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1. Introduction 
 
 Market risk exposure arises from unexpected security price fluctuations.   Using 

long histories of daily price fluctuations we can distinguish between “typical” and 

“atypical” trading days in order to assess either expected losses (on a typical day) or 

unexpected losses (on an atypical day that occurs with a given likelihood).  We don’t 

have that luxury in measuring a loan’s credit risk exposure.  Since loans are not always 

traded, there is no history of daily price fluctuations available to build a loss distribution.  

Moreover, credit events such as default or rating downgrades are rare, often non-

recurring events.  Thus, we do not have enough statistical power to estimate daily 

measures of credit risk exposure.  These data problems are exacerbated for middle market 

firms that may not be publicly traded.  In this paper, we examine and compare both 

academic and proprietary models that measure credit risk exposure in the face of 

daunting data and methodological challenges.  After a brief summary and critique of each 

of the most widely used models, we compare their credit risk estimates for a hypothetical 

portfolio of middle market credit obligations.1   

Although our focus is on the more modern approaches to credit risk measurement, 

we begin with a brief survey of traditional models in Section 2.  Structural models (such 

as KMV’s Credit Manager and Moody’s RiskCalc) that are based on the theoretical 

foundation of Merton’s (1974) option pricing model are described in Section 3.  A more 

                                                 
1 For more comprehensive coverage of each of the models, see Saunders and Allen (2002). 
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recent strand of the literature covering intensity-based models (such as KPMG’s Loan 

Analysis System and Kamakura’s Risk Manager) models default as a point process with a 

random intensity rate.  This literature is surveyed in Section 4.  Value at risk models 

(such as CreditMetrics and Algorithmics Mark-to-Future) most closely parallel the 

technology used to measure market risk and are analyzed in Section 5.  Mortality rate 

models (such as Credit Risk Plus) are covered in Section 6.  The models’ assumptions 

and empirical results are compared in Section 7 and the paper concludes in Section 8. 

2. Traditional Approaches to Credit Risk Measurement 

Traditional methods focus on estimating the probability of default (PD), rather 

than on the magnitude of potential losses in the event of default (so-called LGD, loss 

given default, also known as LIED, loss in the event of default).  Moreover, traditional 

models typically specify “failure” to be bankruptcy filing, default, or liquidation, thereby 

ignoring consideration of the downgrades and upgrades in credit quality that are 

measured in mark to market models.2  We consider three broad categories of traditional 

models used to estimate PD: (1) expert systems, including artificial neural networks; (2) 

rating systems; and (3) credit scoring models. 

2.1 Expert Systems 

Historically, bankers have relied on the 5 C’s of expert systems to assess credit 

quality.  They are character (reputation), capital (leverage), capacity (earnings volatility), 

collateral, and cycle (macroeconomic) conditions.  Evaluation of the 5 C’s is performed 

by human experts, who may be inconsistent and subjective in their assessments.  

Moreover, traditional expert systems specify no weighting scheme that would order the 5 

                                                 
2 Default mode (DM) models estimate credit losses resulting from default events only, whereas mark to 
market (MTM) models classify any change in credit quality as a credit event. 
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C’s in terms of their relative importance in forecasting PD.  Thus, artificial neural 

networks have been introduced to evaluate expert systems more objectively and 

consistently.  The neural network is “trained” using historical repayment experience and 

default data.  Structural matches are found that coincide with defaulting firms and then 

used to determine a weighting scheme to forecast PD.  Each time that the neural network 

evaluates the credit risk of a new loan opportunity, it updates its weighting scheme so that 

it continually “learns” from experience.  Thus, neural networks are flexible, adaptable 

systems that can incorporate changing conditions into the decision making process.3   

 During “training” the neural network fits a system of weights to each financial 

variable included in a database consisting of historical repayment/default experiences.   

However, the network may be “overfit” to a particular database if excessive training has 

taken place, thereby resulting in poor out-of-sample estimates.  Moreover, neural 

networks are costly to implement and maintain.  Because of the large number of possible 

connections, the neural network can grow prohibitively large rather quickly.  Finally, 

neural networks suffer from a lack of transparency.  Since there is no economic 

interpretation attached to the hidden intermediate steps, the system cannot be checked for 

                                                 
3 Kim and Scott (1991) use a supervised artificial neural network to predict bankruptcy in a sample of 190 
Compustat firms.  While the system performs well (87% prediction rate) during the year of bankruptcy, its 
accuracy declines markedly over time, showing only a 75%, 59%, and 47% prediction accuracy one-year 
prior, two-years prior, and three-years prior to bankruptcy, respectively.  Altman, Marco and Varetto 
(1994) examine 1,000 Italian industrial firms from 1982-1992 and find that neural networks have about the 
same level of accuracy as do credit scoring models.  Podding (1994), using data on 300 French firms 
collected over three years, claims that neural networks outperform credit scoring models in bankruptcy 
prediction.  However, he finds that not all artificial neural systems are equal, noting that the multi-layer 
perception (or back propagation) network is best suited for bankruptcy prediction.  Yang, et. al. (1999) uses 
a sample of oil and gas company debt to show that the back propagation neural network obtained the 
highest classification accuracy overall, when compared to the probabilistic neural network, and 
discriminant analysis.  However, discriminant analysis outperforms all models of neural networks in 
minimizing type 2 classification errors, where a type 1 error misclassifies a bad loan as good and a type 2 
error misclassifies a good loan as bad. 
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plausibility and accuracy.  Structural errors will not be detected until PD estimates 

become noticeably inaccurate. 

 2.2   Rating Systems 

External credit ratings provided by firms specializing in credit analysis were first 

offered in the U.S. by Moody’s in 1909.  White (2002) identifies 37 credit rating agencies 

with headquarters outside of the U.S.  These firms offer bond investors access to low cost 

information about the creditworthiness of bond issuers.  The usefulness of this 

information is not limited to bond investors.  The Office of the Comptroller of the 

Currency (OCC) in the U.S. has long required banks to use internal ratings systems to 

rank the credit quality of loans in their portfolios.  However, the rating system has been 

rather crude, with most loans rated as Pass/Performing and only a minority of loans 

differentiated according to the four non-performing classifications (listed in order of 

declining credit quality): other assets especially mentioned (OAEM), substandard, 

doubtful, and loss.  Similarly, the National Association of Insurance Commissioners 

(NAIC) requires insurance companies to rank their assets using a rating schedule with six 

classifications corresponding to the following credit ratings: A and above, BBB, BB, B, 

below B, and default.  

Many banks have instituted internal ratings systems in preparation for the BIS 

New Capital Accords scheduled for implementation in 2005.  The architecture of the 

internal rating system can be one-dimensional, in which an overall rating is assigned to 

each loan based on the probability of default (PD), or two-dimensional, in which each 

borrower’s PD is assessed separately from the loss severity of the individual loan (LGD).  

Treacy and Carey (2000) estimate that 60 percent of the financial institutions in their 
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survey had one-dimensional rating systems, although they recommend a two-dimensional 

system.  Moreover, the BIS (2000) found that banks were better able to assess their 

borrowers’ PD than their LGD.4   

Treacy and Carey (2000) in their survey of the 50 largest US bank holding 

companies, and the BIS (2000) in their survey of 30 financial institutions across the G-10 

countries found considerable diversity in internal ratings models.  Although all used 

similar financial risk factors, there were differences across financial institutions with 

regard to the relative importance of each of the factors.  Treacy and Carey (2000) found 

that qualitative factors played more of a role in determining the ratings of loans to small 

and medium-sized firms, with the loan officer chiefly responsible for the ratings, in 

contrast with loans to large firms in which the credit staff primarily set the ratings using 

quantitative methods such as credit-scoring models.  Typically, ratings were set with a 

one year time horizon, although loan repayment behavior data were often available for 3-

5 years.5 

2.3 Credit Scoring Models 

 The most commonly used traditional credit risk measurement methodology is the 

multiple discriminant credit scoring analysis pioneered by Altman (1968).  Mester (1997) 

documents the widespread use of credit scoring models: 97 percent of banks use credit 

scoring to approve credit card applications, whereas 70 percent of the banks use credit 

                                                 
4 In order to adopt the Internal-Ratings Based Advanced Approach in the new Basel Capital Accord, banks 
must adopt a risk rating system that assesses the borrower’s credit risk exposure (LGD) separately from 
that of the transaction. 
5 A short time horizon may be appropriate in a mark to market model, in which downgrades of credit 
quality are considered, whereas a longer time horizon may be necessary for a default mode that considers 
only the default event.  See Hirtle, et. al. (2001). 
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scoring in their small business lending.6  There are four methodological forms of 

multivariate credit scoring models: (1) the linear probability model, (2) the logit model, 

(3) the probit model, and (4) the multiple discriminant analysis model.  All of these 

models identify financial variables that have statistical explanatory power in 

differentiating defaulting firms from non-defaulting firms.  Once the model’s parameters 

are obtained, loan applicants are assigned a Z-score assessing their classification as good 

or bad.  The Z-score itself can be converted into a PD. 

