
Blockchain Economics

Joseph Abadi and Markus Brunnermeier

August 2, 2022

1 / 37

Motivation

▶ Problem in record-keeping: Create trusted ledger w/o trustworthy record-keepers

▶ Traditional model: Ledger’s owner has to be given incentives to behave

▶ Distributed ledgers: “Trust problem” shifts to decentralized group of record-keepers

▶ DLs often use costly schemes to provide incentives for honest record-keeping
▶ Proof-of-work: Voting power allocated based on computational expenditures (BTC, ETH)

▶ Expenditures large in practice!

▶ Proof-of-stake: Voting power allocated based on token holdings (Solana, Cardano)

▶ Typically record-keepers (“validators”) restricted in their transactions. Also costly?

▶ What are the fundamental tradeoffs and constraints in distributed ledger design?

▶ Do distributed ledgers have to use costly schemes to incentivize honesty? (e.g. Bitcoin)

▶ How should record-keeping be designed to most efficiently provide incentives?

2 / 37

Motivation

▶ Problem in record-keeping: Create trusted ledger w/o trustworthy record-keepers

▶ Traditional model: Ledger’s owner has to be given incentives to behave

▶ Distributed ledgers: “Trust problem” shifts to decentralized group of record-keepers

▶ DLs often use costly schemes to provide incentives for honest record-keeping
▶ Proof-of-work: Voting power allocated based on computational expenditures (BTC, ETH)

▶ Expenditures large in practice!

▶ Proof-of-stake: Voting power allocated based on token holdings (Solana, Cardano)

▶ Typically record-keepers (“validators”) restricted in their transactions. Also costly?

▶ What are the fundamental tradeoffs and constraints in distributed ledger design?

▶ Do distributed ledgers have to use costly schemes to incentivize honesty? (e.g. Bitcoin)

▶ How should record-keeping be designed to most efficiently provide incentives?

2 / 37

Motivation

▶ Problem in record-keeping: Create trusted ledger w/o trustworthy record-keepers

▶ Traditional model: Ledger’s owner has to be given incentives to behave

▶ Distributed ledgers: “Trust problem” shifts to decentralized group of record-keepers

▶ DLs often use costly schemes to provide incentives for honest record-keeping
▶ Proof-of-work: Voting power allocated based on computational expenditures (BTC, ETH)

▶ Expenditures large in practice!

▶ Proof-of-stake: Voting power allocated based on token holdings (Solana, Cardano)

▶ Typically record-keepers (“validators”) restricted in their transactions. Also costly?

▶ What are the fundamental tradeoffs and constraints in distributed ledger design?

▶ Do distributed ledgers have to use costly schemes to incentivize honesty? (e.g. Bitcoin)

▶ How should record-keeping be designed to most efficiently provide incentives?

2 / 37

The Blockchain Trilemma
▶ We study design of record-keeping protocols for distributed ledgers (consensus algs.)

▶ Model general enough to capture PoW/PoS/centralized blockchains

Resource-efficiency Allocative efficiency

Fault-tolerance

1. Fault-tolerance: Ledger can be updated even when computers are offline/malfunction

2. Resource-efficiency: No waste of electricity to update ledger

3. Allocative efficiency: Record-keeping protocol implements Pareto-efficient allocations
3 / 37

Related literature

▶ Distributed consensus: Ben-Or (1983); Bracha and Toueg (1985); Castro and Liskov
(1998); Fisher, Lynch, and Paterson (1985); Lamport, Shostak, and Pease (1980, 1982)

▶ Game-theoretic approaches: Biais et al. (2021); Brown-Cohen et al. (2019); Eyal and
Sirer (2014); Halaburda, He, and Li (2021); Nakamoto (2008)

▶ (Un)mediated communication: Aumann and Hart (2004); Ben-Porath (1998, 2003);
Eliaz (2002); Forges (1986); Gerardi (2004); Maskin (1998); Myerson (1986)

4 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

5 / 37

A simple example

▶ Alice (A), Bob (B), and Carol (C) exchange “tokens” on a digital ledger

▶ Problem: What if Alice tries to send the same token twice? (double-spending)

