tU 0(cA (¹t))

Z yH(¹t)

yL(¹t)

M(¹t)

Y

"
cT (¹t)¡

y

¹t

#
f(y)dyg(¹t)d¹t =

¹B

¸
:(7.11)

Households will not want to store cash in the asset market if nominal interest rates

are positive. Thus, to ensure that N = 0, it is su¢cient to check that nominal interest

rates are always positive. We now turn to the problem of developing conditions su¢cient

to ensure that households never want to store cash in the goods market. Assume that

households have CRRA utility of the form U(c) = c1¡¾=(1 ¡ ¾): Let Q(¹t) and P (¹t) be

the prices constructed above when a and N are assumed equal to zero. Consider …rst the

consumption of a household who deviates from the strategy of never holding cash from one

period to the next in the goods market. From Lemmas 1 and 2, we have that, holding

…xed a plan fat(¹t; yt¡1)g for holding cash in the goods market, this deviant household’s

consumption choices are similar to those of a household who does not hold cash in the

goods market. In particular, in those states of nature in which the deviant chooses to pay

to the …xed cost to trade, from Lemma 1, his consumption satis…es the …rst order condition

¯tU 0(cdA(¹
t))g(¹t) = ´dQ(¹t)P (¹t) where ´d is the Lagrange multiplier on this household’s

date zero budget constraint. Thus, in those states in which the deviant household pays

the …xed cost to trade, it equates its marginal rate of substitution to that of other active

households who do not deviate. Given the assumption of CRRA utility, this implies that

cdA(¹
t) = µcA(¹t) for all ¹t for some …xed factor of proportionality µ: In those states of nature

in which the deviant household does not choose to pay the …xed cost, its consumption is
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cd(¹t; yt¡1) = md(¹t; yt¡1) ¡ ad(¹t; yt¡1); and its decision whether to pay the …xed cost is

determined by the cuto¤s yL(µcT (¹t); ¹t) and yH(µcT (¹t); ¹t) described in Lemma 2. Using

the fact that md(¹t; yt¡1) = (yt¡1 + ad(¹t¡1; yt¡2))=¹t and, in the event that the deviant

household pays the …xed cost, xd(¹t; yt¡1) = µcT (¹t) ¡ (md
t (¹

t; yt¡1) ¡ ad(¹t; yt¡1)); the

factor of proportionality µ (and the implied Lagrange multiplier ´d) corresponding to any

…xed plan fat(¹t; yt¡1)g for holding cash in the goods market must be set so that the deviant

household’s date zero budget constraint holds with equality. The relevant budget constraint

is written

¹B =
1X

t=1

Z Z
Q(¹t)P (¹t)

h
µcT (¹t)¡ (m(¹t; yt¡1)¡ a(¹t; yt¡1))

i

£z(¹t; yt¡1)f(yt¡1)d¹tdyt¡1

where z(¹t; yt¡1) = 1 if (yt¡1+ad(¹t¡1; yt¡2))=¹t¡ad(¹t; yt¡1) 2 [yL(µcT (¹t); ¹t)=¹t; yH(µcT (¹t); ¹t)=¹t]

and z(¹t; yt¡1) = 0 otherwise.

Next observe that, since the cuto¤s yL(µcT (¹t); ¹t) and yH(µcT (¹t); ¹t) are monotonically

increasing in µ for all values of ¹t; no deviant household would choose a plan fat(¹t; yt¡1)g
for holding cash in the goods market such that the implied factor of proportionality µ was so

small such that yH(µcT (¹t); ¹t) · yL(cT (¹t); ¹t) for all possible realizations of ¹t: To see this,

observe that the consumption of such a deviant household would lie below the consumption

we have constructed for a household that never holds cash in the goods market in every

possible state of nature ¹t; yt¡1; and thus the utility of such a deviant household would have

to be lower than that of a household that never held cash in the goods market.