 Credit scoring models are relatively inexpensive to implement and do not suffer 

from the subjectivity and inconsistency of expert systems.  Table 1 shows the spread of 

these models throughout the world, as surveyed by Altman and Narayanan (1997).  What 

is striking is not so much the models’ differences across countries of diverse sizes and in 

various stages of development, but rather their similarities.  Most studies found that 

financial ratios measuring profitability, leverage, and liquidity had the most statistical 

power in differentiating defaulted from non-defaulted firms.   

 Shortcomings of credit scoring models are data limitations and the assumption 

of linearity.  Discriminant analysis fits a linear function of explanatory variables to the 

historical data on default.  Moreover, as shown in Table 1, the explanatory variables are 

predominately limited to balance sheet data.  These data are updated infrequently and are 

determined by accounting procedures that rely on book, rather than market valuation.  

Finally, there is often limited economic theory as to why a particular financial ratio 

                                                 
6 However, Mester (1997) reports that only 8% of banks with up to $5 billion in assets used scoring for 
small business loans.  In March 1995, in order to make credit scoring of small business loans available to 
small banks, Fair, Isaac introduced its Small Business Scoring Service, based on 5 years of data on small 
business loans collected from 17 banks. 
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would be useful in forecasting default.  In contrast, modern credit risk measurement 

models are more firmly grounded in financial theory. 

INSERT TABLE 1 AROUND HERE 

3. Structural Models of Credit Risk Measurement 

Modern methods of credit risk measurement can be traced to two alternative 

branches in the asset pricing literature of academic finance: an options-theoretic 

structural approach pioneered by Merton (1974) and a reduced form approach utilizing 

intensity-based models to estimate stochastic hazard rates, following a literature 

pioneered by Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull (1997), and 

Duffie and Singleton (1998, 1999).  These two schools of thought offer differing 

methodologies to accomplish the central task of all credit risk measurement models – 

estimation of default probabilities.  The structural approach models the economic process 

of default, whereas reduced form models decompose risky debt prices in order to estimate 

the random intensity process underlying default.7 

INSERT FIGURE 1 AROUND HERE 

Merton (1974) models equity in a levered firm as a call option on the firm’s assets 

with a strike price equal to the debt repayment amount (denoted B in Figure 1).  If at 

expiration (coinciding to the maturity of the firm’s liabilities, assumed to be comprised of 

pure discount debt instruments) the market value of the firm’s assets (denoted A in Figure 

1) exceeds the value of its debt, then the firm’s shareholders will exercise the option to 

“repurchase” the company’s assets by repaying the debt.  However, if the market value of 

the firm’s assets falls below the value of its debt (A<B), then the option will expire 

                                                 
7 The two approaches can be reconciled if asset values follow a random intensity-based process, with 
shocks that may not be fully observed because of imperfect accounting disclosures.  See Duffie and Lando 
(2001) and Zhou (1997, 2001). 
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unexercised and the firm’s shareholders will default.8  Thus, the PD until expiration (set 

equal to the maturity date of the firm’s pure discount debt, typically assumed to be one 

year)9 is equal to the likelihood that the option will expire out of the money.  To 

determine the PD we value the call option.10  We use an iterative method to estimate the 

unobserved variables that determine the value of the equity call option; in particular, A 

(the market value of assets) and σA (the volatility of assets).  These values for A and σA 

are combined with the amount of debt liabilities B that have to be repaid at a given credit 

horizon in order to calculate the firm’s Distance to Default (defined to be 
A

BA
σ
−  or the 

number of standard deviations between current asset values and the debt repayment 

amount).  The higher the Distance to Default (denoted DD), the lower the PD.  To 

convert the DD into a PD estimate, Merton (1974) assumes that asset values are log 

normally distributed.   Since this distributional assumption is often violated in practice, 

proprietary structural models use alternative approaches to map the DD into a PD 

estimate.  For example, KMV estimates an empirical PD using historical default 

experience.11 

 3.1 KMV’s Credit Manager  

 The DD is converted into a PD by determining the likelihood that the firm’s assets 

will traverse the DD during the credit horizon period.  KMV uses a historical database of 

                                                 
8 Assuming that shareholders are protected by limited liability, there are no costs of default, and that 
absolute priority rules are strictly observed, then the shareholders’ payoff in the default region is zero. 
9 Delianedis and Geske (1998) consider a more complex structure of liabilities. 
10 Using put-call parity, Merton (1974) values risky debt as a put option on the firm’s assets giving the 
shareholders the right, not the obligation, to sell the firm’s assets to the bondholders at the value of the debt 
outstanding.  The default region then corresponds to the region in which the shareholders exercise the put 
option.  The model uses equity volatility to estimate asset volatility since both the market value of firm 
assets and asset volatility are unobservable.  See Ronn and Verma (1986). 
11 The Moody’s approach uses a neural network to analyze historical experience and current financial data 
On February 11, 2002, Moody’s announced that it was acquiring KMV for more than $200 million in cash.   
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default rates to determine an empirical estimate of the PD, denoted Expected Default 

Frequency (EDF).  For example, historical evidence shows that firms with DD equal to 4 

have an average historical default rate of 1%.  Thus, KMV assigns an EDF of 1% to firms 

with DD equal to 4.  If DD>4 (DD<4), then the KMV EDF is less (more) than 1%.12  

EDFs are calibrated on a scale of 0% to 20%.   

INSERT FIGURE 2 AROUND HERE 

 Because KMV EDF scores are obtained from equity prices, they are more 

sensitive to changing financial circumstances than external credit ratings that rely 

predominately on accounting data (see critique of credit scoring models in Section 2.3).  

Figure 2 illustrates this for the case of Enron Corporation.  On December 2, 2001, Enron 

Corporation filed for Chapter 11 bankruptcy protection.  At an asset value of $49.53 

billion, this was the largest bankruptcy filing in U.S. history.  For months prior to the 

bankruptcy filing, a steadily declining stock price reflected negative information about 

the firm’s financial condition, potential undisclosed conflicts of interest, and dwindling 

prospects for a merger with Dynegy Inc.  However, as Figure 2 shows, the S&P rating 

stayed constant throughout the period from the end of 1996 until November 28, 2001, 

when Enron’s debt was downgraded to “junk” status just days before the bankruptcy 

filing.    In contrast, KMV EDF scores provided early warning of deteriorating credit 

quality as early as January 2000, with a marked increase in EDF after January 2001, 

eleven months prior to the bankruptcy filing. 

 

 

 
                                                 
12 The complete mapping of KMV EDF scores to DD is proprietary. 
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3.2 Estimating KMV EDF Scores for Private Firms 

      Privately held firms do not have a series of equity prices that can be used to estimate 

asset values.  Therefore, KMV’s Private Firm Model requires four additional steps that 

precede the estimation of the firm’s DD.  They are: 

Step 1:  Calculate the Earnings Before Interest, Taxes, Depreciation, and Amortization 

(EBITDA) for the private firm j in industry i.   

Step 2:  Calculate the average equity multiple for industry i by dividing the industry 

average market value of equity by the industry average EBITDA. 

Step 3:  Obtain an estimate of the market value of equity for the private firm j by 

multiplying the industry equity multiple from Step 2 by firm j’s EBITDA. 

Step 4:  Firm j’s assets equal the Step 3 estimate of the market value of equity plus the 

book value of firm j’s debt.  Once the private firm’s asset values can be estimated, then 

the public firm model can be utilized to evaluate the call option of the firm’s equity and 

obtain the KMV EDF score. 

4. Reduced Form or Intensity-Based Models of Credit Risk Measurement 

 Default occurs after ample early warning in Merton’s structural model.  That is, 

default occurs only after a gradual descent (diffusion) in asset values to the default point 

(equal to the debt level).  This process implies that the PD steadily approaches zero as the 

time to maturity declines, something not observed in empirical term structures of credit 

spreads.  More realistic credit spreads are obtained from reduced form or intensity-based 

models.  That is, whereas structural models view default as the outcome of a gradual 

process of deterioration in asset values,13 intensity-based models view default as a 

                                                 
13 Exceptions are the jump-diffusion models of Zhou (2001) and Collin-Dufresne and Goldstein (2001) who 
allow leverage ratios to fluctuate over time.   



 12 

sudden, unexpected event, thereby generating PD estimates that are more consistent with 

empirical observations. 

In contrast to structural models, intensity-based models do not specify the 

economic process leading to default.  Default is modeled as a point process.  Defaults 

occur randomly with a probability determined by the intensity or “hazard” function.  

Intensity-based models decompose observed credit spreads on defaultable debt to 

ascertain both the PD (conditional on there being no default prior to time t) and the LGD 

(which is 1 minus the recovery rate).  Thus, intensity-based models are fundamentally 

empirical, using observable risky debt prices (and credit spreads) in order to ascertain the 

stochastic jump process governing default.   