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A

B C

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

Se
nd

$
1
to

B

Send
$1

to
B

A

B C

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

Se
nd

$
1
to

C

Send $1 to C

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

Se
nd

$
2
to

B

Send
$2

to
C

▶ Näıve solution #1: Everyone accepts whichever transaction Alice sent first

▶ Näıve solution #2: Accept new transaction only after unanimous vote

6 / 37

A simple example

▶ Alice (A), Bob (B), and Carol (C) exchange “tokens” on a digital ledger

▶ Problem: What if Alice tries to send the same token twice? (double-spending)

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A

B C

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

Se
nd

$
1
to

B
Send

$1
to

B

A

B C

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

Se
nd

$
1
to

C

Send $1 to C

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

Se
nd

$
2
to

B

Send
$2

to
C

▶ Näıve solution #1: Everyone accepts whichever transaction Alice sent first

▶ Näıve solution #2: Accept new transaction only after unanimous vote

6 / 37

A simple example

▶ Alice (A), Bob (B), and Carol (C) exchange “tokens” on a digital ledger

▶ Problem: What if Alice tries to send the same token twice? (double-spending)

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A

B C

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

Se
nd

$
1
to

B

Send
$1

to
B

A

B C

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

Se
nd

$
1
to

C

Send $1 to C

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

Se
nd

$
2
to

B

Send
$2

to
C

▶ Näıve solution #1: Everyone accepts whichever transaction Alice sent first

▶ Näıve solution #2: Accept new transaction only after unanimous vote

6 / 37

A simple example

▶ Alice (A), Bob (B), and Carol (C) exchange “tokens” on a digital ledger

▶ Problem: What if Alice tries to send the same token twice? (double-spending)

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A

B C

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

Se
nd

$
1
to

B

Send
$1

to
B

A

B C

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

Se
nd

$
1
to

C

Send $1 to C

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

Se
nd

$
2
to

B
Send

$2
to

C

▶ Näıve solution #1: Everyone accepts whichever transaction Alice sent first

▶ Näıve solution #2: Accept new transaction only after unanimous vote

6 / 37

A simple example

▶ Alice (A), Bob (B), and Carol (C) exchange “tokens” on a digital ledger

▶ Problem: What if Alice tries to send the same token twice? (double-spending)

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A

B C

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

A : $1
B : $3
C : $2

Se
nd

$
1
to

B

Send
$1

to
B

A

B C

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

A : $1
B : $2
C : $3

Se
nd

$
1
to

C

Send $1 to C

A

B C

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

A : $2
B : $2
C : $2

Se
nd

$
2
to

B
Send

$2
to

C
▶ Näıve solution #1: Everyone accepts whichever transaction Alice sent first

▶ Näıve solution #2: Accept new transaction only after unanimous vote

6 / 37

The classical approach

▶ N computers (“nodes”) keep track of updates to a ledger

▶ Ledger: Sequence of entries {b1, b2, . . . , bK}
▶ E.g., blockchains are ledgers whose entries are transaction batches (“blocks”)

▶ Communication frictions: Message delays + “faulty” nodes + asynchronicity

▶ Messages are delivered with a random lag (Näıve solution #1)

▶ Faulty nodes can’t communicate or behave erratically (Näıve solution #2)

▶ Nodes don’t have synchronized clocks

▶ Want a communication protocol s.t. when all non-faulty nodes follow it,

1. All non-faulty nodes’ ledgers remain consistent

2. As long as enough nodes are non-faulty, they can update their ledgers (fault-tolerance)

7 / 37

Model overview

▶ Setting with N agents who

▶ Engage in a sequence of transactions (“ledger updates”), then

▶ Decide how to split a fixed surplus (terminal “ledger state,” represents future payoffs)

▶ Agents play a communication game to reach agreement on transactions + terminal state

▶ Same communication frictions as in classical problem

▶ Messages can be costly to send (e.g. Proof-of-Work)

▶ Want game form + communication protocol s.t.

1. Agents reach agreement on a sequence of transactions + terminal state

2. Agents have incentives to follow communication protocol (coaliton-proof eqm. concept)

Possible to achieve fault-tolerance, resource-efficiency, and allocative efficiency?