Lemma 3. Let ¹µ to be the supremum over the set of µ which satisfy (??). Then, it is

optimal for a household to never hold over cash in the goods market if, for all a ¸ 0; ¹t and

µ ¸ ¹µ

U 0(
yH(µcA(¹t); ¹t)

¹t
)

> ¯
Z

¹t+1

Z yH(µcA(¹t+1);¹t+1)¡a

yL(µcA(¹t+1);¹t+1)¡a
U 0

Ã
yt + a

¹t+1

!
f(yt)

¹t+1
g(¹t+1j¹t)dytd¹t+1+

¯
Z

¹t+1

U 0(µcA(¹t+1))

¹t+1
£[F (yL(µcA(¹t+1); ¹t+1)¡ a) + 1¡ F (yH(µcA(¹t+1); ¹t+1)¡ a)]g(¹t+1j¹t)d¹t+1:

Proof. Given any plan fat(¹t; yt¡1)g for holding cash in the goods market and associ-

ated value of µ; the highest consumption that a deviant household could have at date t is

yH(µcT (¹t); ¹t)=¹t and thus the smallest marginal utility of consumption it could have at

that date is U 0(yH(µcT (¹t); ¹t)=¹t): The terms on the right-hand side are the expected value

of the product of the marginal utility of consumption and the return to holding currency
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in the goods market (1=¹t+1) at date t+ 1: Thus, the condition in the lemma ensures that

such a household always prefers to consume its real balances at t rather than carry them

over into period t+ 1 at rate of return 1=¹t+1: Therefore, this condition implies that there

is no plan for holding cash in the goods market that gives higher utility than the plan of

never holding cash in the goods market.
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Appendix B

In this appendix we collect the proof of the new results.

Proof of Proposition (1). First we show that the approximation error is or order

smaller than °1=2: We denote by yi (°) the solution of h (y (°) ; cA) = 0: By using a third

order Taylor expansion of U (y=¹) around cA

° = ¡1
6
U 000 (~cA (°)) [yL (°)¡ cA]3 ¡ 1

2
U 00 (cA) [yL (°)¡ cA]2

where ~cA (°) is some value in [yL (°) ; cA] : De…ning d (°) = y (°) =¹ ¡ ~y (°) =¹; and using

~y (°) =¹ = cA ¡¢

° = ¡1
6
U 000 (~cA (°)) [d (°)¡¢]3 ¡ 1

2
U 00 (cA) [d (°)¡¢]2

rearranging

1 =
µ
¡1
6
U 000 (~cA (°)) [d (°)¡¢]¡

1

2
U 00 (cA)

¶ "
d (°)¡¢
°1=2

#2

and taking limits on both sides

1 = lim
°!0

µ
¡1
6
U 000 (~cA (°)) [d (°)¡¢]¡

1

2
U 00 (cA)

¶ "
d (°)¡¢
°1=2

#2

using that lim°!0 ~y (°) =¹ = lim°!0 y (°) =¹ = cA; then lim°!0 d (°) = 0; using its de…nition

lim°!0¢(°) = 0, by the mean value theorem, lim°!0 ~cA (°) = cA, and by replacing ¢ =

(¡2°=U 00 (cA))1=2 ;

1 = ¡1
2
U 00 (cA) lim

°!0

2
4d (°)
°1=2

¡
Ã

2

¡U 00 (cA)

!1=23
5
2

= lim
°!0

2
4d (°)
°1=2

Ã
¡U 00 (cA)

2

!1=2
¡ 1

3
5
2

hence there are two values for the limit, either lim°!0 d (°) =°1=2 = 0; in which case the

result is established, or

lim
°!0

d (°)

°1=2
= 2

Ã
2

¡U 00 (cA)

!1=2
:(7.12)

We now show that the second case leads to a contradiction with yL (°) < cA for all °: By

de…nition of d (°) ;

y (°)¡ cA
°1=2

= ¡
Ã

2

¡U 00 (cA)

!1=2
+ d (°)

and taking limits using (7.12)

lim
°!0

y (°)¡ cA
°1=2

= ¡
Ã

2

¡U 00 (cA)

!1=2
+ lim
°!0

d (°) =

Ã
2

¡U 00 (cA)

!1=2
> 0:
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Thus lim°!0 d (°) =°1=2 = 0: A similar argument holds for yH :

Finally we show that if U 000 ¸ 0; then yL=¹ ¸ cA ¡¢ and yL=¹ · cA ¡¢: Consider a

third order Taylor expansion of h; as a function of y=¹; around cA :

h (y=¹; cA) = ¡1
6
U 000 (~cA (°)) [y=¹¡ cA]3 ¡ 1

2
U 00 (cA) [y=¹¡ cA]2 ¡ °

De…ne ~h (y=¹; cA) = (1=2)U 000 (cA) [y=¹¡ cA]2¡°: By de…nition yi (¹; cA) solves h = 0 and