Because the observed credit spread (defined as the spread over the risk-free rate) 

can be viewed as a measure of the expected cost of default, we can express it as follows: 

CS = PD x LGD               (1) 

where CS = the credit spread on risky debt = risky debt yield minus the risk-free rate, 

 PD = the probability of default, 

 LGD = the loss given default = 1 – the recovery rate. 

Differing assumptions are used to disentangle the PD from the LGD in the 

observed credit spread.  Das and Tufano (1996) obtain PD using a deterministic intensity 

function and assume that LGD is correlated with the default risk-free spot rate.  Longstaff 

and Schwartz (1995) utilize a two factor model that specifies a negative relationship 

between the stochastic processes determining credit spreads and default-free interest 

rates.   Jarrow and Turnbull (1995) assume that the recovery rate is a known fraction of 

the bond’s face value at maturity date, whereas Duffie and Singleton (1998) assume that 
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the recovery rate is a known fraction of the bond’s value just prior to default.  In Duffie 

and Singleton (1999), both PD and LGD are modeled as a function of economic state 

variables.  Madan and Unal (1998) and Unal et. al. (2001) model the differential recovery 

rates on junior and senior debt.  Kamakura, in its proprietary model which is based on 

Jarrow (2001), uses equity as well as debt prices in order to disentangle the PD from the 

LGD.   

In the intensity-based approach, default probability is modeled as a Poisson 

process with intensity h such that the probability of default over the next short time 

period, ∆, is approximately ∆h and the expected time to default is 1/h; therefore, in 

continuous time, the probability of survival without default for t years is: 

1-PD(t) = e-ht      (2) 

Thus, if an A rated firm has an h=.001, it is expected to default once in 1,000 years; using 

equation (2) to compute the probability of survival over the next year we obtain 99.9 

percent.  Thus, the firm’s PD over a one year horizon is 0.1 percent.   Alternatively, if a B 

rated firm has an h=.05, it is expected to default once in 20 years and substituting into 

equation (2), we find that the probability of survival, 1 – PD(t), over the next year is 95 

percent and the PD is 5 percent.14  If a portfolio consists of 1,000 loans to A rated firms 

and 100 loans to B rated firms, then there are 6 defaults expected per year.15  A hazard 

rate (or alternatively, the arrival rate of default at time t) can be defined as the arrival time 

of default, i.e., -p′(t)/p(t) where p(t) is the probability of survival to time t and p′(t) is the 

first derivative of the survival probability function (assumed to be differentiable with 

                                                 
14 Using equation (2) to calculate the PD over a five year time horizon, we obtain a PD of 0.5 percent for 
the A rated firm and 22.12 percent for the B rated firm. 
15 The intensity of the sum of independent Poisson processes is just the sum of the individual processes’ 
intensities; therefore, the portfolio’s total intensity is: 1,000*.001 + 100*.05 = 6 defaults per year.   
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respect to t).  Since the probability of survival depends on the intensity h, the terms 

hazard rate and intensity are often used interchangeably.16   

Since intensity-based models use observed risky debt prices, they are better able 

to reflect complex term structures of default than are structural models.  However, 

although the bond market is several times the size of US equity markets,17 it is not nearly 

as transparent.18  One reason is that less than 2 percent of the volume of corporate bond 

trading occurs on the NYSE or AMEX exchanges.  The rest of the trades are conducted 

over the counter by bond dealers.  Saunders, Srinivasan, and Walter (2002) show that this 

inter-dealer market is not very competitive.  It is characterized by large spreads and 

infrequent trades.  Pricing data are often inaccurate, consisting of matrix prices that use 

simplistic algorithms to price infrequently traded bonds.  Even the commercially 

available pricing services are often unreliable.  Hancock and Kwast (2001) find 

significant discrepancies between commercial bond pricing services, Bloomberg and 

Interactive Data Corporation, in all but the most liquid bond issues.  Bohn (1999) finds 

that there is more noise in senior issues than in subordinated debt prices.  Corporate bond 

price performance is particularly erratic for maturities of less than one year.  The sparsity 

of trading makes it difficult to obtain anything more frequent than monthly pricing data; 

see Warga (1999).  A study by Schwartz (1998) indicates that even for monthly bond 

data, the number of outliers (measured relative to similar debt issues) is significant.  One 

can attribute these outliers to the illiquidity in the market.   

                                                 
16 Indeed, with constant intensity, the two terms are synonymous. 
17 In 2000, there was a total of $17.7 trillion in domestic (traded and untraded) debt outstanding; see Basak 
and Shapiro (2000). 
18 As of 1998, about $350 billion of bonds traded each day in the US as compared to $50 billion of stocks 
that are exchanged; see Bohn (1999). 
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The considerable noise in bond prices, as well as investors’ preferences for 

liquidity, suggest that there is a liquidity premium built into bond spreads.  Thus, if risky 

bond yields are decomposed into the risk-free rate plus the credit spread only, the 

estimate of credit risk exposure will be biased upward.  The proprietary model Kamakura 

Risk Manager explicitly adjusts for liquidity effects.  However, noise from embedded 

options and other structural anomalies in the default risk-free market further distorts risky 

debt prices, thereby impacting the results of intensity-based models.  Other proprietary 

models control for some of these biases in credit spreads.  For example, KPMG’s Loan 

Analysis System adjusts for embedded options and Kamakura includes a stock market 

bubble factor [see Saunders and Allen (2002)].    

5. Proprietary VaR Models of Credit Risk Measurement 

Once the default probability for each asset is computed (using either the structural 

or intensity-based approach),19 each loan in the portfolio can be valued (using either 

analytical solutions or Monte Carlo simulation) so as to derive a probability distribution 

of portfolio values.  A loss distribution can then be calculated permitting the computation 

of Value at Risk (VaR) measures of unexpected losses by specifying the minimum losses 

that will be exceeded with a certain probability.  That is, a 99 percentile VaR of, say, 

$100 million denotes that there is a 99 percent probability that unexpected losses will be 

less than $100 million and only a one percent probability that unexpected losses will 

exceed $100 million.   We now turn to two proprietary VaR models for credit risk 

measurement: CreditMetrics and Algorithmics Mark-to-Future. 

 

                                                 
19 Of course, for mark-to-market models, the entire matrix of credit transition probabilities must be 
computed in addition to the default probability for default mode models. 
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5.1  CreditMetrics 

 CreditMetrics models default probabilities using the historical default experience 

of comparable borrowing firms.  That is, the CreditMetrics model is built around a credit 

migration matrix that measures the probability that the credit rating of any given debt 

security will change over the course of the credit horizon (usually one year).20  The credit 

migration matrix considers the entire range of credit events, including upgrades and 

downgrades as well as actual default.  Thus, CreditMetrics is a mark-to-market (MTM), 

rather than default mode (DM) model.  Since loan prices and volatilities are generally 

unobservable, CreditMetrics uses migration probabilities to estimate each loan’s loss 

distribution.  We describe the model for the individual loan case using transition matrices 

based on external credit ratings. 

CreditMetrics evaluates each loan’s cash flows under eight possible credit 

migration assumptions, corresponding to each of eight credit ratings: AAA, AA, A, BBB, 

BB, B, CCC, and default.21   For example, suppose that a loan is initially rated BBB.  The 

loan’s value over the upcoming year is calculated under different possible scenarios over 

the succeeding year, e.g., the rating improves to AAA, AA, A, or deteriorates in credit 

quality or possibly defaults, as well as under the most likely scenario that the loan’s credit 

rating remains the unchanged.  Historical data on publicly traded bonds are used to 

estimate the probability of each of these credit migration scenarios.22  Putting together the 

loan valuations under each possible credit migration scenario and their likelihood of 

                                                 
20 CreditMetrics transition matrices can be obtained using historical data based on ratings agency migration 
probabilities or KMV EDFs; see Bucay and Rosen (1999). 
21 If the +/- modifiers (“notches”) are utilized, there are 22 different rating categories, see Bahar and Nagpal 
(2000). 
22 Kreinin and Sidelnikova (2001) desribe algorithms for constructing transition matrices. 
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occurrence, we obtain the distribution of the loan’s value.  At this point, standard VaR 

technology may be utilized. 

 Consider the following example of a five-year fixed-rate BBB rated loan of $100 

million made at 6 percent annual (fixed) interest.23  Based on historical data on 

publicly-traded bonds (or preferably loans), the probability that a BBB borrower will stay 

at BBB over the next year is estimated at 86.93 percent. There is also some probability 

that the borrower will be upgraded (e.g., to A) or will be downgraded (e.g., to CCC or 

even to default, D).  Indeed, eight transitions are possible for the borrower during the next 

year.  Table 2 shows the estimated probabilities of these credit migration transitions.  The 

migration process is modeled as a finite Markov chain, which assumes that the credit 

rating changes from one rating to another with a certain constant probability at each time 

interval.   