8 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

9 / 37

Environment

▶ Agents N = {1, . . . ,N}, continuous time t, no discounting

▶ Time runs until agents reach agreement on a terminal state (split of fixed surplus V)

▶ Terminal state is v = (v1, . . . , vN) with
N∑

n=1

vn = V

▶ Set of transactions y ∈ Y that can be realized before terminal state is reached

▶ Each transaction associated with set of participants S(y) ⊂ N + payoffs un(y) for n ∈ S(y)

▶ At t = 0, Nature draws a set of feasible transactions Y F ⊂ Y and faulty agents F ⊂ N
▶ Feasible allocation: {y1, y2, . . . , yK , v} s.t. each yk is feasible and S(yk) are non-faulty

10 / 37

The communication game: Overview

▶ Agents can send bilateral, private messages + agree to transactions/terminal states

▶ Each message m has a cost κ(m) ≥ 0

▶ All participants n ∈ S(y) agree to transaction y ⇒ Payoffs un(y) realized

▶ All agents agree to terminal state v ⇒ Payoffs vn realized, game ends (consensus)

▶ Assumption 1: Two frictions in communication

1. Messages are delivered with an iid random lag (of at most ∆)

2. Faulty agents can’t send messages or agree to transactions

▶ Can only agree to terminal state at end of game

▶ Assumption 2: Agents don’t have perfectly synchronized clocks (don’t observe t)

▶ Agent n also doesn’t know which other agents n′ are faulty

▶ . . . but n has perfect recall of own actions, messages received, transactions s.t. n ∈ S(y)

11 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

An example

A

B C

D

(faulty)

Ledger

Game starts

m
es
sa
ge

message

m
es
sa
ge

“A
gr
ee
to
y 1
”

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

m
es
sa
ge

uA(y1)

uB(y1)

y1

y1 realized

m
essage

uA(y1)

uB(y1)

y1

y1 realized

“Agree
to
y
2 ”

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

message

uA(y1) + uA(y2)

uB(y1) uC (y2)

y1

y2

y1 realized y2 realized

“Agree to y3”

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

m
es
sa
ge

uA(y1) + uA(y2)

uB(y1) + uB(y3) uC (y2) + uC (y3)

y1

y2

y3

y1 realized y2 realized y3 realized

“Agree on v”

uA(y1) + uA(y2) + vA

uB(y1) + uB(y3) + vB uC (y2) + uC (y3) + vC

vD

y1

y2

y3

v

y1 realized y2 realized y3 realized v realized

12 / 37

The communication game: Formal description

▶ Actions: Messages Mn(ht) + agreements An(ht) for each agent n at each history ht

▶ Payoffs: Transactions + terminal state - communication costs

Un =
∑

n∈S(yk)

un(yk) + vn −
∑
m∈M̂n

κ(m)

▶ Equilibrium: Profile of strategies σ s.t. no coalition S ⊂ N has incentives to deviate

̸ ∃ σ̃S s.t. in instance (Y F ,F) : E[Un|σ̃S ,σ−S] ≥ E[Un|σ] ∀ n ∈ S

> E[Un|σ] for some n ∈ S .

▶ Assumption 3: Technical restriction of class of games

▶ Certain types of proofs allowed (e.g. signatures), but “lies of omission” always possible

▶ Still general enough to capture all distributed record-keeping systems in reality

13 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

14 / 37

Record-keeping

▶ Study record-keeping protocols σ of communication game G
▶ After each history ht , promised payoffs vn(ht) for each agent

▶ As if agents update a “ledger”: Each transaction associated w/a transfer t = v′ − v

▶ A4: Any restriction on transfers of value (terminal v) ⇒ Inefficient allocation Details

▶ Three desired properties of record-keeping protocol σ:

1. Fault-tolerance: σ is a record-keeping eqm. of G whenever a majority are non-faulty

2. Resource-efficiency: σ doesn’t use costly messages

3. Allocative efficiency: Whenever σ is a record-keeping eqm., then a Pareto-efficient
allocation is realized with positive probability

15 / 37

Record-keeping

▶ Study record-keeping protocols σ of communication game G
▶ After each history ht , promised payoffs vn(ht) for each agent

▶ As if agents update a “ledger”: Each transaction associated w/a transfer t = v′ − v

▶ A4: Any restriction on transfers of value (terminal v) ⇒ Inefficient allocation Details

▶ Three desired properties of record-keeping protocol σ:

1. Fault-tolerance: σ is a record-keeping eqm. of G whenever a majority are non-faulty

2. Resource-efficiency: σ doesn’t use costly messages

3. Allocative efficiency: Whenever σ is a record-keeping eqm., then a Pareto-efficient
allocation is realized with positive probability

15 / 37

The Blockchain Trilemma

Theorem
Under Assumptions 1-4, the following hold:

1. (Impossibility) There does not exist a record-keeping protocol σ of a game G achieving
fault-tolerance, resource-efficiency, and allocative efficiency.