(cA §¢) solve ~h = 0: For y=¹ ¸ cA; h · ~h when U 000 ¸ 0; and since h is increasing in y=¹ in

that range, yH=¹ ¸ cA ¡¢: For y=¹ · cA; h ¸ ~h when U 000 ¸ 0; and since h is decreasing

in y=¹ in that range, yL=¹ · cA ¡¢: The reverse argument applies when U 000 · 0: QED:

Proof of Proposition 4. To see this notice that cA (¹) must solve

[¹y ¡ cA] [F ((cA ¡¢)¹) + 1¡ F ((cA +¢)¹)]
= Á (¹; (cA ¡¢)¹; (cA ¡¢)¹)

where

Á (¹; d1d2) ´
Z d2

d1

Ã
y

¹
¡ ¹y

!
dF (y) :

For cA = ¹y; ¹ = 1; symetry implies that

Á (1; ¹y ¡¢; ¹y +¢) =
Z ¹y+¢

¹y¡¢
(y ¡ ¹y) dF (y) = 0

hence if [F ((cA ¡¢)¹) + 1¡ F ((cA +¢)¹)] < 1 then cA = ¹y: Otherwise every agents is

active, and hence cA = ¹y: QED:

Proof of Proposition 5. Di¤erentiating both sides of

cA [F ((cA ¡¢)¹) + 1¡ F ((cA +¢)¹)] +
Z (cA+¢)¹

(cA¡¢)¹

y

¹
fdy = ¹y

with respect to ¹;

0 = c0A [F ((cA ¡¢)¹) + 1¡ F ((cA +¢)¹)]
+cA [f (yL) (cA ¡¢)¡ f (yH) (cA +¢)]

¡f (yL) (cA ¡¢)2 + f (yH) (cA +¢)2 ¡ 1

¹2

Z (c+¢)¹

(c¡¢)¹
ydF (y)

which can be rewritten as

0 = c0A [F ((cA ¡¢)¹) + 1¡ F ((cA +¢)¹)]

¡ 1

¹2

Z (c+¢)¹

(c¡¢)¹
ydF (y) + f (yL) (cA ¡¢)¢ + f (yH) (cA +¢)¢

Hence dcA (¹) =d¹ > 0 i¤

¡ 1

¹2

Z (c+¢)¹

(c¡¢)¹
ydF (y) + f (yL) (cA ¡¢)¢+ f (yH) (cA +¢)¢ < 0:
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By the previous proposition at ¹ = 1, cA (¹) = ¹y and f (yH) = f (yL) = ¹f: Using these

assumptions, when ¹ = 1

¡ 1

¹2

Z (c+¢)¹

(c¡¢)¹
ydF (y) + f (yL) (cA ¡¢)¢+ f (yH) (cA +¢)¢

= ¡
Z (¹y+¢)

(¹y¡¢)¹
ydF (y) + 2 ¹f¢cA

By hypothesis, f (yH) = ¹f; hence

Z (cA+¢)

(cA¡¢)¹
ydF (y) ¸

Z (cA+¢)

(cA¡¢)
y ¹fdy = ¹f

"
(cA +¢)

2 ¡ (cA ¡¢)2
2

#
= ¹f2cA¢

with strict inquality if F is strictly convex in (yL (1) ; ¹y) . QED:

Proof of Proposition 6. Active agents consumtpion cA satis…es

¹y = f cA (1¡ ¼) ¹f ((cA ¡¢)¹¡ y1) + 1¡ ¼ ¡ (1¡ ¼) ¹f ((cA +¢)¹¡ y1)
1¡ ¼ ¡ (1¡ ¼) ¹f ((cA +¢)¹¡ y1) g

+
1¡ ¼
¹

Z (cA+¢)¹

(cA¡¢)¹
y ¹fdy +

¼

¹
¹y (1¡ ")

where ¹f = 1= (y2 ¡ y1). Direct computations gives

¹y ¡ ¼ (1¡ ")
¹

¹y

= cA
h
¡ (1¡ ¼) ¹f¢¹+ 1¡ ¼ ¡ (1¡ ¼) ¹f¢¹

i

+
(1¡ ¼)¹2

¹
¹f

"
(cA +¢)

