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“Our [the industry] credit-scoring 
models are based on credit histories 
that reflect only prosperity…loans 

that were approved during the period 
of economic expansion may now be 

affected by changed circumstances.” -
--Fed Governor Olsen, 5/21/02



What are the Implications of this 
Point?

• Credit Performance is situational and depends on 
economic environment

• Credit History—and credit scores---since they are 
cumulations of performance should also depend 
on past economic environment

• Logic can be extended from national business 
cycle to regional or local economy

• Could also be extended to individual “exogenous” 
situational factors such as layoffs, health problems 
or divorce



Research Question

• Examine the relationship between economic 
environment and both credit performance 
and assessment of credit history

• Use detailed “account-level” data for 
250,000 nationally representative people 
selected from national CB in June of 1999



Preview of Conclusions
• Find some evidence that economic 

conditions matter suggesting that scores of 
individuals in economically depressed areas 
may be inappropriately low

• Also find some serious limitations in the 
nature of the data reported to the CBs that 
effects ability to use situational data in 
scores



Background– CB files

• CB data come in four forms: public records, 
inquiries, trade line, and collection accounts.  Each 
“account” is a separate record

• Focus here on trade lines (e.g. mortgages, credit 
cards).  For each account we have:
– Date opened, “closed,” and last reported
– Amount currently owed, past due, credit line, maximum 

amount owed
– Current payment status, 48 month history of payments
– Type of lender and account, various comment codes, 

and account ownership



Background – CB files

• CB files are like FBI raw files.  Purpose is to 
provide input to analysis not do the analysis

• Judgemental underwriting or a “custom” or 
application score can be based on other 
information outside CB.  A Bureau or classic 
“FICO” score based only on CB data.

• CB data appear to be extraordinarily clean with 
virtually no “validity-type” errors.

• Problems appear to relate more to missing data or 
accounts which are inconsistently reported



Background – CB files

• Problems seem to arise in following 
accounts which are transferred, closed, or 
sold to a collection agency

• Some of these problems are significant and 
effect the ability of analyst to use situational 
factors in developing a scoring model

• At the very least problems require 
assumptions to deal with missing data



Background – CB files

• 35% of trade line files are not currently reported 
and not reported as closed
– 13% of these are missing current balance
– 30% of these are missing current payment status 

(though 5/6 of these have 0 balance)
– 2.5% of these show current payment status of a minor 

delinquency with a positive balance.  These represent 
57% of all accounts which are “currently” minor 
delinquent

– Many of these are closed-end accounts past date due
– Appears accounts often are not closed when they are 

transferred, paid off or sent to collection



Background – CB files

• Particularly acute problem with mortgages.  
80% or individuals with 2 or more open 
mortgages showed that one mortgage was 
opened within 2 months of the last reporting 
of the other mortgage for approximately the 
same amount.  Often one account is listed as 
past due.  Hard to distinguish between sale 
of servicing and a new loan.



Background – CB files

• Big problem with major derogatories.  Hard to 
follow accounts when sent to collection 
department or agency.  Cannot tell if one or two 
accounts.  Sporadic reporting of chargeoffs and 
payoffs.

• Looked at all individuals who took out a new 
mortgage in first 6 months of 1999.  About 5% 
showed a major derogatory.  About ½ of these 
showed that the account was unpaid.  This appears 
to be an inaccurate representaion as new 
mortgagees are typically required to pay off 
seriously delinquint accounts



Background – CB files

• Collection agency accounts also a problem.
– 30 percent of individuals show some collection 

account.
– 88% are small (under $500).
– Source of creditor not coded.  We parsed name of 

creditor to estimate type.  Estimate 52% are medical; 
24% are utilities; only 5% are for normal “trade line-
type” loans (some of these are double counted).

– Payoff information sparse and often not linked to the 
original account.   Inconsistency in reporting multiple 
small charges or single consolidated amount.