2. (Existence) For any two of the desired properties, there exists a record-keeping protocol
σ of some game G achieving both.

▶ Characterizes costs of a lack of trust

▶ With a trusted mediator, possible to achieve all three properties

▶ Tradeoff: Fault-tolerance vs. efficiency

▶ Any amount of fault-tolerance implies some inefficiency

16 / 37

The Blockchain Trilemma

Theorem
Under Assumptions 1-4, the following hold:

1. (Impossibility) There does not exist a record-keeping protocol σ of a game G achieving
fault-tolerance, resource-efficiency, and allocative efficiency.

2. (Existence) For any two of the desired properties, there exists a record-keeping protocol
σ of some game G achieving both.

▶ Characterizes costs of a lack of trust

▶ With a trusted mediator, possible to achieve all three properties

▶ Tradeoff: Fault-tolerance vs. efficiency

▶ Any amount of fault-tolerance implies some inefficiency

16 / 37

The main idea

▶ Fault-tolerant communication protocol ⇒ Possible for some coalition to “double-spend”

▶ Deviating coalition agrees to transfer value to two different groups of agents

UD
n − UH

n ≤ κD
n︸︷︷︸

Ex-ante cost

+ vH
n − vD

n︸ ︷︷ ︸
Ex-post punishment

▶ Ex-ante cost: Communication costs ⇒ Expensive to double-spend

▶ Need to give up resource-efficiency (κD
n > 0)

▶ Ex-post punishment: Take value away from agents who double-spend

▶ Need to prevent agents from spending entire balance (vH
n = 0) ⇒ Allocative inefficiency

17 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Proof sketch: Impossibility
▶ Suppose σ achieves fault-tolerance (FT), resource-efficiency (RE), and allocative

efficiency (AE)

A

B C

• A4: ∃ y s.t. A transfers vA to B

• FT: σ is an eqm. when A ∪ B are non-faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : vA
B : vB
C : vC

Agree on v = (0, vA + vB , vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

A : 0
B : vA + vB
C : vC

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y ′

What happens when B is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : vA
B : vB
C : vC

A : 0
B : vB
C : vA + vC

Agree on v = (0, vB , vA + vC)

What happens when C is faulty. . .

• AE: A ∪ B agree on y when C is faulty

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

A : 0
B : vB
C : vA + vC

“C
is
fa
ul
ty
,
ac
ce
pt

y
”

“H
av
e
no
t
he
ar
d
fr
om

C
”

“B
is
faulty,

accept
y ′”

“H
ave

not
heard

from
B
”

• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

A : vA
B : vB
C : vC

A : vA
B : vB
C : vC

Agree on y Agree on y ′
• AE: A ∪ B agree on y when C is faulty

• A2: B and C don’t know how long to wait!

• RE: Costless for A to engage in this deviation

A : 0
B : vA + vB
C : vC

A : 0
B : vB
C : vA + vC

18 / 37

Intuition behind the existence result

▶ Give up fault-tolerance ⇒ Easy to prevent double-spending!

▶ Simple communication protocol: Require unanimous vote before approving any transaction

▶ Impossibility result: There exist mutually incompatible efficient allocations

▶ Permitting A to transfer its entire balance to anyone allows double-spending

▶ One option: Forbid mutually incompatible allocations, give up allocative efficiency

▶ Can design communication costs so that any set of allocations is compatible

▶ Restore allocative efficiency, give up resource efficiency

Key assumptions Conclusion

19 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

20 / 37

What’s a blockchain?
▶ Blockchain: Type of data structure (ledger) consisting of a sequence of blocks

▶ Block: Consists of data + pointer to the previous block

▶ Each block is usually a batch of transactions

A : $1
B : $0
C : $2

b0

Genesis block

A
$1→ B

b1

C
$2→ B

b2

A : $0
B : $3
C : $0

C
$2→ A

b′2

A : $2
B : $1
C : $0

▶ Challenge: What if conflicting blocks are added at the end of the chain (fork)?