INSERT TABLE 2 AROUND HERE 

The effect of rating upgrades and downgrades is to impact the required credit risk 

spreads or premiums on the loan's remaining cash flows, and, thus, the implied market (or 

present) value of the loan. If a loan is downgraded, the required credit spread premium 

should rise (remember that the contractual loan rate in our example is assumed fixed at 6 

percent) so that the present value of the loan should fall. A credit rating upgrade has the 

opposite effect. Technically, because we are revaluing the five-year, $100 million, 6 

percent loan at the end of the first year (the end of the credit event horizon), after a 

“credit-event” has occurred during that year, then (measured in millions of dollars):24 

                                                 
23 This example is based on the one used in Gupton, et. al., CreditMetrics-Technical Document (1997). 
24 Technically, from a valuation perspective the credit-event occurs (by assumption) at the very end of the 
first year. Currently, CreditMetrics is expanding to allow the credit event "window" to be as short as 3 
months or as long as 5 years. 
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P = 6 +       6        +          6         +         6        +         106                   (3) 

     (1+r1+s1)     (1+r2+s2)2     (1+r3+s3)3      (1+r4+s4)4  
 
where ri are the risk-free rates (the forward risk-free rates) on zero-coupon US Treasury 

bonds expected to exist one year into the future. Further, the series of si is the annual 

credit spread on (zero coupon) loans of a particular rating class of one-year, two-year, 

three-year, and four-year maturities (derived from observed spreads in the corporate bond 

market over Treasuries).  In the above example, the first year's coupon or interest 

payment of $6 million (to be received on the valuation date at the end of the first year) is 

undiscounted and can be regarded as equivalent to accrued interest earned on a bond or a 

loan.   

In CreditMetrics, interest rates are assumed to be deterministic.25   Thus, the risk-

free rates, ri, are obtained by decomposing the current spot yield curve in order to obtain 

the one-year forward zero curve and then adding fixed credit spreads to the forward zero 

coupon Treasury yield curve.   That is, the risk-free spot yield curve is first derived using 

U.S. Treasury yields.  Pure discount yields for all maturities can be obtained using yields 

on coupon-bearing U.S. Treasury securities.  Once the risk-free spot yield curve is 

obtained, the forward yield curve can be derived using the expectations hypothesis.  The 

values of ri are read off this forward yield curve.  For example, if today’s risk-free spot 

rate were 3.01 percent p.a. for 1 year maturity pure discount U.S. Treasury securities and 

3.25 percent for 2 year maturities, then we can calculate r1, the forward risk-free rate 

                                                 
25 The assumption that interest rates are deterministic is particularly unsatisfying for credit derivatives 
because fluctuations in risk-free rates may cause the counterparty to default as the derivative moves in or 
out of the money.  Thus, the portfolio VAR, as well as VAR for credit derivatives, (see for example CIBC’s 
CreditVaR II) assume a stochastic interest rate process that allows the entire risk-free term structure to shift 
over time.   See Crouhy, et. al. (2000). 
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expected one year from now on 1-year maturity U.S. Treasury securities using the 

expectations hypothesis as follows:26 

(1 + .0325)2  =  (1 + .0301)(1+r1)    (4) 

Thereby solving for r1  = 3.5 percent p.a.  This procedure can be repeated for the 2-year 

maturity risk-free rate expected in one year r2, and continuing for as many rates as 

required to value the multiyear loan (until r4 for the five year loan in this example). 

CreditMetrics obtains fixed credit spreads si for different credit ratings from 

commercial firms such as Bridge Information Systems.  For example, if during the year a 

credit event occurred so that the five year loan in our example was upgraded to an A 

rating (from a BBB), then the value of the credit spread for an A rated bond would be 

added to the risk-free forward rate for each maturity; suppose that the credit spread s1 was 

22 basis points in the first year.  Evaluating the first coupon payment after the credit 

horizon is reached in one year, the risk-free forward rate of 3.5 percent p.a. would be 

added to the one year credit spread for A rated bonds of 22 basis points to obtain a risk-

adjusted rate of 3.72 percent p.a.  Using different credit spreads si for each loan payment 

date and the forward rates ri we can solve for the end of year value of a $100 million five 

year 6 percent coupon loan that is upgraded from a BBB rating to an A rating within the 

next year such that: 

 
P = 6 +       6        +          6         +         6        +         106      = $108.66          (5) 

     (1.0372)       (1.0432)2       (1.0493)3       (1.0532)4  
 

                                                 
26 In this simplified example, we annualize semi-annual rates corresponding to coupon payment dates on 
U.S. Treasury securities.  For a more precise explanation of this methodology, see Appendix 6.1 in 
Saunders and Allen (2002). 
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INSERT TABLE 3 AROUND HERE 

 Table 3 shows the loan’s value at the credit horizon for all possible credit 

migrations.  To obtain the distribution of loan values, we discount each of the loan’s cash 

flows at the appropriate risk-adjusted forward rate.  As shown in equation (5), if the 

loan’s credit quality is upgraded from BBB to A, then the loan’s value will increase to 

$108.66 million.  However, Table 3 shows that if the loan’s credit quality deteriorates to 

CCC, then the loan’s value will fall to $83.64 million.   Moreover, if the loan defaults, its 

value will fall to its recovery value, shown in Table 3 to be $51.13 million.27   

INSERT FIGURE 3 AROUND HERE 

The distribution of loan values on the one year credit horizon date can be drawn 

using the transition probabilities in Table 2 and the loan valuations in Table 3.  Figure 3 

shows that the distribution of loan values is not normal.  CreditMetrics can estimate a 

VaR measure based on the actual distribution as well as on an approximation using a 

normal distribution of loan values.28  The mean of the value distribution shown in Figure 

3 is $107.09 million.  If the loan had retained its BBB rating, then the loan’s value would 

have been $107.55 million at the end of the credit horizon.  Thus, the expected losses on 

this loan are  $460,000 (=$107.55 minus $107.09 million).  However, unexpected losses 

(to be covered by economic capital) are determined by the probable losses over and 

above expected losses.   We measure unexpected losses using the credit VaR to calculate 

the minimum possible losses that will occur at a certain confidence level.  Figure 3 shows 

that the 1 percent loan cut-off value is $100.12 million; that is, there is only a 1 percent 

chance that loan values will be lower than $100.12 million.  Thus, the 99 percentile VaR 

                                                 
27 CreditMetrics models recovery values as beta distributed, although the simple model assumes a 
deterministic recovery value set equal to the mean of the distribution.  
28For a discussion of the calculation of VaR using the actual distribution, see Saunders and Allen (2002).  
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for unexpected losses total $6.97 million ($107.09 minus $100.12).29  CreditMetrics 

estimates that the loan’s unexpected losses would exceed $6.97 million in only one year 

out of a 100.30   

This example illustrates the CreditMetrics approach for individual loans.  

However, if asset returns are not perfectly correlated, then the credit risk of the portfolio 

may be less than the sum of individual asset risks because of the benefits of 

diversification.  CreditMetrics solves for correlations by first regressing equity returns on 

industry indices.  Then the correlation between any pair of equity returns is calculated 

using the correlations across the industry indices.  Once we obtain equity correlations, we 

can solve for joint migration probabilities to estimate the likelihood that the joint credit 

quality of the loans in the portfolio will be either upgraded or downgraded.  Portfolio loss 

distributions are then obtained by calculating individual asset values for each possible 

joint migration scenario.   

5.2 Algorithmics’ Mark-to-Future 

Although the portfolio version of CreditMetrics incorporates stochastic interest 

rates, we have seen that the basic CreditMetrics model focuses on credit risk 

measurement while incorporating a rather static view of interest rate risk.   Algorithmics 

Mark-to-Future (MtF) attempts to link market risk, credit risk and liquidity risk in a 

scenario-based framework [see Iscoe, et. al. (1999)].  That is, whereas the fundamental 

risk driver in CreditMetrics is the credit migration matrix, Algorithmics simulates 

                                                 
29 We obtained the 1 percent maximum loan value assuming that loan values were normally distributed 
with a standard deviation of loan value of $2.99 million; thus, the 1 percent VaR is $6.97 million (equal to 
2.33 standard deviations, or 2.33 x $2.99 million).   
30 If the actual distribution is used rather than assuming that the loan’s value is normally distributed, the 1 
percent VaR in this example is $14.8 million. 
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portfolio valuations using hundreds of different risk factors.31  Table 4 summarizes these 

risk factors.  Scenarios are defined by states of the world over time and are comprised of 

both market factors (interest rates, foreign exchange rates, equity prices and commodity 

prices) as well as credit drivers (systemic and macroeconomic factors).  As its name 

suggests, the MtF model is a mark-to-market model.  Each asset in the portfolio is 

revalued as scenario-driven credit or market events occur, thereby causing credit spreads 

to fluctuate over time.  MtF differs from other credit risk measurement models in that it 

views market risk and credit risk as inseparable.32  Stress tests show that credit risk 

measures are quite sensitive to market risk factors.33  Indeed, it is the systemic market 

risk parameters that drive creditworthiness in MtF. 