Background – CB files

• Credit limit missing in 34 percent of open 
revolving accounts currently reported

• Account ownership status missing for many 
non-primary account holders.  Cannot tell if 
authorized user, cosigner, or co-applicant



Implications for Scoring

• Any differential based on the timing of a major derogatory 
hard to do

• Number of accounts and current minor delinquencies and 
unpaid collections likely overstated 

• Need to estimate credit limit for those missing it
• Hard to differentiate behavior on single and joint accounts 

(useful for divorce) or accounts opened since a specific 
date (complicated by transfers which appear to be new)

• Model builders must address these and other problems



Modeling Framework

• Given difficulties in using situational variables it 
is important to see if there is value in it

• First test is to use economic environment–
economic conditions in the borrower’s county--
during times when credit history (and credit 
performance) is measured and see relationship to 
performance

• Crude tests only approximating analysis that 
would be done in full development of a score



Modeling Framework

• Traditional scoring model: yit = F(Yit, ηit)
o yit = period t repayment performance of individual i on 

representative account (perhaps of particular type) 
o Yit = vector of measures of credit usage and repayment 

performance by individual i prior to period t
o Yit may include, for example, number of accounts 30-

120 days delinquent (currently and in past two years); 
number of accounts ever charged off or  in collection; 
number of accounts of different types; number of new 
credit accounts opened in past year; credit line and 
revolving account utilization rates



Modeling Framework

• Our hypothesis:  yit = f(Xit, Ci, µit)
o Xit = vector of exogenous factors affecting borrower i's

ability to pay (local economic conditions, personal 
trigger events, etc.)

o Ci = measures of borrower’s willingness to make timely 
payments (measures of reliability, character, financial 
responsibility, etc.)

o Obstacles to empirical estimation: unobserved 
borrower attributes; limited information on timing and 
context of delinquency episodes; serial correlation of 
economic conditions.



Modeling Framework

• We estimate:  yit = F(yi,t-1, xit, xit-1, Zi, φit)
o Period t (“performance period”) is 7/97 – 6/99 and 

period t-1 (“credit evaluation period”) is 7/95-6/97. 
o yit tracks performance on new accounts opened on or 

after 7/97 but no later than 3/99
o yit = 1 if account becomes at least 60-days delinquent 

during the performance period, and 0 otherwise.



Modeling Framework

• We estimate:  yit = F(yi,t-1, xit, xit-1, Zi, φit)
o yit-1 measures maximum delinquency during the 

evaluation period on any account open as of 7/95
o yit-1 =0 if no delinquencies; =1 if 30 days; =2 if 60 days; 

=3 if 90-150 days; =4 if collection (extended version)
o xi,t-n = measures of local economic conditions: 
o Zi = control variables: Age of the borrower; seasoning 

of the loan; Census division; Census tract relative 
median income; Census tract minority percentage 



Modeling Framework

• xi,t: 1998 county unemployment rate; 1997-1998 
MSA or state house price appreciation rate; 1997-
1998 percent change in county per-capita income

• If “situation” matters, period t economic 
environment will be reflected in payment 
performance 



Modeling Framework

• xi,t-1: 1994 to 1997 change in unemployment rate

• If “situation” matters, past performance may 
overstate or  understate current credit risk 
depending on past context.



Modeling Framework

• Clearly, we face the data limitations already noted 
for scoring models

• Also limited to data from relatively homogeneous 
economic environment (broad-based expansion)

• Still, we believe we can test whether “situation” 
matters and whether there may be value added in 
attempting to control for it



Empirical Procedure

• OLS estimation (General Linear Model) 

• Close to 200,000 observations

• Weighting for single vs. joint accounts



Results 
Means of variables

% with no prior delinquency: 75.2 
% with prior 30-day:  16.1
% with Prior 60-day 4.5
% with prior 90-120 day 4.5 
% in low/moderate income ZIP 13.7
% in (95%) non-minority ZIP 52.8 
1998 county % unemployed 4.20 
1998 house price % change 5.57
1998 % change per capita income 5.57
Change in unemployment 1994-97 -1.22



Results 
yit = F(yi,t-1, xit, xit-1, Zi, φit)

Mean of dependent variable: 0.021
Intercept 0.070 (18.68)
No prior delinquency (base 90 day) -0.062 (38.4)
Prior 30-day (base 90 day) -0.047 (26.8)
Prior 60-day (base 90 day) -0.028 (12.7)
Low/moderate income ZIP 0.014 (12.5)
Predominantly non-minority -0.023 (12.8)
1998 county % unemployed 0.0008 (4.23)
1998 house price % change -0.0007 (3.16)
Change in unemployment 1994-97 -0.0013 (3.19)



Extensions

• Incorporate past charge-offs, collections

• Borrower-level analysis

• Sample segmented by age-group (over- and under-
50)

• Sample segmented by revolving vs. installment 
credit



Conclusions

• “Situation” matters
o Value added to considering current economic 

environment
o Value added to considering past context



Conclusions

• There are limitations to what can be 
accomplished with available data
o Ideally, credit reporting systems would collect 

more data on timing of delinquency, collection 
processes, situational factors