▶ Consensus algorithm: Communication protocol to finalize blocks

21 / 37

What’s a blockchain?
▶ Blockchain: Type of data structure (ledger) consisting of a sequence of blocks

▶ Block: Consists of data + pointer to the previous block

▶ Each block is usually a batch of transactions

A : $1
B : $0
C : $2

b0

Genesis block

A
$1→ B

b1

C
$2→ B

b2

A : $0
B : $3
C : $0

C
$2→ A

b′2

A : $2
B : $1
C : $0

▶ Challenge: What if conflicting blocks are added at the end of the chain (fork)?

▶ Consensus algorithm: Communication protocol to finalize blocks
21 / 37

Mapping blockchains to the Trilemma

▶ This section: For proof-of-work/proof-of-stake systems, specify

1. How does the consensus algorithm work?

2. Under the consensus algorithm, which coalitions can collude to double-spend?

3. What incentives prevent those coalitions from doing so?

▶ Useful to think of consensus algorithms as consisting of two components:

▶ Write protocol: Who gets to add the next block? Where should it be added?

▶ Read protocol: At what point is a block on one branch considered to be final?

▶ Note: A different type of double-spend is more common in practice

▶ Attackers wait until one transaction is confirmed and goods are delivered. . .

▶ . . . then attackers send tokens back to themselves, create consensus on that transaction

22 / 37

The Proof-of-Work algorithm

▶ In PoW blockchains, when are blocks finalized? How are forks resolved?

▶ PoW is by far the most popular consensus algorithm despite high mining costs

▶ E.g. Bitcoin, Ethereum (for now), Litecoin

▶ Write protocol: “Longest chain rule”

▶ Miners should attempt to add a block at the end of the longest chain they currently see

▶ Logic: Miners tacitly vote in favor of every block in a chain when extending it

▶ Read protocol: “k confirmations”
▶ A block b is final if there are (at least) k blocks following it (“confirmations”)

▶ For example, k = 6 in Bitcoin

▶ Effectively, a block is confirmed once it gets six votes

23 / 37

An example of the PoW consensus algorithm

A : $4
B : $1
C : $1

b0
A

$1→ B

b1

A
$1→ A

b′1

(data)

b2

(data)

b7

5 blocks
A

$1→ B

b1

▶ Initially there’s a fork. . .

▶ Then a miner adds b2 after b1. . .

▶ Then miners add blocks to the longest chain in sequence until b1 is final.

24 / 37

An example of the PoW consensus algorithm

A : $4
B : $1
C : $1

b0
A

$1→ B

b1

A
$1→ A

b′1

(data)

b2

(data)

b7

5 blocks
A

$1→ B

b1

▶ Initially there’s a fork. . .

▶ Then a miner adds b2 after b1. . .

▶ Then miners add blocks to the longest chain in sequence until b1 is final.

24 / 37

An example of the PoW consensus algorithm

A : $4
B : $1
C : $1

b0

A
$1→ B

b1

A
$1→ A

b′1

(data)

b2

(data)

b7

5 blocks
A

$1→ B

b1

▶ Initially there’s a fork. . .

▶ Then a miner adds b2 after b1. . .

▶ Then miners add blocks to the longest chain in sequence until b1 is final.

24 / 37

A double-spend attempt

A : $4
B : $1
C : $1

b0
A

$1→ B

b1

A
$1→ A

b′1

(data)

b2

(data)

b7

5 blocks

(data)

b′8

A’s secret chain

A
$1→ B

b1

A
$1→ A

b′1

(data)

b′8

A’s chain revealed

▶ Alice first mines a chain secretly. . .

▶ . . . and then reveals it. If Alice controls majority of hash power, she can double-spend.

25 / 37

A double-spend attempt

A : $4
B : $1
C : $1

b0

A
$1→ B

b1

A
$1→ A

b′1

(data)

b2

(data)

b7

5 blocks

(data)

b′8

A’s secret chain

A
$1→ B

b1

A
$1→ A

b′1

(data)

b′8

A’s chain revealed

▶ Alice first mines a chain secretly. . .