INSERT TABLE 4 AROUND HERE 

Dembo, et. al. (2000) offer an example of this simulation analysis using a BB 

rated swap obligation.  The firm’s credit risk is estimated using a Merton options-

theoretic model of default; that is, MtF defines a creditworthiness index (CWI) that 

specifies the distance to default as the distance between the value of the firm’s assets and 

a (nonconstant) default boundary.34  Figure 4 shows the scenario simulation of the CWI, 

illustrating two possible scenarios of firm asset values: (Scenario 1) the firm defaults in 

                                                 
31 However, unconditional credit migration matrices and non-stochastic yield curves (similar to those used 
in CreditMetrics) are fundamental inputs into the MtF model.  Nevertheless, Algorithmics permits scenario-
driven shifts in these static migration probabilities and yield curves. 
32 Finger (2000a) proposes an extension of CreditMetrics that would incorporate the correlation between 
market risk factors and credit exposure size.  This is particularly relevant for the measurement of 
counterparty credit risk on derivatives instruments because the derivative can move in or out of the money 
as market factors fluctuate.  In June 1999, the Counterparty Risk Management Policy Group called for the 
development of stress tests to estimate “wrong-way credit exposure” such as experienced by US banks 
during the Asian currency crises; i.e., credit exposure to Asian counterparties increased just as the foreign 
currency declines caused FX losses on derivatives positions. 
33 Fraser (2000) finds that a doubling of the spread between Baa rated bonds over US Treasury securities 
from 150 basis points to 300 basis points increases the 99 percent VAR measure from 1.77 percent to 3.25 
percent for a Eurobond portfolio. 
34 Although the default boundary is not observable, it can be computed from the (unconditional) default 
probability term structure observed for BB rated firms. 
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year 3, and (Scenario 2) the firm remains solvent for the next 10 years.  The default date 

under each scenario is represented by the point at which the firm’s asset value first hits 

the default boundary.35  MtF assumes that the CWI follows a geometric Brownian motion 

standardized to have a mean of zero and a variance of one.  The basic building block of 

the CWI is the unconditional cumulative default probabilities for typical BB rated firms 

obtained using the Merton model (as discussed in Section 3).  Using the unconditional 

default probabilities as a foundation, a conditional cumulative default probability 

distribution is generated for each scenario.  That is, the sensitivity of the default 

probability to scenario risk factors is estimated for each scenario of systematic market 

risk factors – the risk driver.  MtF estimates the historical sensitivity to the risk driver 

using a multifactor model that incorporates both systemic and idiosyncratic company 

specific factors.  A return distribution can then be derived using the full range of possible 

scenarios and the conditional default probabilities.   

INSERT FIGURE 4 AROUND HERE 

Integrating different risk drivers is critical to obtaining more accurate VaR 

estimates for credit risk.  For example, the Russian debt default in August 1998 was 

foreshadowed by the devaluation of the ruble.  Incorporating data on foreign exchange 

rates as well as interest rates (during the first few days of August 1998, yields on US 

Treasury bonds reached historic lows) could have forecast the increased risk of default 

almost a week before the Russian government announced its debt restructuring plan.  

Dembo, et. al. (2000) show that if a “Russian scenario” were used in January 1999 during 

a similar crisis for Brazilian debt, the 95 percentile Credit VaR estimate would have 

                                                 
35 Default is assumed to be an absorbing state, so Figure 4 shows that the curve representing the firm’s asset 
value in scenario 1 coincides with the default boundary for all periods after year 3. 
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forecast a 57 percent decline in portfolio value over the two week crisis period.  Thus, 

integrating the market risk drivers into a model of credit risk measurement can improve 

the quality of the VaR estimates, particularly during crisis periods.  Therefore, 

dichotomizing credit risk and market risk undermines the accuracy of all risk 

measurement models.   

The primary disadvantage of the scenario-based MtF is its computational 

complexity.  The cost of implementing the model is directly related to the number of 

simulations that must be performed in order to estimate the portfolio’s loss distribution.  

To reduce that cost, MtF separates the scenario analysis stage from the exposure analysis 

stage.  Therefore, MtF loss estimates (denoted MtF Cubes) are calculated for each 

instrument independent of the actual counterparty exposures.  Individual exposure loss 

distributions are then computed by combining the MtF Cubes across all scenarios using 

conditional obligor default/migration probabilities (assuming exposures are not scenario-

dependent).  Aggregation across the assets in the portfolio is simplified because once 

conditioned on a particular scenario, obligor credit events are independent. 

6 Mortality Rate Models 

Credit Risk Plus, a proprietary model developed by Credit Suisse Financial Products 

(CSFP) stands in direct contrast to VaR models in its objectives and its theoretical 

foundations. CreditMetrics and Algorithmics MtF seek to estimate the full VaR of a loan 

or loan portfolio by viewing rating upgrades and downgrades and the associated effects 

of spread changes in the discount rate as part of the VaR exposure of a loan. Credit Risk 

Plus views spread risk as part of market risk rather than credit risk. As a result, in any 

period, only two states of the world are considered - default and non-default - and the 
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focus is on measuring expected and unexpected losses rather than expected value and 

unexpected changes in value (or VaR).  Thus, Credit Risk Plus is a default mode (DM) 

model. 

The second major difference is that, in CreditMetrics and Algorithmics MtF, the 

default probability in any year is discrete (as are the upgrade/ downgrade probabilities). 

In Credit Risk Plus, default is modeled as a continuous variable with a probability 

distribution. Thus, Credit Risk Plus is based on the theoretical underpinnings of intensity-

based models (see discussion in Section 4). An analogy from property fire insurance is 

relevant. When a whole portfolio of homes is insured, there is a small probability that 

each house will burn down, and (in general) the probability that each house will burn 

down can be viewed as an independent event.36 Similarly, many types of loans, such as 

mortgages and small business loans, can be thought of in the same way, with respect to 

their default risk. Thus, under Credit Risk Plus, each individual loan is regarded as 

having a small probability of default, and each loan's probability of default is independent 

of the default on other loans.37  This assumption makes the distribution of the default 

probabilities of a loan portfolio resemble a Poisson distribution.38   

Default rate uncertainty is only one type of uncertainty modeled in Credit Risk Plus. 

A second type of uncertainty surrounds the size or severity of the losses themselves. 

Borrowing again from the fire insurance analogy, when a house “catches fire,” the degree 

                                                 
36 That is, there is a constant probability that any given house will burn down (or equivalently, a loan will 
default) within a predetermined time period.  Credit Risk Plus has the flexibility to calculate default 
probabilities over a constant time horizon (say, one year) or over a hold-to-maturity horizon. 
37 Moreover, the probability of default is assumed to be constant over time.  This is strictly true for only the 
simplest of the models in Credit Risk Plus. A more sophisticated version ties loan default probabilities to 
the systematically varying mean default rate of the “economy” or “sector” of interest. 
38 The continuous time extension of Credit Risk Plus is the intensity-based model of Duffie and Singleton 
(1998) which stipulates that over a given small time internal, the probability of default is independent 
across loans and proportional to a fixed default intensity function.  The evolution of this intensity process 
follows a Poisson distribution as assumed in the discrete version Credit Risk Plus.  See Finger (2000b). 
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of loss severity can vary from the loss of a roof to the complete destruction of the house. 

In Credit Risk Plus, the fact that severity rates are uncertain is acknowledged, but because 

of the difficulty of measuring severity on an individual loan-by-loan basis, loss severities 

or loan exposures are rounded and banded (for example, into discrete $20,000 severity or 

loss bands). The smaller the bands, the less the degree of inaccuracy that is built into the 

model as a result of banding. 

The two degrees of uncertainty - the frequency of defaults and the severity of losses - 

produce a distribution of losses for each exposure band. Summing (or accumulating) 

these losses across exposure bands produces a distribution of losses for the portfolio of 

loans.  The great advantage of the Credit Risk Plus model is its parsimonious data 

requirements. The key data inputs are mean loss rates and loss severities, for various 

bands in the loan portfolio, both of which are potentially amenable to collection, either 

internally or externally.   

The assumption of a default rate with a Poisson distribution implies that the mean 

default rate of a portfolio of loans should equal its variance.  However, this does not hold 

in general, especially for lower quality credits.  For B-rated bonds, Carty and Lieberman 

(1996) found the mean default rate was 7.62 percent and the square root of the mean was 

2.76 percent, but the observed standard deviation was 5.1 percent, or almost twice as 

large as the square root of the mean.  Thus, the Poisson distribution appears to 

underestimate the actual probability of default. 