2 ¡ (cA +¢)2
2

#

= cA (1¡ ¼)¡ cA (1¡ ¼)¹ ¹f¢2 + (1¡ ¼)¹ ¹f2cA¢ = (1¡ ¼) cA

wich gives the desired result. QED:

Proof of Proosition 7. Consider the Lagrangian

L (¹) = max
cA;yL;yH

Z yH

yL
U (y=¹) dF (y) + [F (yL) + 1¡ F (yH)] [U (cA)¡ °] +

+¸

"
¹y ¡

Z yH

yL

y

¹
dF (y)¡ [F (yL) + 1¡ F (yH)] cA

#

The …rst order condition with respect to cA is

[F (yL) + 1¡ F (yH)]U 0 (cA)¡ ¸ [F (yL) + 1¡ F (yH)] = 0;(7.13)

the …rst order condition with respect to yH is

U (yH=¹) f (yH)¡ f (yH)U (cA) + ¸f (yH)
"
cA ¡ yH

¹

#
¡ f (yH) ° = 0(7.14)
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and the and …rst order condition for yL :

¡U (yL=¹) f (yL) + f (yL)U (cA) + ¸f (yL)
"
yL
¹

¡ cA
#
+ f (yH) ° = 0(7.15)

Substituting ¸ from (7.13) into (7.14) and (7.15) we obtain

U (cA)¡ U (yH=¹)¡ U 0 (cA)
"
cA ¡ yH

¹

#
= °

U (cA)¡ U (yL=¹)¡ U 0 (cA)
"
cA ¡ yL

¹

#
= °

which are the solutions to h( y
¹
; cA) = 0: QED

Proof of Example: e¤ect of F in optimal ¹¤: Simple algebra shows that

dL

d¹
=

¡U 00 (cA) ±
¹®

Z (cA+¢)

(cA¡¢)
[y ¡ cA] y1¡®dy;

so we only need to sign
R (cA+¢)
(cA¡¢) [y ¡ cA] y1¡®dy: To so so notice that

1

2¢

Z (cA+¢)

(cA¡¢)
([y ¡ cA] y1¡®)dy = E [´ (y; cA;®)]

where the expectation is taking with respect to y being uniform in [cA ¡¢; cA +¢] ; so it

has expected value cA and where the function ´ is ´ (y; cA;®) = [y ¡ cA] y1¡®: The function

´ satis…es

0 = ´ (cA; cA;®) = ´ (E [y] ; cA;®) :

Direct computation of the second derivative of ´ shows that ´ is linear in y if ® = 1; convex

if ® 2 (0; 1] and concave if ® 2 (1; 2]: QED
Proof of Proposition 8. The proof follows from the following two lemmas.

Lemma 1. Assume that U is quadratic and that F is symmetric, convex for all y ·
¹y; where ¹y is its mean, and di¤erentiable at ¹y. Then dL=d¹ > 0 when evaluated at ¹ = 1:

Proof. By de…nition

dL

d¹
=

1

¹2

ÃZ (cA(¹)+¢)¹

(cA(¹)¡¢)¹
[U 0 (cA (¹))¡ U 0 (y=¹)] yf (y) dy

!

=
¡U 00 (¹y)
¹2

ÃZ ¹y+¢

¹y¡¢
[y ¡ ¹y] yf (y) dy

!

using cA (¹) = ¹y; and U 0 (y=¹) = U 0 (¹y) + U 00 (¹y) (y=¹¡ ¹y) : Notice that, by symmetry,
Z ¹y+¢

¹y¡¢
[y ¡ ¹y] f (y) dy = 0:

Hence,
Z ¹y+¢

¹y¡¢
[y ¡ ¹y] yf (y) dy > 0
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since the density yf (y) puts more mass to higher values of y: QED:

Lemma 2. Assume that U is quadratic and that F is symmetric, convex for all y ·
¹y; where ¹y is its mean, the support of y is [y1; y2] and F is di¤erentiable at y = y2. Then

dL=d¹ < 0 when evaluated at ¹ = ¹¹ ´ y2= (¹y ¡¢) :
Proof. First notice that at ¹ = ¹¹ in‡ation is so high that every agent is a trader:

cA (¹¹) = ¹y and yL (¹; cA) = y2: This can be easily veri…ed since
Z (c+¢)¹¹

(c¡¢)¹¹
yf (y) dy =

Z y2

y2
yf (y) dy = 0 and F (yL) = F (y2) = 1

and hence the resource constraint is satis…ed at cA (¹¹) = ¹y: It is optimal for all agents to

be traders since h (y2=¹¹; cA) = h (¹y ¡ cA; cA) = h (¹y ¡¢; ¹y) = 0; and thus h (y=¹; ¹y) ¸ 0 for

any y · y2: Now we consider ¹ = ¹¹¡ " for a small positive " and evaluate dL=d¹;

dL

d¹
= ¡U

00 (cA (¹))

¹2

Z (cA(¹)+¢)¹

(cA(¹)¡¢)¹
[y=¹¡ cA (¹)] ydF (y)

= ¡U
00 (cA (¹))

¹2

Z y2

(cA(¹)¡¢)¹
[y=¹¡ cA (¹)] ydF (y)

· ¡U
00 (cA (¹))

¹2

"
y2
¹

¡ cA (¹)
# Z y2

(cA(¹)¡¢)¹
ydF (y) < 0

where the …rst equality holds for " small enough, the …rst inequality uses continuity of

cA (¹) so that for small "; cA (¹) is approximately ¹y; adn the third inequality uses that

¹y < y2: QED:

Proof of Proposition 9. Direct computations gives

¹

U 0 (cA)

dL

d¹
j¹=1 = ¾

Z ¹y+¹y
p
2°=¾

¹y¡¹y
p
2°=¾

[y ¡ ¹y]
y

¹y
dF (y) > 0

We now show that lim°!0w (°) =° = 0 where w (°) =
R ¹y+¹y

p
2°=¾

¹y¡¹y
p
2°=¾

[y ¡ ¹y] y
¹y
dF (y) : Making a

…rst order approximation,

w0 (°) = f
µ
¹y

µ
1 +

q
2°=¾

¶¶ q
4=¾2

and hence w (°) = w (0) + w0 (0) ° + o (°) for w0 (°) = f (¹y)
q
4=¾2 and w (0) = 0: Direct

computations give

¹

U 0 (cA)

d2L

d¹d¾
j¹=1 =

Z ¹y+¹y
p
2°=¾

¹y¡¹y
p
2°=¾

[y ¡ ¹y]
y

¹y
dF (y)¡ f

µ
¹y

µ
1 +

q
2°=¾

¶¶
2¹y2 (2°=¾)

For the other term

lim
°!0

f
µ
¹y

µ
1 +

q
2°=¾

¶¶
2¢¹y (2°=¾) =° = 4f (¹y) =¾:

QED:
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Proof of Proposition 10. The …rst term of dL=d¹ can be simpli…ed to
¼

¹2
(U 0 (cA)¡ U 0 (¹y=¹)) ¹y

=
¼

¹2
(U 0 (cA)¡ U 0 (cA)¡ U 00 (cA) (¹y=¹¡ cA)) ¹y

=
¡U 00 (cA)¼

¹2
(¹y=¹¡ cA) ¹y =

¡U 00 (cA) ¼
¹2

¹y2
Ã
1

¹
¡ ¹¡ ¼ (1¡ ")

(1¡ ¼)¹

!

=
¡U 00 (cA)¼

¹2
¹y2

Ã
(1¡ ¼)¹¡ ¹+ ¼ (1¡ ")

(1¡ ¼)¹

!

=
¡U 00 (cA)¼

¹2
¹y2

Ã
¼ ¡ ¼¹¡ ¼"
(1¡ ¼)¹

!
=

¡U 00 (cA)¼2
¹2

¹y2
Ã
1¡ ¹¡ "
(1¡ ¼)¹

!

The second term of dL=d¹ is

1¡ ¼
¹2

ÃZ (cA+¢)¹

(cA¡¢)¹
[U 0 (cA)¡ U 0 (y=¹)] y ¹fdy

!

=
1¡ ¼
¹2

ÃZ (cA+¢)¹

(cA¡¢)¹
[U 0 (cA)¡ U 0 (cA)¡ U 00 (cA) (y=¹¡ cA)] yf (y) dy

!

=
¡U 00 (cA)
¹2

(1¡ ¼)
ÃZ (cA+¢)¹

(cA¡¢)¹
(y=¹¡ cA) yf (y) dy

!