▶ . . . and then reveals it. If Alice controls majority of hash power, she can double-spend.

25 / 37

The Proof-of-Stake algorithm

▶ In PoS, record-keepers perform two functions: “Forging” and “validating”

▶ Forging: Adding new blocks to the chain

▶ Validating: Attesting that blocks forged by others are valid

▶ Write protocol: Longest chain rule

▶ Token drawn at random ⇒ Token’s owner gets to mine a block b (add to longest chain)

▶ Other tokenholders should attest to the validity of block b if it is on the longest chain

▶ Read protocol: Supermajority rule + k confirmations
▶ A block b is considered final if:

1. Two-thirds of validators (weighted by token holdings) have attested b is valid

2. Block b is followed by at least k blocks

26 / 37

An example of PoS consensus

A : $4
B : $1
C : $1

b0
A

$1→ B

Votes from {A,B}

A
$1→ A

Vote from C

(data)

Votes from {A,B}

(data)

Votes from {A,B ,C}

A
$1→ B

Votes from {A,B}

▶ Alice and Bob first vote for (b1, b2), while Carol votes for b′1. . .

▶ . . . but then Carol sees b2 and votes along with Alice and Bob.

27 / 37

An example of PoS consensus

A : $4
B : $1
C : $1

b0
A

$1→ B

Votes from {A,B}

A
$1→ A

Vote from C

(data)

Votes from {A,B}

(data)

Votes from {A,B ,C}

A
$1→ B

Votes from {A,B}

▶ Alice and Bob first vote for (b1, b2), while Carol votes for b′1. . .

▶ . . . but then Carol sees b2 and votes along with Alice and Bob.

27 / 37

An example of PoS consensus

A : $4
B : $1
C : $1

b0

A
$1→ B

Votes from {A,B}

A
$1→ A

Vote from C

(data)

Votes from {A,B}

(data)

Votes from {A,B ,C}

A
$1→ B

Votes from {A,B}

▶ Alice and Bob first vote for (b1, b2), while Carol votes for b′1. . .

▶ . . . but then Carol sees b2 and votes along with Alice and Bob.

27 / 37

Double-spending in PoS

A : $4
B : $1
C : $1

b0
A

$1→ B

Votes from {A,B}

A
$1→ A

Vote from C

(data)

Votes from {A,B}

(data)

Votes from {A,B ,C}

A
$1→ B

Votes from {A,B}

A
$1→ A

Votes from {A,C}

(data)

Vote from A

Votes from A

▶ Alice has 2
3 of tokens ⇒ Can validate any block on her own

▶ Alice can actually attempt a double-spend whenever she has ≥ 1
3 of tokens

28 / 37

Double-spending in PoS

A : $4
B : $1
C : $1

b0

A
$1→ B

Votes from {A,B}

A
$1→ A

Vote from C

(data)

Votes from {A,B}

(data)

Votes from {A,B ,C}

A
$1→ B

Votes from {A,B}

A
$1→ A

Votes from {A,C}

(data)

Vote from A

Votes from A

▶ Alice has 2
3 of tokens ⇒ Can validate any block on her own

▶ Alice can actually attempt a double-spend whenever she has ≥ 1
3 of tokens

28 / 37

Punishments in PoW and PoS systems

▶ PoW: Need resource costs to be large enough to dissuade double-spends

▶ Easy to measure resource costs in practice: Total hash power is observable

▶ Bitcoin > Argentina, Ethereum ≈ Netherlands

▶ PoS: Two types of schemes

1. Force validators to stake collateral (Avalanche, Solana)

▶ Cost ≈ Liquidity premium × Collateral quantity

2. Validators earn rents that can be taken away (Cardano)

29 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

30 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

The fault-tolerance requirement
▶ Fault-tolerance is a key requirement in the Blockchain Trilemma

▶ Why is this important? What happens if we give up fault-tolerance?

▶ Simple algorithm to achieve consensus in the absence of faults: Each player n should

1. Communicate to others to determine which allocation x should be finalized;

2. Once they have received confirmation from all other players that a particular allocation x∗

should be finalized, agree to x∗.