What extra degree of uncertainty might explain the higher variance (fatter tails) in 

observed loss distributions? The additional uncertainty modeled by Credit Risk Plus is 

that the mean default rate itself can vary over time (or over the business cycle). For 
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example, in economic expansions, the mean default rate will be low; in economic 

contractions, it may rise significantly.39 In the extended Credit Risk Plus model, there are 

three types of uncertainty: (1) the uncertainty of the default rate around any given mean 

default rate, (2) the uncertainty about the severity of loss, and (3) the uncertainty about 

the mean default rate itself [modeled as a gamma distribution by CSFB (1997)].  Credit 

Risk Plus derives a closed form solution for the loss distribution by assuming that these 

types of uncertainty are all independent.40 

Appropriately modeled, a loss distribution can be generated along with expected 

losses and unexpected losses that exhibit observable fatter tails. The latter can then be 

used to calculate unexpected losses due to credit risk exposure. Note that this credit risk 

measure is not the same as the VaR measured under MTM models like CreditMetrics. 

Since Credit Risk Plus is a DM model, it does not consider non-default migrations in 

credit quality. Thus, the Credit Risk Plus credit risk measure is closer to a 

loss-of-earnings or book-value capital measure than a full market value of economic 

capital measure.  

7 Comparison of Credit Risk Measurement Models 
 

There are many dimensions along which to compare the modern models of credit risk 

measurement surveyed in Sections 3-6. Table 5 focuses on ten key dimensions of the 

following four models:  (1) options pricing models such as KMV and Moody’s 

(discussed in Section 3); (2) reduced form models such as KPMG and Kamakura 

Corporation (Section 4); (3) CreditMetrics (Section 5); and (4) Credit Risk Plus (Section 

                                                 
39 The most speculative risk classifications’ default probabilities are most sensitive to these shifts in 
macroeconomic conditions;  See Crouhy, et. al. (2000). 
40 The assumption of independence may be violated if the volatility in mean default rates reflects the 
correlation of default events through interrlated macroeconomic factors.  
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6), Analytically and empirically, these models are not as different as they may first 

appear.  Indeed, similar arguments stressing the structural similarities have been made by 

Gordy (2000), Koyluoglu and Hickman (1998), and Crouhy, et. al. (2000), using different 

model anatomies.   

INSERT TABLE 5 AROUND HERE 

Table 5 compares the different models.  CreditMetrics and reduced form models are 

mark-to-market (MTM) models, in contrast with the default mode (DM) models of Credit 

Risk Plus and Merton options pricing models.  At first sight, the key risk drivers of these 

models appear to be quite different. CreditMetrics, KMV, and Moody’s have their 

analytic foundations in a Merton-type model; a firm's asset values and the volatility of 

asset values are the key drivers of default risk. In Credit Risk Plus, the risk driver is the 

mean level of default risk and its volatility; in reduced form models, it is the credit 

spreads obtained from risky debt yields.  

Yet, if couched in terms of multifactor models, all four models can be viewed as 

having similar roots.  Specifically, the variability of a firm's asset returns in CreditMetrics 

(as in KMV and Moody’s) is modeled as being directly linked to the variability in a 

firm's stock returns.  To the extent that multifactor asset pricing models drive all risky 

security prices, the results of reduced form models are driven by the same risk factors.  In 

turn, in calculating correlations among firms’ asset returns, the stocks of individual firms 

are viewed as being driven by a set of systematic risk factors (industry factors, country 

factors, and so on) and unsystematic risk factors. The systematic risk factors, along with 

correlations among systematic risk factors (and their weighted importance), drive the 
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asset returns of individual firms and the default correlations among firms.41  In particular, 

a set of systematic “country-wide” macro factors and unsystematic macroeconomic 

shocks drives default risk and the correlations of default risks among borrowers.42 The 

key risk driver in Credit Risk Plus is the variable mean default rate in the economy. This 

mean default rate can also be viewed as being linked systematically to the “state of the 

macro economy;” when the macro economy deteriorates, the mean default rate is likely to 

rise, as are default losses. An improvement in economic conditions has the opposite 

effect.  Thus, the risk drivers and correlations in all four models can be viewed as being 

linked, to some degree, to a set of macroeconomic and systematic risk factors that 

describe the evolution of economy-wide conditions. 

Although the fundamental risk drivers may be similar, comparison across the models 

must be based on their relative performance.  In February 2000, the International Swaps 

and Derivatives Association (ISDA) and the Institute of International Finance (IIF) 

published the results of an ambitious joint project to test credit risk measurement models 

in 25 commercial banks from 10 countries with varying sizes and specialties.  In the 

report, hereinafter referred to as IIF/ISDA, four models (CreditMetrics, CreditPortfolio 

View, Credit Risk Plus, and KMV) are compared to internal models for standardized 

portfolios (without option elements) created to replicate four markets: corporate bonds 

and loans, middle markets, mortgages43, and retail credits.  The most important 

conclusions of the study are:44 

                                                 
41 For example, Froot and Stein (1998) examine a two factor model in a RAROC framework. 
42 CreditPortfolio View is a VaR-type model that explicitly models this macroeconomic risk factor by 
estimating transition matrices that are conditional of economic conditions.  See Wilson (1997a,b). 
43 Because mortgages are more sensitive to specific local economic conditions than are other debt 
instruments, the study’s participants could not agree on a meaningful common base case portfolio to be 
used to compare publicly available credit risk models for the mortgage portfolio.  Differences of opinion 
among the bank participants in the survey dealt with issues such as: the interaction between interest rate 
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• Models yield directionally consistent outputs when given similar inputs.  In some 

model types, the outputs are almost identical. 

• Where there are discrepancies, they reflected differences in: model inputs, 

preprocessing (i.e., packaging transactions into a readable format), valuation, 

errors in model usage during testing, and misunderstandings by participants 

regarding application of standardized parameters. 

• Substantive differences in results across models can be attributed to different 

approaches to valuations and correlation calculation methods.  Model outputs are 

significantly affected by: valuation methods, changes in spreads, discount rates, 

and the treatment of cash flows. 

• The most significant drivers of portfolio risk are credit quality (tested by 

subjecting portfolios to specified downgrade scenarios), asset correlation, and loss 

given default (LGD).   

• Internal models focus on scoring methodologies and aggregate measures of 

default, not default probabilities and credit migrations.   

We focus on the IIF/ISDA results for the middle market portfolio. 
 
7.1  IIF/ISDA Results on the Middle Portfolio  

The results for the middle markets, mortgages, and retail credit showed a range of 

credit risk estimates.45  Moreover, proprietary internal models were used most often by 

the banks participating in the survey for the middle markets portfolio as compared to any 

                                                                                                                                                 
and credit risk, the role of collateral and mortgage insurance, portfolio “seasoning” or diversification of 
tenor, and cross-country differences in securitization.  See Jarrow and Turnbull (2000) for a discussion of 
the lack of separability of market risk and credit risk. 
44 This is adapted from IIF/ISDA (2000), pp. 2-3. 
45 In particular, the credit risk estimates for portfolios of large corporate obligations were more consistent 
across the models.  See IIF/ISDA (2000). 
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other portfolio.  These internal models typically focused on default only.  The 

standardized test portfolio for middle markets was a composite of 2,500 real-world 

exposures, averaging £894,000 per obligor.   Five percent of the total exposures came 

from one obligor and the next five obligors represented an additional 6 percent of the 

exposures.  The average maturity was 2.5 years, with approximately 35 percent maturing 

within one year.  To replicate portfolio concentration, all exposures were assumed to be 

in the United Kingdom.  Investment grade loans represented 69 percent of the portfolio, 

with the remaining 31 percent below investment grade. 

INSERT TABLE 6 AROUND HERE 
 

As shown in Table 6, there were significant differences in the risk measures 

estimated by the different models for the middle market portfolio.  KMV generated VaR 

estimates of 3.0 percent in contrast to the CreditMetrics estimates of 1.6 percent.  Part of 

this discrepancy may be the result of differences in maturity assumptions; the KMV users 

rounded maturities of less than one year to one year, whereas CreditMetrics users left all 

maturities as specified in the portfolio.  Moreover, the middle market portfolio was 

deliberately allowed to retain some flexibility for individual interpretation.46  Thus, 

different assumptions about product types (e.g., receivables, letters of credit and 

commitments) may account for some of the variability in outputs shown in Table 6.   