=
¡U 00 (cA)
¹2

(1¡ ¼) ¹f £
Ã
1

¹

((cA +¢)¹)
3 ¡ ((cA ¡¢)¹)3
3

¡ cA
((cA +¢)¹)

2 ¡ ((cA ¡¢)¹)2
2

!

= ¡U 00 (cA) (1¡ ¼) ¹f
Ã
(cA +¢)

3 ¡ (cA ¡¢)3
3

¡ cA
(cA +¢)

2 ¡ (cA ¡¢)2
2

!

= ¡U 00 (cA) (1¡ ¼) ¹f £

f
cA

h
(cA +¢)

2 ¡ (cA ¡¢)2
i
+¢

h
(cA +¢)

2 + (cA ¡¢)2
i

3

¡
cA

h
(cA +¢)

2 ¡ (cA ¡¢)2
i

2
g

= ¡U 00 (cA) (1¡ ¼) ¹f
µ
2

3
¢

³
c2A +¢

2
´

¡ cA
h
(cA +¢)

2 ¡ (cA ¡¢)2
i µ
1

2
¡ 1

3

¶¶

= ¡U 00 (cA) (1¡ ¼) ¹f
µ
2

3
¢

³
c2A +¢

2
´

¡ cA [2cA¢]
1

6

¶

= ¡U 00 (cA) (1¡ ¼) ¹f
µ
2

3
¢

³
c2A +¢

2
´

¡ c2A¢
1

3

¶
= ¡U 00 (cA)

(1¡ ¼) ¹f¢
3

h
c2A + 2¢

2
i

combining both

¡U 00 (cA)¼2
¹2

¹y2
Ã
1¡ ¹¡ "
(1¡ ¼)¹

!

dL

d¹
= ¡U 00 (cA)

Ã
¼2¹y2

¹2

Ã
1¡ ¹¡ "
(1¡ ¼)¹

!
+
(1¡ ¼)
3

¹f¢
h
c2A + 2¢

2
i!
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then dL=d¹ = 0 implies

¼2¹y2
Ã
¹¡ (1¡ ")
1¡ ¼

!
= ¹3

0
@(1¡ ¼)

3
¹f¢

2
4

µ
¹y

1¡ ¼
¶2 Ã

¹¡ ¼ (1¡ ")
¹

!2
+ 2¢2

3
5
1
A

=
(1¡ ¼)
3

¹f¢

2
4
µ

¹y

1¡ ¼
¶2
¹3

Ã
¹¡ ¼ (1¡ ")

¹

!2
+ ¹32¢2

3
5

=
(1¡ ¼)
3

¹f¢

"µ
¹y

1¡ ¼
¶2
¹ (¹¡ ¼ (1¡ "))2 + ¹32¢2

#

or

(¹¡ (1¡ ")) =
¹f¢

3¼2

"
¹ (¹¡ ¼ (1¡ "))2 + (1¡ ¼)2

¹y2
¹32¢2

#
(7.16)

The left hand side of (7.16) linear, incresing in ¹ and equals zero at ¹ = 1 ¡ ": The

right hand side equals zero at ¹ = 0;and it is increasing for ¹ ¸ ¼ (1¡ ") and convex in

¹: Hence this equation has, at most, two positive solutions. For this equation to have a

positive solution ¢, ¹f; (1¡ ¼) have to be small enough. In particular if ¼ = 0 it has no

positive solutions, ans dL=d¹ > 0 for ¹ > 0: Let’s denote the smallest positive solution by

¹¤
³
¼; ¹f;¢; ¹y:"

´
: The smaller solution, ¹¤; is the one that describes optimal policy. This can

be veri…ed by analysing both sides of the equation for dL=d¹; which gives that dL=d¹ > 0

for ¹ < ¹¤ and dL=d¹ > 0 for ¹ > ¹¤: Thus higher positive solution of (7.16) is a local

minimum. From the analysis of the right hand side of (7.16) it easy to verify that ¹¤ is

increasing in ¢; increasing in ¹f; and decreasing in ¼: It is easy to see that as ¼ ! 1; the

solution goes to

3
¹f¢

= [¹¤ (¹¤ ¡ (1¡ "))]

in which case ¹¤ can be smaller than one if ¹f¢ are large enough. QED:
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