3. After agreeing to x∗, never agree to anything else.

A

B C

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

A : ?
B : ?
C : x

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

A : x
B : ?
C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : x

x

x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

A : x
B : x ′

C : x

x x

A : x
B : x ′

C : x

A : x
B : x
C : x

A : x
B : x ′

C : x

x

x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

A : x
B : x
C : x

x ′

31 / 37

A general result

▶ Double-spending impossible when fault-tolerance isn’t required!

▶ An agent receives input from all others before deciding

▶ Construct consensus alg. so that no two honest agents ever agree to different allocations

▶ Why does fault-tolerance allow double-spends? Can’t require input from everyone

▶ . . . so two honest agents can decide without ever hearing from each other (e.g. B and C)

▶ Result: Blockchain Trilemma holds even if faulty players can behave in arbitrary ways

▶ Generalizes beyond simple model where faulty players are offline (e.g. glitches, hacks, . . .)

▶ Key feature: All that’s needed is possibility of non-responsiveness

32 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f

33 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f

33 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f

33 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f

33 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f

33 / 37

The asynchronicity assumption
▶ Is it hopeless to design an ideal fault-tolerant consensus alg.? No!

▶ Asynchronicity is also a critical assumption (designer does not know message lag ∆)

▶ Suppose players have synchronized clocks, and consider the following protocol:

1. “If more than ∆ seconds have passed without receiving a message from n, label n as faulty
and ignore thereafter.”

2. “After receiving confirmation from all non-faulty players that a particular allocation x∗

should be finalized, agree to x∗.”

3. “After agreeing to x∗, do not agree to anything else.”

A

B C (faulty)

A : x
B : ?
C : ?

A : ?
B : x ′

C : ?

x x

A : x
B : ?
C : ?

A : x
B : x ′

C : ?

x ′

x ′

A : x
B : x ′

C : ?

A : x
B : x ′

C : ?

A : x
B : x ′

C : f

A : x
B : x ′

C : f

x

A : x
B : x ′

C : f

A : x
B : x
C : f

x

A : x
B : x
C : f

A : x
B : x
C : f 33 / 37

Scalability in synchronous settings

▶ In practical settings, asynchronicity is usually the most appropriate assumption

▶ Protocol requires strong form of common knowledge ⇒ Need perfectly synchronized clocks

▶ Any error implies some users would be left out of ledger forever

▶ What if we relax the asynchronicity assumption?

▶ Possible to resolve Trilemma, but comes at the cost of scalability (key challenge)

▶ Intuition: In order to prevent double-spends, amount of cross-checking scales with N

Theorem
Under synchronous communication, ∃ a game G and a protocol σ. achieving fault-tolerance,
resource efficiency, and full transferability. However, any such algorithm takes at least ∆ · N

3
rounds of communication.

34 / 37

Roadmap

Introduction

The Distributed Record-Keeping Problem

Model

The Blockchain Trilemma

Distributed Record-Keeping in Practice

The Key Assumptions

Conclusion

35 / 37

Conclusion

▶ What are the inherent constraints and tradeoffs in the design of digital record-keeping?

▶ Blockchain Trilemma ⇒ Either give up fault-tolerance. . .

▶ . . . or provide incentives at the cost of inefficiency (resource costs/transferability restrictions)

▶ PoW gives up resource-efficiency, while PoS/permissioned give up allocative efficiency

▶ Trilemma applies generally to all fault-tolerant distributed record-keeping systems

▶ Fundamental result in consensus algorithm design adapted to econ from comp sci

36 / 37

Technical details

▶ Definition A record-keeping protocol is σ specifying vn(ht) s.t.
N∑

n=1
vn(ht) = V and

∑
t′>t

un(yt′) + vnT ≥ vn(ht) ∀ n ∈ N w/prob. 1

in any (Y F ,F) s.t. σ is an eqm.

▶ Assumption 4: Restrictions on transfers of value ⇒ Loss of efficiency

▶ For each transfer of value t, there is an individually rational transaction y s.t.

un(y) = −tn ∀ n s.t. tn > 0

▶ Participation constraint binds for all n who incur a cost in transaction y

Back

37 / 37

	Introduction
	The Distributed Record-Keeping Problem
	Model
	The Blockchain Trilemma
	Distributed Record-Keeping in Practice
	The Key Assumptions
	Conclusion
	Appendix