Examining the source of this variability, IIF/ISDA found considerable divergence 

in credit risk estimates for DM versus MTM models.  In particular, migration risk 

increases estimates of unexpected losses (UL) and VaR estimates for all models in Table 

                                                 
46 Table 6 understates the degree of variability in credit risk estimates, particularly for internal models.  
When banks undertook their own practice runs using their own parameter settings, the range of outputs 
increased dramatically.  For example, estimates of 1 percent VAR ranged from 3.1 percent to 13.0 percent 
for the middle market portfolio using the banks’ parameterization of their proprietary internal models. 
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6.47  That is, KMV model estimates of UL increased from a range of 0.6-0.8 to a range of 

1.1-1.6 (for the four banks that provided estimates).  Using CreditMetrics, the impact of a 

shift from DM to MTM was less dramatic: UL increased from 0.4-0.5 under DM to 0.5 

under MTM.  Moreover, the choice of DM or MTM had no impact at all on expected 

losses.   

The estimates of VaR showed considerable diversity across different iterations of 

estimation.  In particular, the MTM estimates of VaR using the KMV model ranged from 

1.6 to 5.3 percent.  The range for the DM model was less: 2.4 - 3.0.  Finally, 

CreditMetrics and internal models yielded more consistent estimates of VaR in the 1.5 – 

1.8 percent range.  Thus, for the middle market portfolio in particular, model assumptions 

have considerable impact on credit risk estimates. 

8 Summary and Conclusion 

Although we have made much progress in credit risk measurement, there is still much 

we do not know.  Middle market obligors are particularly affected by inaccuracies and 

inconsistencies in credit risk measurement models.  Different models produce markedly 

different credit risk assessments, thereby undermining the credibility of all estimates and 

potentially restricting middle market firms’ access to credit.  To alleviate this, we must 

produce more accurate, long-term time series databases on the credit performance of 

middle market firms.  Along with continual modeling improvements, the state of the 

credit risk measurement art will most certainly improve.  

                                                 
47The one exception is for the internal models.  However, the low amount of credit risk estimates for the 
internal model shown in Table 6 stems from the model’s assumption that it takes a certain amount of time 
for a loan to migrate to default.   
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Table 1   
International Survey of Credit Scoring Models 

STUDIES CITED EXPLANATORY VARIABLES 
United States  
Altman (1968) EBIT/assets; retained earnings/ assets; working capital/assets; 

sales/assets; market value (MV) equity/book value of debt. 
Japan  
Ko (1982) EBIT/sales; working capital/debt; inventory turnover 2 years 

prior/inventory turnover 3 years prior; MV equity/debt; standard 
error of net income (4 years). 

Takahashi, et. al. 
(1979) 

Net worth/fixed assets; current liabilities/assets; voluntary 
reserves plus unappropriated surplus/assets; interest 
expense/sales; earned surplus; increase in residual value/sales; 
ordinary profit/assets; sales - variable costs. 

Switzerland  
Weibel (1973) Liquidity (near monetary resource asset – current liabilities)/ 

operating expenses prior to depreciation; inventory turnover; 
debt/assets. 

Germany  
Baetge, Huss and 
Niehaus (1988) 

Net worth/(total assets – quick assets – property & plant); 
(operating income + ordinary depreciation + addition to pension 
reserves)/assets; (cash income – expenses)/short term liabilities. 

von Stein and 
Ziegler (1984) 

Capital borrowed/total capital; short-term borrowed 
capital/output; accounts payable for purchases & deliveries / 
material costs; (bill of exchange liabilities + accounts 
payable)/output; (current assets – short-term borrowed 
capital)/output; equity/(total assets – liquid assets – real estate); 
equity/(tangible property – real estate); short-term borrowed 
capital/current assets; (working expenditure – depreciation on 
tangible property)/(liquid assets + accounts receivable – short-
term borrowed capital); operational result/capital; (operational 
result + depreciation)/net turnover; (operational result + 
depreciation)/short-term borrowed capital; (operational result + 
depreciation)/total capital borrowed. 

England  
Marais (1979), 
Earl & Marais 
(1982) 

Current assets/gross total assets; 1/gross total assets; cash 
flow/current liabilities; (funds generated from operations – net 
change in working capital)/debt. 

Canada  
Altman and 
Lavallee (1981) 

Current assets/current liabilities; net after-tax profits/debt; rate of 
growth of equity – rate of asset growth; debt/assets; sales/assets. 

The Netherlands  
Bilderbeek (1979) Retained earnings/assets; accounts payable/sales; added value/ 

assets; sales/assets; net profit/equity. 
van Frederikslust 
(1978) 

Liquidity ratio (change in short term debt over time); 
profitability ratio (rate of return on equity). 
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TABLE 1 (CONTINUED) 
STUDIES CITED EXPLANATORY VARIABLES 
Spain  
Fernandez (1988) Return on investment; cash flow/current liabilities; quick ratio/ 

industry value; before tax earnings/sales; cash flow/sales; 
(permanent funds/net fixed assets)/industry value. 

Italy  
Altman, Marco, 
and Varetto (1994) 

Ability to bear cost of debt; liquidity; ability to bear financial 
debt; profitability; assets/liabilities; profit accumulation; trade 
indebtedness; efficiency. 

Australia  
Izan (1984) EBIT/interest; MV equity/liabilities; EBIT/assets; funded debt/ 

shareholder funds; current assets/current liabilities. 
Greece  
Gloubos and 
Grammatikos 
(1988) 

Gross income/current liabilities; debt/assets; net working 
capital/assets; gross income/assets; current assets/current 
liabilities. 

Brazil  
Altman, Baidya, & 
Ribeiro-Dias,1979 

Retained earnings/assets; EBIT/assets; sales/assets; MV equity/ 
book value of liabilities. 

India  
Bhatia (1988) Cash flow/debt; current ratio; profit after tax/net worth; interest/ 

output; sales/assets; stock of finished goods/sales; working 
capital management ratio.  

Korea  
Altman, Kim and 
Eom (1995) 

Log(assets); log(sales/assets); retained earnings/assets; MV of 
equity/liabilities. 

Singapore  
Ta and Seah 
(1981) 

Operating profit/liabilities; current assets/current liabilities; 
EAIT/paid-up capital; sales/working capital; (current assets – 
stocks – current liabilities)/EBIT; total shareholders’ 
fund/liabilities; ordinary shareholders’ fund/capital used. 

Finland  
Suominen (1988) Profitability: (quick flow – direct taxes)/assets; Liquidity: (quick 

assets/total assets); liabilities/assets. 
Uruguay  
Pascale (1988) Sales/debt; net earnings/assets; long term debt/total debt. 
Turkey  
Unal (1988) EBIT/assets; quick assets/current debt; net working capital/sales; 

quick assets/inventory; debt/assets; long term debt/assets. 
Notes:  Whenever possible, the explanatory variables are listed in order of statistical 
importance (e.g., the size of the coefficient term) from highest to lowest.  Source: Altman 
and Narayanan (1997). 
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Table 2  
One-Year Transition Probabilities for 

BBB-Rated Borrower 
 
__________________________________________________________________ 
AAA 0.02% 
AA 0.33 
A 5.95 
BBB 86.93 <------------------------------ Most likely to stay 
BB 5.30 in the same class 
B 1.17 
CCC 0.12 
Default 0.18 
__________________________________________________________________ 
Source: Gupton, et. al., CreditMetrics-Technical Document, J.P. Morgan, April 2,1997, p. 
11. 
 

 

 
Table 3  

Value of the Loan at the End of Year 1, 
Under Different Ratings (Including First Year Coupon) 

 
 Year-End Rating Value (millions) 
 AAA  $109.37 
 AA  109.19 
 A  108.66 
 BBB  107.55 
 BB  102.02 
 B  98.10 
 CCC  83.64 
 Default  51.13 
 
Source: Gupton, et. al., CreditMetrics-Technical Document, J.P. Morgan, April 2,1997, p. 
10. 
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Table 4 
Risk Drivers in Algorithmics Mark-to-Future 

 
Risk Exposure Risk Factors Time 

Horizon 
Type of 
Scenarios 

Number of 
Scenarios 

Market Risk 50-1,000 interest rates, 
foreign exchange rates, equity 
prices, commodity prices 

1 – 10 days Historical, 
Monte Carlo 
simulation 

100-10,000 

Counterparty 
Credit Risk 

50-100 interest rates, foreign 
exchange rates, equity prices, 
commodity prices 

1 – 30 years Monte Carlo 
simulation, 
Extreme 
value analysis 

10-5,000 

Portfolio 
Credit Risk 

50-200 systemic market & 
credit factors, interest rates, 
exchange rates, equity & 
commodity prices, 
macroeconomic factors 

1 – 10 years Monte Carlo 
simulation, 
Extreme 
value analysis 

5-5,000 

Asset/Liability 
Management 

20-100 interest rates, foreign 
exchange rates 

6 months – 
30 years 

Historical, 
Monte Carlo 
simulation 

5-5,000 

 
Source: Dembo, et. Al. (2000), p. 11. 
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Table 5 

Comparison of Different Credit Risk Measurement Models 
 
 CreditMetrics Credit 

Risk Plus 
Merton OPM 
KMV/Moody’s 

Reduced Form 
KPMG/Kamkura 

Definition of 
Risk 

MTM DM MTM or DM MTM 

Risk Drivers Asset Values Expected 
Default 
Rates 

Asset Values Debt and Equity 
Prices 

Data 
Requirements 

Historical Transition 
Matrix, Credit 

Spreads & Yield 
Curves, LGD, 
Correlations, 

Exposures 

Default Rates 
and 

Volatility, 
Macroeco 
Factors, 
LGD, 

Exposures 

Equity Prices, Credit 
Spreads, 

Correlations, 
Exposures 

Debt and Equity 
Prices, Historical 
Transition Matrix, 
Correlations, 
Exposures 

Characterization 
of Credit Events 

Credit Migration Actuarial 
Random 

Default Rate 

Distance to Default: 
Structural and 

Empirical 

Default Intensity 

Volatility of 
Credit Events 

Constant or 
Variable 

Variable Variable Variable 

Correlation of 
Credit Events 

Multivariate 
Normal Asset 

Returns 

Independence  
assumption 

or correlation 
with 

expected 
default rate 

Multivariate 
Normal Asset 

Returns 

Poisson Intensity 
Processes with Joint 

Systemic Factors 

Recovery Rates Random (Beta 
distribution) 

Constant 
Within 
Band 

Constant or 
Random 

Constant or Random 

Numerical 
Approach 

Simulation or 
Analytic 

Analytic Analytic and 
Econometric 

Econometric 

Interest Rates Constant Constant Constant Stochastic 
Risk 

Classification 
Ratings Exposure 

Bands 
Empirical EDF Ratings or  

Credit Spreads 
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Table 6 
Summary of IIF/ISDA Results for the Middle Market Portfolio 

 
MODEL Exposure  

GBP millions  
Expected Loss  

%      
Unexpected 

Loss % 
1% VAR 

Median Values 2,276 0.6 N/A 2.4 
CreditMetrics 2,276 0.6 0.4 1.6 

KMV 2,276 0.6 0.7 3.0 
Internal Models 2,276 0.4 - 0.7 0.3 - 1.1 2.3 - 6.6 
DM Models:     
CreditMetrics 2,276-2,350 0.6 0.4-0.5 1.6 

KMV 2,276 0.6 0.6-0.8 2.4-3.0 
MTM Models:     
CreditMetrics 2,283 0.6 0.5 1.7-1.8 

KMV 2,213-2,276 0.5-0.8 1.1-1.6 1.6-5.3 
Internal Models 2,276 0.1 0.7 1.5 

 
Source: IIF/ISDA Study, Chapter I, pp. 21-23.  The results assume that all assets in the 
portfolio are carried at market value.   
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Figure 1 
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Figure 2 
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Figure 3 
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100.12 107.55

Value of Loan if Remaining
BBB Rated throughout Its
Remaining Life
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= Mean

Expected
Loss
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Probability
%
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Capital

$0.46$6.97

109.37

Figure 6.3 Actual distribution of loan values on
five year BBB loan at the end of year 1
(Including first year coupon payment).
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Figure 4 
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Source:    Dembo et al. (2000), p. 68.
Figure 12.1 Merton model of default.



 44 

 
 

References 
 
Altman, E.I., "Financial Ratios, Discriminant Analysis and the Prediction of Corporate 
Bankruptcy." Journal of Finance, September 1968, 589-609. 
 
Altman, E., G. Marco, and F. Varetto, 1994, “Corporate Distress Diagnosis: Comparison 
Using Linear Discriminant Analysis and Neural Networks (the Italian Experience),” 
Journal of Banking and Finance, 18 (3), 505-529. 
 
Altman, E. and P. Narayanan, 1997, “An International Survey of  Business Failure 
Classification Models,” Financial Markets, Institutions and Instruments,  vol. 6, no. 2. 
 
Bank for International Settlements, “Range of Practice in Banks’ Internal Ratings 
Systems.” Basel Committee on Banking Supervision, Document No 66, January 2000. 
 
Delianedis, G., and R. Geske, "Credit Risk and Risk-Neutral Default Probabilities: 
Information About Rating Migrations and Defaults." Paper presented at the Bank of 
England Conference on Credit Risk Modeling and Regulatory Implications, London, 
September 21-22, 1998. 
 
Duffie, D., and D. Lando, "Term Structures of Credit Spreads with Incomplete 
Accounting Information." Econometrica, Vol. 69, 2001, pp. 633-664. 
 
Duffie, D., and K.J. Singleton,"Simulating Correlated Defaults." Paper presented at the 
Bank of England Conference on Credit Risk Modeling and Regulatory Implications, 
London, September 21-22, 1998. 
 
Duffie, D. and K.J. Singleton, “Modeling Term Structures of Defaultable Bonds.” Review 
of Financial Studies, Vol. 12, 1999, pp. 687-720. 
 
Hirtle, B.J., M. Levonian, M. Saidenberg, S. Walter, and D. Wright, “Using Credit Risk 
Models for Regulatory Capital: Issues and Options.” Economic Policy Review, Federal 
Reserve Bank of New York, March 2001, pp. 19-36. 
 
IIF/ISDA, Institute of International Finance and International Swaps and Derivatives 
Association, “Modeling Credit Risk: Joint IIF/ISDA Testing Program,” February 2000. 
 
Jarrow, R. A. and S.M. Turnbull, “Pricing Derivatives on Financial Securities Subject to 
Credit Risk.” Journal of Finance, 50 (1), March 1995, pp. 53-85. 
 
Jarrow, R., D. Lando, and S. Turnbull, "A Markov Model for the Term Structure of 
Credit Spreads." Review of Financial Studies, Summer 1997, pp-481-523. 
 
 



 45 

 
Kim, K.S., and J.R. Scott, “Prediction of Corporate Failure: An Artificial Neural Network 
Approach.” Southwest Missouri State University, Working Paper, September 1991. 
 
Merton, R.C., "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates." 
Journal of Finance, June 1974, pp. 449-470. 
 
Mester, L., “What’s the Point of Credit Scoring?” Federal Reserve Bank of Philadelphia 
Business Review, September/October 1997, pp. 3-16. 
 
Poddig, T., “Bankruptcy Prediction: A Comparison with Discriminant Analysis” in in 
Neural Networks in Capital Markets, Refenes A.P.,(ed.), New York: John Wiley & Sons, 
Ltd., 1994, pp. 311-323. 
 
Ronn, E., and A. Verma, "Pricing Risk-Adjusted Deposit Insurance: An Option-Based 
Model." Journal of Finance, September 1986, pp. 871-895. 
 
Saunders, A. and L. Allen, 2002, Credit Risk Measurement: New Approaches to Value at 
Risk and Other Paradigms, New York: John Wiley and Sons, 2nd edition.  
 
Treacy, W.F. and M. Carey, “Credit Risk Rating Systems at Large US Banks.” Journal of 
Banking and Finance, January 2000, pp. 167-201. 
 
White, L., 2002, “The Credit Rating Industry: An Industrial Organization Analysis,” in R. 
Levich, ed., Ratings, Rating Agencies, and the Global Financial System, Kluwer 
Academic Publishing. 
 
Wilson, T., "Credit Risk Modeling: A New Approach." New York: McKinsey Inc., 1997a 
(mimeo). 
 
Wilson, T., "Portfolio Credit Risk (Parts I and II)." Risk Magazine, September and 
October, 1997b.  
 
Yang, Z.R., M.B. Platt and H.D. Platt, “Probabilistic Neural Networks in Bankruptcy 
Prediction.” Journal of Business Research, February 1999, pp. 67-74. 
 
Zhou, C., 2001, “The Term Structure of Credit Spreads with Jump Risk,” Journal of 
Banking and Finance, vol. 25, 2015-2040. 
 
Zhou, C., "A Jump Diffusion Approach to Modeling Credit Risk and Valuing Defaultable 
Securities." Working Paper, Federal Reserve Board of Governors, March 1997. 
 


	Professor of Finance
	Professor of Finance
	
	
	INSERT FIGURE 1 AROUND HERE
	INSERT FIGURE 2 AROUND HERE

	INSERT TABLE 2 AROUND HERE
	INSERT TABLE 3 AROUND HERE
	INSERT FIGURE 3 AROUND HERE
	
	
	Mortality Rate Models
	Comparison of Credit Risk Measurement Models



	INSERT TABLE 5 AROUND HERE

	7.1 	IIF/ISDA Results on the Middle Portfolio
	
	
	
	The results for the middle markets, mortgages, and retail credit showed a range of credit risk estimates.�  Moreover, proprietary internal models were used most often by the banks participating in the survey for the middle markets portfolio as compared t



	INSERT TABLE 6 AROUND HERE
	
	
	Summary and Conclusion



	Table 4


	Risk Exposure
	
	Table 5

	CreditMetrics
	
	Table 6
	MODEL
	Expected Loss
	DM Models:
	MTM Models:
	Figure 1
	
	Figure 4
	References







